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Abstract—Lung ultrasound (LUS) has been increasingly expanding since the 1990s, when the clinical relevance
of vertical artifacts was first reported. However, the massive spread of LUS is only recent and is associated with
the coronavirus disease 2019 (COVID-19) pandemic, during which semi-quantitative computer-aided techniques
were proposed to automatically classify LUS data. In this review, we discuss the state of the art in LUS, from
semi-quantitative image analysis approaches to quantitative techniques involving the analysis of radiofrequency
data. We also discuss recent in vitro and in silico studies, as well as research on LUS safety. Finally, conclusions
are drawn highlighting the potential future of LUS. (E-mail: libertario.demi@unitn.it) © 2022 World
Federation for Ultrasound in Medicine & Biology. All rights reserved.
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INTRODUCTION

The ability of ultrasound waves to penetrate media hav-

ing similar acoustic impedances (e.g., soft tissue) makes

them particularly suitable for medical imaging. More-

over, the presence of similar speeds of sound in the

human body is fundamental to reconstruct the anatomy

with ultrasound imaging. Specifically, these two charac-

teristics allow clinicians to anatomically investigate the

internal parts of the human body in real time without

exposing patients to ionizing radiations. However, the

anatomical investigation of aerated organs is not possible

as the standard ultrasound imaging assumptions of simi-

lar acoustic impedances and quasi-homogeneous speed

of sound in the volume of interest are unmet because of

the presence of air. Indeed, the acoustic impedance of air

significantly differs from that of soft tissues, causing

ultrasound waves to be almost completely reflected

when encountering an acoustic interface formed by these

two media. This is extremely relevant in lungs, as they

consist of millions of air-filled alveoli.
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The first studies on the use of ultrasound imaging

for lung investigation were conducted by Dunn and Fry

in 1961, in which they attempted to estimate ultrasound

absorption and reflection in lung tissue. Similar studies

focused on the acoustical characterization of lung tissue

were performed in the following years both in vitro

(Bauld and Schwan 1974; Dunn 1974, 1986; Pedersen

and Ozcan 1986; Towa et al. 2002; Oelze et al. 2008)

and in vivo (Sagar et al. 1978). However, these studies

did not spread to clinical practice because of the diffi-

culty in achieving reproducible estimations.

On the other hand, the first clinical applications of

lung ultrasound (LUS) date back to 1967, when Joyner

et al. reported the possible existence of characteristic

ultrasound patterns in patients with pulmonary embolism

and pleural effusion (Joyner et al. 1967; Miller et al.

1967). Fifteen years later, Ziskin et al. (1982) observed

the so-called “comet tail artifact” in a patient with a shot-

gun wound in the abdomen. These artifacts were

described as “dense horizontal reverberation echoes

likely caused by the strong reflection of objects having

significantly different acoustic impedances with the

background medium” (Ziskin et al. 1982). However,
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given their vertical extent, these artifacts are generally

referred to as vertical artifacts or comet-tail artifacts.

The “comet-tail artifact” was indeed detected by the

authors also in canine liver in correspondence of lead

pellets and by imaging glass and metallic rods in a water

tank (Ziskin et al. 1982). The clinical relevance of these

artifacts was then highlighted in 1983, when Thickman

et al. (1983) observed them in several tissue�gas interfa-

ces (e.g., diaphragm/aerated lung interface). A similar

artifact, called “ring-down,” was reproduced in vitro by

Avruch and Cooperberg (1985), who observed these ver-

tical artifacts when a bubble tetrahedron formed by two

layers of soapy bubbles (diameter from 1 to 7 mm) was

imaged with an ultrasound transducer. However, only in

the 1990s the clinical use of these vertical artifacts (first

called “comet tail” artifacts) started to rapidly increase

thanks to Lichtenstein et al. (1997), who observed a cor-

relation between this artifact and the presence of alveo-

lar�interstitial syndrome. We should also mention an

important previous study that compared the sonographic

appearance of pulmonary infarctions with their patholog-

ical reports (Mathis and Dirschmid 1993). However,

contrary to Lichtenstein et al. (1997), who compared

in vivo the sonographic signs with computed tomography

(CT) anatomical images of patients, this study was per-

formed ex vivo (Mathis and Dirschmid 1993).

Following the work of Lichtenstein et al. (1997),

the use of LUS techniques based on visual interpreta-

tions of imaging artifacts spread rapidly in the clinical

world. For example, LUS vertical artifacts (called

“comets” or “B-lines”) were exploited to assess extra-

vascular lung water (Jambrik et al. 2004; Picano et al.

2006) and differentiate acute cardiogenic pulmonary

edema (CPE) from acute respiratory distress syndrome

(ARDS) (Copetti et al. 2008).

In addition to the presence of artifacts, ultrasound

can be also used to detect subpleural consolidations,

which consist of anatomical findings that could be

imaged at the lung surface (Lichtenstein et al. 2004).

Specifically, consolidations are areas where lung tissue

is substantially de-aerated, thus making the lung signifi-

cantly dense. Indeed, in these cases, lung is partially

characterized by acoustical properties similar to those of

soft tissues, and can thus be anatomically imaged.

In clinical practice, the common approach adopted

by clinicians consists of visually inspecting LUS videos

to detect the above-mentioned patterns. These qualitative

techniques were reviewed and included in an interna-

tional consensus on LUS, which is currently the only

consensus publication on LUS (Volpicelli et al. 2012).

These approaches form the basis of the so-called

semi-quantitative techniques, which nowadays represent

the most diffused and used strategies in LUS analyses.

These techniques are indeed based on the visual
interpretation of LUS patterns, where a score is assigned

depending on the observed patterns, which correlate

with the state of the lung. As an example, the lowest

score of a scoring system is generally associated with a

continuous pleural line (i.e., the image representation of

the acoustic interface formed by intercostal tissues and

air within lungs) with associated horizontal artifacts

(also known as A-lines), which generally correlate with

a healthy lung (Soldati et al. 2020d). Horizontal artifacts

represent equally spaced horizontal repetitions of the

pleural line, and their genesis is linked to the presence of

two strong reflectors (the probe and the pleural line),

which causes ultrasound waves to bounce between these

two interfaces (Soldati et al. 2019). As a healthy lung is

characterized by a high level of aeration, with alveoli

close to each other, the pleural line forms an acoustic

interface having a reflection coefficient of about 1, thus

generating horizontal artifacts in the image (Soldati et al.

2019). Figure 1 contains examples of horizontal and ver-

tical artifacts, as well as consolidations.

As the widespread use of these approaches acceler-

ated with the recent outbreak of the COVID-19 pan-

demic, a significant part of the literature on semi-

quantitative LUS is related to COVID-19 applications

(Allinovi et al. 2020; Bonadia et al. 2020; Dargent et al.

2020; Smargiassi et al. 2020b; Soldati et al. 2020a,

2020c, 2020d, 2021a, 2021b, 2022; Sultan and Sehgal

2020; Zhao et al. 2020; Demi et al. 2021, 2022; Lerch-

baumer et al. 2021; Mento et al. 2021b; Perrone et al.

2021; Russell et al. 2021). Nevertheless, these techni-

ques are generally heterogeneous and are influenced by

confounding factors, such as imaging frequency, focal

depth and utilized probes, which are generally not men-

tioned in the publications (Demi 2020). As a conse-

quence, findings obtained using different approaches are

extremely difficult to compare (Demi 2020). Another

main problem is related to the strong operator depen-

dence in the evaluation of LUS patterns and, thus, to the

assigned score.

These limitations could be mitigated by adopting a

standardized imaging protocol and scoring system,

including technical aspects such as imaging parameters

(Soldati et al. 2020d). Moreover, artificial intelligence

(AI) algorithms could be exploited to automatically clas-

sify LUS data based on scores, resulting in a more robust

and reproducible semi-quantitative method (Carrer et al.

2020; Roy et al. 2020; Chen et al. 2021; Mento et al.

2021a; Xue et al. 2021; Roshankhah et al. 2021b; Frank

et al. 2022).

Because the necessity to develop acquisition

strategies specifically designed for lung has been

highlighted not only by clinicians, but also by

researchers with technical backgrounds, the develop-

ment of quantitative approaches could represent the



Fig. 1. Examples of lung ultrasound images acquired with convex (top) and linear (bottom) probes. Pleural lines, hori-
zontal artifacts, vertical artifacts and consolidations are indicated in blue, orange, red, and green, respectively.
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future of LUS (Demi et al. 2014). The evaluation of

correlations between anatomical findings observed

with standard imaging modalities (e.g., chest x-rays

and CT), which are linked to histological observa-

tions, and LUS patterns (Soldati et al. 2016, 2017;

Smargiassi et al. 2019, 2020a) should represent an

important starting point for developing ultrasound

approaches specifically dedicated to lungs. This com-

parison could indeed allow researchers to study the

link between the air spaces’ (alveoli) resizing and

spatial reorganization, as caused by different patholo-

gies, and the quantifiable features of LUS artifacts

(Soldati et al. 2019, 2020b). Then, these studies could

be exploited to better comprehend LUS artifact gene-

sis, allowing the development of quantitative LUS

techniques aimed at estimating physical properties of

lung surface (Demi et al. 2017, 2020a; Mohanty et al.

2017; Zhang et al. 2017; Mento and Demi 2020;

Mento et al. 2020; Wiley et al. 2021).

The development of quantitative approaches, how-

ever, requires the study and analysis of radiofrequency

(RF) data; thus, these solutions are not yet available with

clinical ultrasound imaging scanners (Demi et al. 2014).

Figure 2 illustrates a simplified flowchart depicting the

different applications of quantitative and semi-quantita-

tive LUS techniques.

In this review we discuss the main technical publi-

cations on LUS, from image analysis techniques (semi-

quantitative) to quantitative studies (in vitro, in silico

and in vivo). Then, we discuss the main literature
investigating LUS safety (Child et al. 1990; Zachary and

O’Brien 1995; O’Brien and Zachary 1996; O’Brien et al.

2000; Zachary et al. 2001; Miller et al. 2019) and,

finally, draw conclusions.

In this review we cite several pre-clinical and clini-

cal studies. The majority of the studies cited were pub-

lished in journals for which a condition of publication

was either Institutional Animal Care and Use Committee

(IACUC) approval, if animals were studied, or approval

by an ethics committee or institutional review board and/

or receipt of informed consent from each study partici-

pant. For those studies for which we were unable to con-

firm the above we have no reason to doubt that the work

was compliant with the ethics and safety guidelines of

the institutes involved in the study.
IMAGE ANALYSIS

In this section we analyze the main contributions of

LUS image analysis techniques. Specifically, model-

based techniques are described in the first subsection,

and deep learning approaches in the second subsection.
Model-based techniques

Contreras-Ojeda et al. (2020) proposed an approach

to distinguish muscular tissues (above pleural line) from

the artifactual structures below the pleural line in ultra-

sound images of healthy lung tissues of 13 pediatric

patients. Symlet (SYM) and Daubechies (DB) wavelet-

based feature extraction, principal component analysis



Fig. 2. Simplified flowchart depicting the different applications of quantitative and semiquantitative LUS techniques.
LUS = lung ultrasound; RF = radiofrequency.
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(PCA) and recursive backward elimination (RBE) were

employed for feature selection, followed by K-nearest-

neighbor-based classification. This approach was able to

achieve 97.5% accuracy in discriminating muscular tis-

sues from artifactual structures. Even though the results

seem promising, the computational cost of the feature

extraction phase could represent a relevant drawback for

this application. This limitation could indeed strongly

affect the advantage of real-time imaging of LUS.

Beyond that, various pathologies can be assessed by

examining the pleural line, the subpleural regions and

presence or absence of horizontal or vertical artifacts. To

this end various techniques have been proposed.

In this regard, work has been done to automate the

detection and localization of the pleural line (Carrer et

al. 2020). The authors proposed an unsupervised method

based on the hidden Markov model and Viterbi algo-

rithm. Furthermore, support vector machine (SVM)�
based classification was used to evaluate the characteris-

tics of the pleural line, and the score value for each frame

of a given LUS acquisition was assessed based on sever-

ity of the pathology. The proposed method was tested on

a subset of the Italian COVID-19 LUS Database

(ICLUS-DB), acquired from multiple clinical centers.

Results revealed high image-based accuracy for both

unsupervised detection of the pleural line along with the

classification performance. This study indicated the

potential of real-time implementation, as the algorithms

required a total of 4 s (per image) to detect the pleural

line and assign a score.
Anantrasirichai et al. (2017) presented a method for

restoration of lines in speckle images, followed by the

automatic identification of vertical artifacts. To that pur-

pose, deblurring was performed in the radon domain

using a total variation blind deconvolution method. On

the other hand, local maxima technique in the radon

transform domain was used to identify the vertical arti-

facts. To evaluate line restoration and detection, 50 sim-

ulated images of varying size were used. It was found

that, for smaller regularization norms, noise from most

of the lines was removed. Detection of vertical artifacts

was evaluated using bedside data on 23 children.

Although the approach produced promising results, there

is a high computational cost (45.75 s per image), making

it unfeasible for practical application. Moshavegh et al.

(2019) presented a multistep study for automatic detec-

tion and visualization of vertical artifacts in LUS scans.

They identified the vertical artifacts as connected regions

below the pleural line to the bottom end of the scan.

Evaluation of 3200 frames from healthy subjects and

patients with pulmonary edema revealed that the average

number of vertical artifacts was significantly higher in

the patients than the healthy participants. Similarly,

another method was presented by Karakus et al. (2020).

This approach was formulated as a non-convex regulari-

zation problem involving a sparsity-enforcing Cauchy-

based penalty function and use of an inverse radon trans-

form. The proposed method was validated in both the

radon and image domains, over examination of six male

and three female patients. Results revealed promising
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detection accuracy with improved identification of verti-

cal artifacts when compared with the method of Anantra-

sirichai et al. (2017). However, this approach requires a

processing time for a single frame of about 11-13 s, thus

not allowing real-time imaging.

When discussing vertical artifacts, it is important to

highlight how, given the strong dependence of vertical

artifacts on imaging parameters (Kameda et al. 2019;

Mento and Demi 2020, 2021), the count of vertical arti-

facts represents a qualitative application, which does not

offer high reproducibility.

Moving from the analysis of vertical artifacts to

examination of the pleural and subpleural space, a gray-

level co-occurrence matrix (GLCM) with second-order

statistical textural-based digital analysis of pleural and

subpleural space was proposed by Brusasco et al. (2022).

They investigated the discriminating characteristics of a

GLCM for differentiating ARDS from acute CPE. The

analysis was performed on 47 participants (16 diagnosed

with CPE and 8 with ARDS, and 23 declared as healthy).

Results revealed statistical significance for 9 of 11

GLCM features on comparison of ARDS and CPE

patient subgroups with the healthy participants. Similar

statistical significance was reported on comparison of

ARDS with CPE. Conclusively, the proposed method

showed potential in differentiating those with ARDS and

CPE from healthy participants along with differentiating

between patients with ARDS and CPE.

Conclusively, it is again important to highlight how

LUS analysis is highly subjective and that several con-

founding factors (e.g., imaging parameters and types of

scanners) influence the appearance of the relevant imag-

ing patterns. This leads to high variability among the

generated images, affecting the reproducibility of these

results. Moreover, the ground truth used to train AI

algorithms remains based on subjective labeling of

clinicians.

Deep learning techniques

Deep learning (DL)�based analysis of LUS pat-

terns can be applied to assess different pulmonary dis-

eases and pathologies.

Kulhare et al. (2018) developed a convolutional

neural network (CNN)�based algorithm to identify

some of the lung features linked to pathological lung

conditions. These features were defined as vertical arti-

facts, merged vertical artifacts, lack of lung sliding, con-

solidation and pleural effusion. Ultrasound data from

swine lung pathology models were captured for both

normal and abnormal lungs in the form of 100 exams

with 2200 videos collected in total. The single-shot

detection (SSD) framework was applicable to all LUS

features, achieving at least 85% in sensitivity and speci-

ficity for all features. Lung features critical for
diagnosing abnormal lung conditions were detected with

greater than 85% accuracy.

To detect and localize the presence of vertical arti-

facts, Van Sloun and Demi (2020) presented a DL-based

method for automatic detection and localization of verti-

cal artifacts in an ultrasound scan. A fully CNN was

trained to perform this task on B-mode images of dedi-

cated ultrasound phantoms in vitro and on patients in

vivo. The in vitro study included 3162 frames from 10

tissue-mimicking phantoms, while the in vivo study

included 5370 frames from 10 patients. Both showed

high classification performance in localizing vertical

artifacts. A gradient-weighted class activation map

(grad-CAM) approach was used to guarantee a minimum

level of explainability. Conclusively the method enabled

detection and localization of vertical artifacts in real

time.

Another method proposed by Kerdegari et al.

(2021) was also aimed at automatically detecting and

localizing vertical artifacts in LUS videos using DL net-

works trained with weak labels. CNN combined with a

long short-term memory (LSTM) network and a tempo-

ral attention mechanism was evaluated on LUS scans

from 60 patients, totaling 298 examinations. These archi-

tectures varied in terms of convolutional networks (2-D

or 3-D), presence and absence of temporal attention

module along with the LSTM networks. The 2-D convo-

lutional network with LSTM and attention module out-

performed the other models, allowing the capture of

features from both spatial and temporal dimensions. The

model was able to achieve a classification F1 score of

0.81 with a localization accuracy of 67.1% within frames

with vertical artifacts.

Baloescu et al. (2020) developed and tested a DL

algorithm to assess the presence and absence of vertical

artifacts in LUS. A total of 400 consecutive thoracic

ultrasound clips, each from a unique patient, were used.

Each of the 400 clips was split into several 2415 sub-

clips, rated by two emergency physician point-of-care

ultrasound (POCUS) experts. Rating was based on a

pre-determined ordinal scale from 0 (none) to 4 (severe),

representing the number of vertical artifacts. When com-

pared with expert interpretation for the presence or

absence of vertical artifacts, the model for binary classi-

fication produced promising results with a weighted k of

0.88 with a 95% confidence interval (CI) of 0.79�0.97.

Similar performance was also observed in the severity

assessment using multiclass classification.

Deep learning�based techniques have also been

used to count the vertical artifacts present in the LUS

scan. In this regard, Wang et al. (2019) proposed a study

using a CNN to count vertical artifacts on a 4864-image

LUS data set labeled by clinicians. Furthermore, correla-

tion between the automated count and the clinical
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parameters was examined. The clinical data set was

composed of 152 LUS videos corresponding to a total of

4864 images. The available labels for each image ranged

between 0 and 6, corresponding to the number of vertical

artifacts in the image. The neural network (NN) agreed

with the observer (true value) in 43.4% of the images,

with an additional 40.8% in images with a deviation of

1. The intra-class correlation (ICC) for observer differ-

ence also revealed that the agreement between the

human count and the output of the NN is high

(ICC = 0.791).

Lung sliding is the respirophasic back-and-forth

movement of the visceral and parietal pleural surface. Its

presence indicates complete aeration of the lung at the

site of probe placement on the chest wall, while its

absence indicates the possibility of pneumothorax. DL-

based techniques have been developed to automatically

identify the presence or absence of lung sliding. In this

regard, Mehanian et al. (2019) developed and compared

several DL methods for identifying pneumothoraces in

3-s ultrasound videos collected with a handheld ultra-

sound system. The first group of methods were based on

CNNs paired with time-mapping pre-processing algo-

rithms, including reconstructed M-mode and the pro-

posed simplified optical flow transform (SOFT). The

second class of algorithms used a DL architecture that

combined CNN for processing spatial information

(Inception V3) with a recurrent network (LSTM) for

temporal analysis. To evaluate the methods, a total of

four swine models were used, forming a total of 10 col-

lection sessions per animal. As a result, a total of 130

positive videos with absence of lung sliding caused by

pneumothorax and 122 negative videos with normal

lung sliding were formed. The performance of the four

methods in identifying the absence of lung sliding in

swine pulmonary ultrasound videos was compared. All

models learned informative representations of the data,

all achieving area under the curve (AUC) greater than

0.83 on unseen data.

Similarly, Jascur et al. (2021) presented a novel

DL-based automated M-mode classification method to

detect the absence of lung sliding motion in LUS. Auto-

mated M-mode classification leveraged semantic seg-

mentation to select 2-D slices across the temporal

dimension of the video recording. The data set used to

evaluate the study contained recordings of patients after

thoracic surgery and were divided by physicians into

two classes based on the presence and absence of lung

sliding. They generated 17,338 frames. All presented

models were pre-trained on the ImageNet database and

then fine-tuned for a maximum of 15 epochs. The train-

ing and validation data sets followed the patient-wise

split, and the ratio between them was maintained at 1.5/

1. Balanced accuracy ranged from 62% to 78%, with the
best-performing model at 64 frames and the worst-per-

forming model at 256 frames.

Pleural effusion refers to the buildup of excess fluid

between the pleural layers outside the lungs. Tsai et al.

(2021) aimed to develop an automated system for the

interpretation of LUS images of pleural effusion. The

standardized protocol followed involved scanning of six

anatomical regions combined with a DL algorithm using

a spatial transformer network (STN) providing the basis

for automatic pathology classification on an image-based

level. In this work, the DL model was trained using

supervised and weakly supervised approaches, which

used frame and video-based ground truth labels, respec-

tively. In total, 623 ultrasound videos were acquired

resulting in 99,209 2-D ultrasound images. To perform

cross-validation, 10 folds of training and test sets were

created, in which each patient appeared at least once in

the test set. The video-based labeling approach reached

91.12% mean accuracy in the test set over the 10-folds,

while the frame-based labeling approach reached

92.38%. In addition, a t-test on the accuracy of the two

labeling approaches revealed no statistically significant

difference in performance between the video-based and

frame-based labeling approaches. This significantly

reduced the input required from clinical experts to pro-

vide ground-truth labels.

Interstitial lung disease (ILD), appearing as fibrotic

and stiffened lung parenchyma, may lead to symptoms

such as dyspnea, causing respiratory failure. Lung mass

is not uniformly distributed in the lung, and it increases

with the degree of fibrosis. Zhou and Zhang (2018a)

developed a method for analyzing lung mass density of

superficial lung tissue using a deep neural network

(DNN) and synthetic data of wave speed measurements

with LUS surface wave elastography (LUSWE). Data

were generated for fibrotic lung tissue, pulmonary con-

gestion and edema, resulting in a total of 792,000 data

measurements consisting of surface wave speed, excita-

tion frequency, lung mass density and viscoelasticity.

Analyzing the convergence of different optimizers in

terms of the validation loss over the epochs, the Adam

optimizer had the highest validation accuracy, 0.992.

When assessing the performance of the DNN (trained

with synthetic data) with a sponge phantom, the pre-

dicted density from the DNN matched well the measured

density of the sponge phantom, yielding an accuracy of

92%.

Zhou et al. (2020) proposed another study to

develop a method for analyzing lung mass density of

superficial lung tissue of patients with ILD and healthy

participants using a DNN and LUSWE. Surface wave

speeds at three frequencies, predicted forced expiratory

volume (FEV1% pre), ratio of forced expiratory volume

to forced vital capacity (FEV1% = FVC%), age and
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weight of patients and healthy participants were used as

features for training machine learning (ML) models.

Random forest revealed that the contributions of age and

weight were not as high as those of other features and,

hence, these were not used in the training of the DNN

model. As it was a retrospective study, 57 patients and

20 healthy participants underwent LUSWE. The evalua-

tion of the performance of the model was based on a

train/validation/test (80/10/10) scheme. For the ReLU

(rectified linear unit) and ELU (exponential linear unit),

training and validation loss significantly decreased as the

number of training epochs increased. Accuracies came

out to be 84% and 89% for ReLU and ELU, respectively.

Comparison of correlation coefficients with different

activation functions in the DNN and ML for the testing

data set revealed that ELU in the DNN performed com-

paratively better.

As an extension to the previous study, Zhou et al.

(2021) proposed in vivo prediction of lung mass density

for patients with ILD using different gradient boosting

decision tree (GBDT) algorithms based on measure-

ments from LUSWE and pulmonary function testing

(PFT) (Zhou et al. 2021). The study used data similar to

those used by Zhou et al. (2020). A fivefold cross-valida-

tion was conducted to assess the performance of differ-

ent algorithms. Among the XGBoost, CatBoost and

LightGBM, mean square errors (MSE) and correlation

coefficients of the test data set of three algorithms

revealed that XGBoost obtained the best results.

Deep learning models require high computational

power and resources, making them unsuitable for deploy-

ment over lightweight devices such as mobiles and the

Internet of Things (IoT). Furthermore, these models

require efficient tuning of the hyperparameters. In the

light of these concerns, Almeida et al. (2020) explored

computer-aided assessment of pneumonia semiology

based on lightweight NNs (MobileNets). Multitask learn-

ing was performed from online available COVID-19 data

sets, for which semiology (overall abnormality, vertical

artifacts, consolidations and pleural thickening) was anno-

tated by two radiologists. The data set consisted of a total

of 12,718 images extracted from different LUS videos. A

75%/25% train/test split at the image level was used for

validation and testing. MobileNet outperformed the naive

approach for all semiology indicators, with 95% accuracy

for all semiology cases. Furthermore, in classification

accuracy of MobileNet trained with labels provided by a

senior radiologist, in comparison to labels independently

provided by the junior radiologist, a high level of incon-

sistency was detected for mild conditions, with a mean

accuracy of 77%.

On the other hand, Hou et al. (2020) proposed the

use of an interpretable subspace approximation with

adjusted bias (SAAB) multilayer network to screen the
LUS images. They demonstrated the advantage of using

SAAB subspace network to design a low-complexity,

low-cost, low-power-consumption solution for interpret-

ing and visualizing features of LUS images to confirm

the classifier recommendation. A data set of 2800 images

was used for this study, consisting of 740 horizontal arti-

fact images, 1150 vertical artifact images and 910 con-

solidation images. Five hundred sixty images were used

for testing, and 2240 images were used for training.

Greater than 96% accuracy over the testing data was

obtained. In comparison to the CNN models, SaabNet

needed to solve only 2800 eigenvalues to yield an

embedding vector of 1183 elements and could be

employed on any low-cost simple board computers.

Erfanian Ebadi et al. (2021) proposed a method for

fast and reliable interpretation of LUS images by use of

DL, based on the Kinetics-I3D network. The trained

model could classify an entire LUS scan obtained at

point of care, without requiring the use of pre-processing

or a frame-by-frame analysis. The proposed video classi-

fier was compared with ground-truth classification anno-

tations provided by a set of expert radiologists and

clinicians, which included horizontal artifacts, vertical

artifacts, consolidation and pleural effusion. A total of

1530 videos were acquired corresponding to 287,549

frames. The models were trained and tested with fivefold

cross-validation that creates training and testing sets

with 80% (1225 videos) and 20% (305 videos), respec-

tively, for each fold. The model was able to produce a

classification of an ultrasound video with 240 frames in

220 ms with accuracy of 90%. The model learned to

classify the severe disease cases (consolidation and/or

pleural effusion) with a high F1 score.

Shifting from reducing the computational complex-

ity of the network to that of the data, Khan et al. (2022)

proposed a method to analyze the impact of data com-

pression on an automated scoring system. The authors

presented an automated scoring framework for reduced

LUS data acquired from 20 patients with COVID-19,

corresponding to 91,277 frames. LUS frames underwent

spatial downsampling and reduced quantization levels

by factors of 2, 3, 4 and 2, 4, 8, respectively. It was found

that the prognostic agreement between expert LUS clini-

cians and the automatic algorithm employed ranged

from 72.35% to 82.35% when reducing the data up to

32 times of its original size. This lays the foundation for

efficient automated scoring in resource-constrained envi-

ronments.

Roy et al. (2020) presented a novel fully annotated

data set of LUS image collected from several Italian hos-

pitals, with labels indicating the degree of disease severity

at the frame, video and pixel levels (segmentation masks).

To evaluate the data set they introduced several deep

models that addressed relevant tasks for the automatic
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analysis of LUS images. In particular, they used a novel

deep network, derived from STN, which simultaneously

predicts the disease severity score associated with an input

frame and provides localization of pathological artifacts in

a weakly supervised manner. They also introduced a new

method based on uninorms for effective frame score

aggregation at the video level. The data were acquired

from ICLUS-DB, which at the time included a total of

277 LUS videos from 35 patients (17 COVID-

19�positive patients, 4 COVID-19�suspected patients

and 14 healthy participants), corresponding to 58,924

frames. Data were split between test and train sets at the

patient level; that is, the same patient was not included in

both the train and test data sets. On the entire test set, the

frame-level Fl score was 70.3%.

To further improve DL performance, Frank et al.

(2022) proposed a framework for training through inte-

gration of domain knowledge into DNNs by inputting

anatomical features and LUS artifacts in the form of

additional channels containing pleural and vertical arti-

fact masks along with the raw LUS frames. They used

their framework to fine-tune a ResNet-18 model to clas-

sify each frame in its annotated severity score. The

trained strategy and data set were the same as those of

Roy et al. (2020). The performance overcame the state

of the art with an Fl score of 75.2%, highlighting the

potential of domain knowledge integration to improve

DL performance in LUS frame classification.

La Salvia et al. (2021) developed a system based on

modern DL methodologies to automatically classify

patients based on a seven-level scoring system. For this

purpose, they selected ResNet-18 and ResNet-50 archi-

tectures. Two thousand nine hundred and eight frames

were carefully selected from a total of 5400 videos (con-

sisting of 60,000 frames) to train the models. The data

were randomly split into training (75%), validation

(15%) and test (10%) sets. By considering this split strat-

egy and the amount of data (less than 3000 frames), an

accuracy above 96% was achieved.

Mento et al. (2021a) reported on the level of agree-

ment between DL models and LUS experts when evaluat-

ing LUS videos. As a result, they evaluated an empirical

threshold approach to aggregate labeled frames to obtain

a video-level score. The population analyzed consisted of

82 COVID-19�positive patients corresponding to

314,879 frames. The overall video-level agreement

reached its maximum value (51.61%) when a 1% frame-

level threshold was applied. This means that a video was

classified with the highest score appearing in at least 1%

of frames in the video. A more relevant result was

obtained when evaluating the percentage of agreement

between experts and DL in the stratification between

patients at high risk of clinical worsening and patients at

low risk. In particular, the approach achieved 85.96%
agreement, thus highlighting the possibility of using DL

approaches to automatically stratify patients with

COVID-19. This aggregation strategy was later applied to

a larger cohort of patients, comprising 100 COVID-

19�positive patients and 120 post�COVID-19 patients

(patients not positive at the time of LUS examination)

(Demi et al. 2022). Demi et al.’s study illustrated how the

prognostic agreement was 80.45% for patients with

COVID-19 and 72.50% for post�COVID-19 patients.

The reduced performance on post�COVID-19 patients

could be associated with the presence of LUS patterns not

fully compatible with those obtained from healthy or

acute patients (Demi et al. 2022). Therefore, it is feasible

that the AI models, which were trained on LUS data from

COVID-19�positive patients, were not able to correctly

recognize these patterns (Demi et al. 2022).

Xue et al. (2021) proposed a novel method for sever-

ity assessment of patients with COVID-19 from LUS and

clinical information. Specifically, the authors stratified the

task into three different steps. In the first step, they per-

formed an LUS pattern segmentation at frame level by

using a Visual Geometry Group (VGG) encoder. Then, in

the second step, they classified LUS videos based on dif-

ferent features, including pattern segmentations obtained

from the first step. Finally, they used the LUS score

obtained in the second step and the patient’s clinical infor-

mation to assess the overall patient condition. The

reported results illustrated how classification performance

at the video level increased when pattern segmentations

provided in the first step were exploited as additional

input features. Furthermore, performance at the patient

level improved when video-level LUS scores (provided in

second step) were included as additional features.

Chen et al. (2021) developed a technique to auto-

matically classify LUS frames based on a scoring sys-

tem. A total of 45 patients were used to acquire 1527

images assigned with scores and included in the study.

Two different split strategies were tested. In the first,

frames were randomly split between train and test sets,

whereas, in the second, data were split at the patient

level. In other words, the split was made to avoid having

similar frames in the training and test data sets. The

results illustrated how performance with the first strategy

was higher than that with the second. Therefore, these

results highlighted the importance of the splitting strat-

egy when training an automatic algorithm.

Roshankhah et al. (2021b) proposed an automatic

segmentation method using a CNN to automatically clas-

sify LUS images based on a scoring system. The study

was evaluated by application of a randomly assigned and

simple 90%/10% train set/test set split. Furthermore, the

impact of splitting the training/test data was analyzed by

repeating the process by performing the split between

the train and test data at the patient level. The accuracy
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of the whole model at the frame level was 95% when

data were randomly split. In contrast, it was 68.7% when

data were split at the patient level. These results, consis-

tent with the study of Chen et al. (2021), highlighted the

importance of reliable splitting strategies when evaluat-

ing the performance of AI in classifying LUS data. Spe-

cifically, a random split at the frame level strongly

affects the performance of AI algorithms, leading to

overestimation of the capabilities of the automatic sys-

tem. The studies presented in this section are summa-

rized in Table 1.
INVESTIGATION OF ARTIFACT GENESIS AND

QUANTITATIVE STUDIES

In this section, we present the main LUS publica-

tions focused on investigation of vertical artifact genesis
Table 1. Details on image a

Publication Study type Amount

Contreras-Ojeda et al. (2020) Clinical 22 images
Carrer et al. (2020) Clinical 3,315 ima
Anantrasirichai et al. (2017) Clinical 50 in silic

23 patie
Moshavegh et al. (2019) Clinical 3200 imag
Karakus et al. (2020) Clinical 100 image
Brusasco et al. (2022) Clinical 564 image
Kulhare et al. (2018) Animal NP image
Van Sloun and Demi (2020) In vitro, clinical 3162 in v

10 in vi
10 mod

Kerdegari et al. (2021) Clinical NP image
Baloescu et al. (2020) Clinical 28,980 im
Wang et al. (2019) Clinical 4864 imag
Mehanian et al. (2019) Animal NP image
Jascur et al. (2021) Clinical 17,338 im
Tsai et al. (2021) Clinical 99,209 im
Zhou and Zhang (2018a)z In silico, in vitro 792,000 p

in vitro,
Zhou et al. (2020)z Clinical NP param
Zhou et al. (2021)z Clinical NP param
Almeida et al. (2020) Clinical 12,718 im
Hou et al. (2020) Clinical 2800 imag
Erfanian Ebadi et al. (2021) Clinical 287,549 i
Khan et al. (2022) y Clinical 91,277 im
Roy et al. (2020) Clinical 58,924 im
Frank et al. (2022) Clinical 58,924 im
La Salvia et al. (2021) Clinical 2908 imag
Mento et al. (2021a)y Clinical 314,879 i
Demi et al. (2022)y Clinical 772,780 i
Xue et al. (2021) Clinical 6926 imag
Chen et al. (2021) Clinical 1527 imag
Roshankhah et al. (2021b) Clinical 1863 imag

CON = consolidations; HA = horizontal artifacts; LS = lung sliding; LUS
patients [models for in vitro, in silico and animal studies] was not provided in
ening; VA = vertical artifacts.

* The first column contains references to the publications. The second colu
The third column reports the amount of data used in each study. The fourth col

y Whether a clinical value exists in the study. For clinical value we here r
patterns and/or scores and the clinical state of the patient.

z Study concerning the assessment of parameters rather than images.
and the main LUS quantitative studies. We first discuss

in vitro and animal studies, followed by in silico studies,

and, finally, the quantitative LUS approaches tested in

human clinical studies.

In vitro and animal studies

One of the first experimental in vitro studies was

performed by Soldati et al. (2011), where the appearance

of LUS vertical artifacts was correlated to the density of

wet, synthetic and partially aerated polyurethane

sponges. Specifically, the authors immersed 10 sponges

(phantoms) in water and scanned them with a linear

probe in five temporal phases during the drying process

to visually observe the different LUS patterns appearing

in the image. The scans revealed a transition from the

first phase (completely wet sponge), characterized by a

homogeneously echogenic field of view, also called
nalysis publications*

of data LUS pattern

, NP videos, 13 patients PL
ges, 58 videos, 29 patients PL
o, 100 clinical images, NP videos,
nts

PL, HA, VA

es, 64 videos, 8 patients VA
s, NP videos, 9 patients PL, VA
s, 564 videos, 47 patients PL
s, 2200 videos, NP models PL, VA, CON, LS
itro and 5770 clinical images,
tro and 27 clinical videos,
els and 10 patients

VA

s, NP videos, 60 patients VA
ages, 400 videos, 400 patients VA
es, 152 videos, NP patients VA
s, 252 videos, 4 models LS
ages, 48 videos, 48 patients LS
ages, 623 videos, 70 patients PE
arameters in silico, 165 parameters
NP models in silico, 1 model in vitro

None

eters, 77 patients None
eters, 77 patients None
ages, 60 videos, NP patients VA, PT, CON
es, NP videos, NP patients HA, VA, CON
mages, 1530 videos, 300 patients HA, VA, CON, PE
ages, 448 videos, 20 patients HA, VA, CON
ages, 277 videos, 35 patients HA, VA, CON
ages, 277 videos, 35 patients HA, VA, CON
es, 5400 videos, 450 patients HA, VA, CON, PL
mages, 1488 videos, 82 patients HA, VA, CON
mages, 3481 videos, 220 patients HA, VA, CON
es, 1791 videos, 313 patients HA, VA, CON, PL
es, NP videos, 31 patients PL, HA, VA
es, 203 videos, 32 patients HA, VA, CON, PL

= lung ultrasound; NP = not provided (number of images, videos or
the study); PE = pleural effusion; PL = pleural line; PT = pleural thick-

mn indicates the study type (clinical, in vitro, in silico, or on animals).
umn indicates which LUS patterns are investigated.
efer to the existence of a proven relation between the investigated LUS
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“white lung,” to phases in which vertical artifacts

appeared to be more spatially separated and, thus, the

field progressively less echogenic. Therefore, for these

models, LUS vertical artifacts seem to be density-corre-

lated phenomena caused by modification of phantoms’

porosity, which leads to different acoustic permeabilities

(Soldati et al. 2011). In particular, a lower porosity

(higher quantity of water filling air spaces) seems to

induce greater acoustic permeability and greater acoustic

interactions with the aerated superficial structures

(Soldati et al. 2011). Similar results were obtained with

ex vivo rabbit lungs, which were examined during

mechanical inflation (Soldati et al. 2012, 2014). Specifi-

cally, ex vivo deflated lungs were imaged with an ultra-

sound scanner at different levels of expansion, ranging

from 87% (maximum lung expansion) to 40% (naturally

collapsed lungs) of air content within lungs (Soldati et

al. 2012). By decreasing the air content, hence increasing

acoustic permeability, the observed LUS imaging pat-

terns pass from a continuous pleural line with horizontal

artifacts (associated to healthy lung) to the progressive

presence of multiple vertical artifacts and, finally, “white

lung” (Soldati et al. 2012). These results seem to confirm

how acoustic lung permeability is a density-related phe-

nomenon (Soldati et al. 2012). However, the authors

believe that the investigation on vertical artifacts’ gene-

sis should be focused on the porosity in terms of shape

and disposition, as altered density of peripheral lung can

be simply seen as an epiphenomenon of altered periph-

eral airspace (PAS) geometry (Soldati et al. 2014).

Following this hypothesis, Demi et al. (2017)

designed an in vitro study to evaluate the possibility of

characterizing the lung structure (alveolar disposition

and shape) by analyzing frequency spectra of vertical

artifacts. Lung phantoms were produced by trapping a

layer of monodisperse microbubbles in tissue-mimicking

gel. Two different populations of phantoms were pro-

duced, one with 80-mm-diameter microbubbles and the

other with 170-mm-diameter microbubbles (Demi et al.

2017). These sizes were selected to mimic the alveolar

size reduction (normal alveolar size = 280 mm), which is

typical of various pathologies (Demi et al. 2017). The

phantoms were scanned with a research platform using a

multifrequency approach in which images were sequen-

tially generated using orthogonal subbands centered at

different frequencies (3, 4, 5 and 6 MHz with 1-MHz

bandwidth) (Demi et al. 2017). Vertical artifacts

appeared with significantly stronger amplitude in spe-

cific portions of the frequency spectrum, highlighting the

strong frequency dependence of these artifacts. This was

also confirmed by an analysis on raw RF data (Demi et

al. 2017). These results suggest exploitation of the native

frequency (i.e., the frequency at which the vertical arti-

fact appears with stronger intensity) to characterize the
state of the lung surface, thus opening to the possibility

of developing a quantitative technique based on analysis

of the artifact frequency spectrum (Demi et al. 2017). To

design such a quantitative technique, the dependence of

vertical artifacts on different transmission parameters

should be quantitatively evaluated. This was the aim of

two recent quantitative studies, in which the dependence

of these artifacts’ intensity on different parameters was

assessed in microbubble (Mento and Demi 2020) and

thorax (Mento and Demi 2021) phantoms. The study on

microbubble phantoms revealed no correlation between

the intensity of vertical artifacts and beam size, thus

highlighting how changes in the lateral resolution do not

affect the intensity of vertical artifacts (Mento and Demi

2020). Moreover, the center frequency was found to be

the most impactful parameter in vertical artifact charac-

terization, followed by focal point position and number

of transmitting elements (Mento and Demi 2020). These

results were confirmed by the second study, which also

highlighted the importance of considering the impact of

bandwidth and ultrasound beam angle of incidence when

evaluating artifact intensity (Mento and Demi 2021).

These parameters indeed represent a significant source

of variability in artifact evaluation and, thus, should be

carefully considered when implementing a quantitative

approach (Mento and Demi 2020, 2021). On one hand,

center frequency could be used to characterize the state

of lung surface, whereas, on the other hand, the other

imaging parameters should be carefully set to prevent

them from causing strong variations in artifact intensity

(Mento and Demi 2020, 2021).

A completely different quantitative approach was

proposed by Mohanty et al. (2017)—a technique based

on ultrasound multiple scattering that exploits the com-

plex propagation of sound waves in the lung structure.

This approach is a near-field method based on assess-

ment of the growth of a diffusive halo (Mohanty et al.

2017; Demi et al. 2020b). Specifically, it aims at estimat-

ing diffusion constant and transport mean free path (L*)

of lung parenchyma by using an acquisition approach in

which the elements of an array were fired one by one

(Mohanty et al. 2017). Then, for each transmitted pulse,

the received signals were collected on all the elements

and these two parameters estimated (Mohanty et al.

2017). This technique was tested in vitro with a sponge

phantom with varying air volume fractions and both in

vivo and ex vivo in rat lungs with induced pulmonary

edema (Mohanty et al. 2017). The results highlighted

how a change of 10% of the air volume fraction corre-

sponded to significant variation of L*. Indeed, when the

quantity of fluid increases, the mean distance between

scatterers increases, thus increasing L* (Mohanty et al.

2017). In the following years, similar techniques were

experimentally tested to differentiate rat lungs with
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pulmonary fibrosis (PF) from healthy lungs (Mohanty et

al. 2020), detect pulmonary nodules (regions inside

lungs containing no scatterers) (Roshankhah et al.

2021a) and differentiate rat lungs affected by PF (or

edema) from healthy lungs of control rats (Lye et al.

2021).

In 2017 another group developed a quantitative

approach based on LUSWE (Zhang et al. 2017), which

was then tested in vitro with a cellulose sponge filled

with water in specific locations (Zhou and Zhang

2018b). Specifically, water was injected at three loca-

tions of the phantom, and a shaker was placed in contact

with its surface to generate harmonic vibrations at differ-

ent frequencies (100, 150 and 200 Hz) (Zhou and Zhang

2018b). An ultrasound probe was then placed 0.5 cm

from the shaker to detect and measure the waves propa-

gating on the phantom surface (Zhou and Zhang 2018b).

The measurements were taken at six different stages: dry

phantom and phantom injected with volumes of water

from 3 to 15 mL (in 3-mL steps) (Zhou and Zhang

2018b). The results indicated how surface wave speeds

were generally higher when higher shaker frequencies

were used, resulting in behavior similar to that observed

in LUSWE measurements on human lung (Zhou and

Zhang 2018b). Nevertheless, by considering the six

stages, the surface wave speeds appeared to be similar,

highlighting the difficulty of assessing the quantity of

water by means of the LUSWE technique (Zhou and

Zhang 2018b).

As discussed in the preceding paragraphs, the

design of lung phantoms represents an important step in

the development of new LUS quantitative techniques

and the investigation of vertical artifact genesis in a con-

trolled environment. This was the main aim of a recent

work in which different devices (phantoms) were fabri-

cated by using agar cylinders (or disks), computer

numerical control (CNC) milling machines and polyvi-

nyl chloride (PVC) containers (Demi 2021). If imaged

with an ultrasound probe, these phantoms were able to in

vitro reproduce vertical artifacts, which changed their

visual appearance when selected imaging parameters

were differently set (e.g., pulse amplitude and center fre-

quency) (Demi 2021). In a similar study, Kameda et al.

(2019, 2022) produced simple experimental models able

to generate vertical artifacts. Two different models were

fabricated: the first consisted of different materials (i.e.,

a drop of ultrasound gel, a spindle-shaped juice sac of a

mandarin orange and a string shaped glucomannan gel)

placed on a polypropylene sheet (simulating pleural

line), and the second was made by placing glass beads

and plates of different sizes on the sheet (Kameda et al.

2019, 2022). The authors then imaged these phantoms

by evaluating the visual effect of spatial compound

imaging, focal point, center frequency and probe type
(convex vs linear) on the appearance of vertical artifacts

(Kameda et al. 2019, 2022). They qualitatively illus-

trated how the impact of these ultrasound machine set-

tings on vertical artifact morphology cannot be

considered negligible (Kameda et al. 2019, 2022).

As mentioned above, the reproduction of LUS pat-

terns in experimental phantoms has been proven to be an

effective strategy in investigating their genesis. How-

ever, these artificial models could significantly differ

from human lungs. Therefore, the use of a large animal

model to reproduce LUS imaging patterns could repre-

sent an important tool to mimic the behavior of human

lungs. This was the scope of a recent study that assessed

the usability of a pig model to reproduce LUS patterns

of viral pneumonia (Wolfram et al. 2020). Specifically,

after anesthetization and intubation, six pigs were

mechanically ventilated, and a saline liquid was progres-

sively instilled within their lungs using the one-lung

flooding technique (Wolfram et al. 2020). Then, the

lungs were re-ventilated and imaged with an ultrasound

scanner, and the acquired videos were classified based

on a scoring system (Wolfram et al. 2020). The LUS

score increases (higher score corresponds to a worse

state of lung) as the instilled saline fraction increases.

Moreover, different LUS patterns associated with

ARDS-related pneumonia (e.g., COVID-19 pneumonia)

were observed (Wolfram et al. 2020). Given the results

obtained and the easy implementation of the model, it

could represent an important instrument for LUS

research, as it provides, in a more controlled environ-

ment, a model similar to humans.

In silico studies

Only recently researchers have started to perform

studies on LUS in silico. The first study investigated the

dependence of vertical artifacts on alveolar diameter and

spacing (i.e., distance between alveoli) (Peschiera et al.

2021). The numerical simulations were performed using

the k-Wave MATLAB toolbox (Treeby and Cox 2010),

which was used to replicate a simplified lung structure.

Specifically, the first 2 cm of depth was composed of

muscle tissue, whereas air inclusions (alveoli) were

introduced beyond 2 cm (Peschiera et al. 2021). These

alveoli were periodically arranged to maintain the same

distance between each other, in both the axial and lateral

directions. The spacing and diameter of these air inclu-

sions were then varied, and the volume of interest was

imaged at different center frequencies (from 1 to 5 MHz

with a 1-MHz step size and 1-MHz pulse bandwidth)

(Peschiera et al. 2021). In particular, the spacing was set

to 198, 263 and 395 mm, which correspond to half of the

wavelength in muscle tissue at 4, 3 and 2 MHz. The

quantitative results illustrated how the relation between

artifact intensity and imaging frequency depends on the
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complex interaction between wavelength and alveolar

geometries. By evaluation of the intensity when spacing

was set to half of the wavelength, a possible correlation

between artifact strength and the ratio between wave-

length and spacing was found (Peschiera et al. 2021).

Moreover, as also proven by studies on rabbit lungs (Sol-

dati et al. 2012, 2014), a higher density of lung (percent-

age of muscle in the air inclusion area) correlated with

more intense vertical artifacts (Peschiera et al. 2021).

The second study aimed at reproducing in silico pri-

mary LUS patterns, such as horizontal and vertical arti-

facts (Ostras et al. 2021). The authors used a custom

Fullwave numerical simulator to model different acous-

tic traps, which were able to simulate different fluid por-

tions in an affected lung region (Ostras et al. 2021). The

area above the simulated lung consisted of simulated

intercostal tissues, extracted by an optical human data

set (Ostras et al. 2021). The volume of interest was

imaged with a simulated clinical phased array trans-

ducer. The results illustrated how these simulations were

able to reproduce horizontal and vertical artifacts in sil-

ico (Ostras et al. 2021). Furthermore, consistent with

other ex vivo (Soldati et al. 2012, 2014) and in silico

(Peschiera et al. 2021) studies, the authors found a corre-

lation between the density of lung (in terms of fluid por-

tions in the alveoli) and vertical artifact appearance.

Specifically, a 55% fluid portion is needed to detect ver-

tical artifacts in these simulations (Ostras et al. 2021).

Quantitative LUS imaging, human clinical studies

There have been few LUS clinical studies in

humans aimed at testing or developing quantitative tech-

niques. Indeed, only few researchers have recently

moved in this direction. The first quantitative studies in

humans were performed by Zhang et al. (2017), who

developed and applied LUSWE to estimate superficial

lung tissue elastic properties. Specifically, they aimed at

differentiating patients with interstitial lung disease

(ILD) and healthy participants by using LUSWE (Zhang

et al. 2017). The implemented technique was the same at

that applied by Zhou and Zhang (2018b) for the in vitro

study, in which a handheld shaker was used to generate a

0.1-s harmonic vibration on the phantom surface. During

the clinical study, the measurements were taken on both

lungs of 10 ILD patients and 10 healthy participants,

who were examined through six intercostal spaces

(Zhang et al. 2017). The lung surface wave speed was

measured three times for each location, that is, once for

each frequency (100, 150 and 200 Hz). The results

revealed significant differences in the surface wave

speed between healthy participants and patients with

ILD (Zhang et al. 2017). A similar study was conducted

in 2019, in which the authors tried to use LUSWE to

assess ILD patients and systemic sclerosis (SSC) (Zhang
et al. 2019b). The technique was tested on 91 ILD

patients (41 with SSC and 50 without SSC) and 30

healthy participants. As in the previous study, the surface

wave speeds of patient lungs were significantly higher

than those of healthy participants. Nevertheless, no sig-

nificant differences were reported between ILD patients

with SSC and ILD patients without SSC (Zhang et al.

2019b). The same group applied the LUSWE technique

to perform two follow-up studies, aimed at assessing dis-

ease progression in patients with ILD (Zhang et al.

2019a) and pulmonary edema (Wiley et al. 2021). In

both studies, correlations between changes in lung sur-

face speed and clinical assessments were found,

highlighting the possibility of using LUSWE for quanti-

tative assessment of ILD and edema progression (Zhang

et al. 2019a; Wiley et al. 2021).

The other LUS quantitative approach that was

tested in human clinical studies is based on LUS spec-

troscopy (Demi et al. 2020a; Mento et al. 2020), and was

developed following the findings of a previous in vitro

study (Demi et al. 2017). Specifically, the theory under-

lying these studies consists of hypothesizing that vertical

artifacts originate from the interaction between ultra-

sound waves and acoustic traps (or channels) formed at

the lung surface when the lung becomes pathological

(Demi et al. 2020a). The genesis of vertical artifacts

seems indeed to be related to the formation of channels

consisting of media that can be penetrated by ultrasound,

such as blood, water and tissue (Soldati et al. 2019,

2020b; Demi et al. 2020c). When a sufficient quantity of

energy enters these channels, it can be trapped and pro-

gressively irradiated toward the probe with a periodicity

depending on the channel’s size and the ultrasound

pulse’s frequency (Demi et al. 2020a, 2020c). Estimation

of the sizes of these traps could be relevant in discrimi-

nating different pathologies that are characterized by

completely different alveolar dispositions and, thus, trap

geometries. Specifically, the native frequency and band-

width of vertical artifacts could carry information on,

respectively, the size and geometry of the acoustic traps

(Demi et al. 2020a, 2020c). By exploiting these con-

cepts, Demi et al. (2020a) presented an image formation

protocol able to capture the frequency dependence of

LUS vertical artifacts and visualize it in real time. The

final scope consisted of providing a quantitative evalua-

tion of signals received from lung. Ten patients with var-

ious lung diseases (e.g., PF, pneumonia and

adenocarcinoma) were enrolled, and radiofrequency data

were acquired by means of a research platform. The

acquisition strategy was based on a multifrequency

approach in which four ultrasound images were formed

with pulses having different center frequencies (3, 4, 5

and 6 MHz) (Demi et al. 2020a). The pulse repetition

frequency (PRF) was fixed at 4 kHz to guarantee that the
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volume of interest did not significantly change when

considering four images acquired with different center

frequencies. Moreover, to evaluate more precisely the

change in vertical artifacts along the frequency spec-

trum, a narrow bandwidth (1 MHz) was employed for

each center frequency (Demi et al. 2020a). The results

illustrated how the appearance of vertical artifacts signif-

icantly varied from patient to patient, and different

native frequencies and bandwidths of these artifacts

were estimated (Demi et al. 2020a). The multifrequency

approach of Demi et al. (2020a) was later proposed by

Mento et al. (2020) to differentiate PF from other lung

pathologies. Specifically, 26 patients were enrolled; half

had idiopathic PF (IPF) and the other half were affected

by different lung diseases (e.g., emphysema, pulmonary

hypertension and asthma). The patients were examined

by following the same procedure described by Demi et

al. (2020a), and RF data were acquired and analyzed

(Mento et al. 2020). One thousand twenty-nine vertical

artifacts were detected and their main features (native

frequency, bandwidth and total intensity) were analyzed

(Mento et al. 2020). Results revealed how these three

parameters could be exploited to discriminate patients

with PF from patients with other lung diseases. In partic-

ular, when all three parameters were considered, an

empirically defined binary classifier was able to achieve

92% specificity and sensitivity. Moreover, statistical

analysis revealed that native frequency and total inten-

sity were significant in discriminating PF from other

lung pathologies, whereas bandwidth was not (Mento et

al. 2020). The results obtained in statistical analysis

were consistent with the results achieved when standard

classifiers receiving these three features as input were

employed to differentiate patients (Mento et al. 2020). In

conclusion, this study illustrated the potential to discrim-

inate fibrotic patients by exploiting a quantitative

approach based on the frequency and intensity analysis

of vertical artifacts (Mento et al. 2020).

Lung ultrasound safety

The use of ultrasound as a diagnostic tool is consid-

ered safe when imaging soft tissues, as long as the

mechanical index (MI) is kept below 1.9. However, the

safety of LUS should be carefully analyzed further, as

the presence of air in the volume of interest could give

rise to completely different phenomena.

One of the first studies in this direction was per-

formed by Child et al. (1990), who were aimed at verify-

ing the effect of exposing mouse lung to pulsed

ultrasound. This work was based on the hypothesis link-

ing LUS damage to cavitation phenomena. A cavitation-

like phenomenon is linked to the presence of air bubbles

that are subjected to high peak pressure variations, which

can cause the bubbles to implode. Therefore, these kind
of phenomena should be associated with a temporal peak

pressure exceeding a given threshold rather than a con-

tinuous ultrasound exposure with high temporal average

intensities that do not exceed the threshold. In this study,

the authors found a non-thermal effect with characteris-

tics that could be associated with cavitation (Child et al.

1990). However, no clear proof of this hypothesis was

reported. Similar results were obtained a few years later

by Penney et al. (1993). In the same year, Raeman et al.

(1993) performed a study investigating the effect of

ultrasound on mouse lungs exposed to an approximately

constant total “on-time" but different total exposure peri-

ods. Specifically, the three temporal conditions were as

follows: (i) PRF = 17 Hz for 3-min continuous exposure,

(ii) PRF = 1000 Hz for 1-s exposure repeated at 1-min

intervals three times, (iii) PRF = 1000 Hz for 3-s contin-

uous exposure (Raeman et al. 1993). The results indi-

cated that the threshold at which lung damage appeared

was lower when a continuous exposure was employed

(Raeman et al. 1993). Therefore, this result seems not to

be consistent with the cavitation hypothesis, which

should occur on overcoming a peak positive pressure

(PPP) threshold, regardless of the exposure duration.

Following studies strengthened the hypothesis that

LUS-induced damage is probably not linked to inertial

cavitation (O’Brien et al. 2000; Frizzell et al. 2003). Spe-

cifically, O’Brien et al. (2000) directly contradicted the

cavitation hypothesis by performing an experimental

study in which an elevated hydrostatic pressure was used

to suppress the involvement of inertial cavitation. In par-

ticular, if cavitation were responsible for lung damage,

elevated hydrostatic pressures should cause less lung

hemorrhage at each ultrasound pressure level. However,

the results illustrated how the impact of ultrasound pres-

sure on lung lesion severity was enhanced by higher

hydrostatic pressures, suggesting cavitation was not the

cause of lung hemorrhage (O’Brien et al. 2000). Similar

results were achieved 3 y later by Frizzell et al. (2003).

A potential problem in the aforementioned studies

is the animal model used. Indeed, the animal model used

(mouse or rat) differs significantly from humans. There-

fore, evaluation of the different effects caused by expo-

sure of the lungs to ultrasound in various animal species

could be relevant to reliable extrapolation of the findings

to humans. This was the aim of two studies that com-

pared the effects of LUS exposure on mice, rabbits and

pigs (Zachary and O’Brien 1995; O’Brien and Zachary

1996). When the same exposure conditions were applied

to each animal species, mouse lung was the most sensi-

tive to ultrasound-induced damage, followed by rabbit

and, then, pig (O’Brien and Zachary 1996). Specifically,

on assessment of ultrasound-induced damage according

to the same criteria (i.e., scoring system ranging from 0

to 5), the ratios of lung damage scores were 3.9, 3.7 and
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14.4 for mouse/rabbit, rabbit/pig and mouse/pig, respec-

tively (O’Brien and Zachary 1996). These results could

be associated with the different anatomies of these ani-

mals. As an example, the total lung volumes of rabbits

and pigs are 100 and 5000 times larger than that of mice,

respectively (O’Brien and Zachary 1996). Given the ana-

tomical characteristics of pigs, they should be chosen as

a more reliable animal model in which to investigate

LUS-induced damage.

Nevertheless, because of the difficulty involved in

managing large animal models, most of the following

studies on LUS-induced damage were conducted on

small animals. The most recent studies were performed

by Miller et al., who analyzed the effect of diagnostic

ultrasound (Miller 2012), fixed-beam focused ultrasound

(Miller et al. 2015) and shear wave elastography (Miller

et al. 2019) on rat lungs. The findings on diagnostic

ultrasound illustrated how an MI of 0.44 was sufficient

to cause hemorrhage in rat lungs, highlighting a greater

sensitivity to LUS than was expected from previous

results (Miller 2012). This result on MI was obtained

when the rat lung was exposed to ultrasound for 5 min

(Miller 2012). Comparable results were obtained by

using a shear wave elastography system, although with a

significantly reduced exposure time (Miller et al. 2019).

In contrast, fixed-beam pulsed ultrasound exposures gen-

erated lower PPP thresholds than diagnostic ultrasound

(Miller et al. 2015).
DISCUSSION

Lung ultrasound represents a relatively novel appli-

cation of ultrasound technology, which has been increas-

ingly expanding since the 1990s (Lichtenstein et al.

1997). However, contrary to standard ultrasound imag-

ing, which was developed primarily for imaging non-

invasively the anatomy of internal body parts, LUS is

based mainly on the visual interpretation of imaging arti-

facts. Among these, the so-called vertical artifacts are

particularly important as they correlate with various

pathologies (Jambrik et al. 2004; Picano et al. 2006;

Copetti et al. 2008). The main limitations associated

with this type of pattern analysis remain its subjectivity

and limited reproducibility. Moreover, the understanding

and exploitation of the mechanisms underlying the gene-

sis of vertical artifacts are just beginning.

To overcome LUS limits and study vertical artifacts

as a mean to characterize the lung surface, various exper-

imental studies have been recently performed (Kameda

et al. 2019; Mento and Demi 2020, 2021) and mathemat-

ical models have been proposed (Demi et al. 2020a,

2020c). Specifically, the acoustic trap theory suggests

that vertical artifacts originate from multiple reflections

of ultrasound waves trapped within channels that can
form between alveoli when lung tissue becomes patho-

logical (Demi et al. 2020a, 2020c). By exploiting this

concept and the dependence of vertical artifacts on imag-

ing frequency (Demi et al. 2017; Mento and Demi 2020),

Demi et al. (2020a, 2020c) proposed a frequency charac-

terization of these artifacts to indirectly estimate the

dimensions of acoustic channels (or traps). In particular,

a lower native frequency should indicate a greater trap

size. This theory associates the genesis of vertical arti-

facts with specific resonance phenomena, as also

reported in recent in vitro studies (Mento and Demi

2020, 2021).

The dependence of vertical artifacts on different

imaging parameters (center frequency, bandwidth, focal

point position and the beam’s angle of incidence) was

further investigated in vitro, both qualitatively (Kameda

et al. 2019) and quantitatively (Mento and Demi 2020,

2021). These studies recommended positioning the focal

point at the pleural line depth, as the structures that can

be analyzed are indeed those along the lung surface

(Kameda et al. 2019; Mento and Demi 2020, 2021). The

findings of these in vitro studies are relevant for the

development of quantitative LUS clinical approaches as

they quantify the impact of potentially confounding fac-

tors. Moreover, the results described in these studies

highlighted how a visual interpretation of these artifacts

leads to subjective and qualitative analysis, as their

appearance strongly depends on several imaging param-

eters that are seldom considered in the design of clinical

studies. As a consequence, the technique often used in

clinical practice, that is, the count of vertical artifacts in

the image, should be considered qualitative and poorly

reproducible.

In contrast, the main advantage of quantitative tech-

niques consists of providing a physical measure able to

estimate the state of the lung surface, avoiding a subjec-

tive evaluation based only on visual interpretation of

LUS artifacts. However, even though different quantita-

tive techniques have been proposed since 2017 (Demi et

al. 2017; Mohanty et al. 2017; Zhang et al. 2017), they

have not been fully validated in large clinical trials, and

specific limitations exist for each technique. The tech-

nique proposed by Mohanty et al. (2017) showed prom-

ise in differentiating healthy participants from patients

with lung diseases, but represents a practical limitation

related to the impact of the intercostal layer thickness. It

has so far been tested only with the probe directly in con-

tact with the lung. Moreover, it was applied only to rat

lungs, which have different characteristics compared

with humans (Mohanty et al. 2017). On the other hand,

Zhang et al. tested LUSWE in human studies and

obtained encouraging results in terms of differentiation

between healthy participants and patients affected

by different diseases (Zhang et al. 2017, 2019a,b;
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Wiley et al. 2021). However, as suggested by an in vitro

study (Zhou and Zhang 2018b), the positioning of the

shaker could lead to strong variability in the findings

and, thus, to less reliable results. The multifrequency

technique proposed by Demi et al. (2017) yielded prom-

ising results in differentiating patients with PF from

patients with different lung diseases (Mento et al. 2020).

Nevertheless, only results on a relatively small cohort of

patients have been obtained so far.

At present, semi-quantitative techniques still repre-

sent the main available strategy to exploit LUS to assess

the state of the lung surface. Nevertheless, the use of

these techniques should be guided by proper definitions

and standardization of acquisition protocols. Specifi-

cally, given the dependence of vertical artifacts on imag-

ing parameters (Kameda et al. 2019; Mento and Demi

2020, 2021), standardization of the imaging protocols

represents a key methodology to reduce confounding

factors. Unfortunately, many protocols are heteroge-

neously defined, often lacking details on the imaging set-

tings (Dargent et al. 2020; Demi 2020; Zhao et al. 2020).

Also the scoring systems, as well as the amount and loca-

tion of the scanning areas, are often arbitrarily defined

(Allinovi et al. 2020). Differently, to develop and vali-

date proper imaging protocols and scoring systems to be

used depending on the disease being investigated, it is of

fundamental importance to compare the performance of

different protocols following an evidence-based

approach (Mento et al. 2021b; Demi et al. 2022). As an

example, during the COVID-19 pandemic, an LUS stan-

dardized imaging protocol was proposed (Soldati et al.

2020d), tested (Mento et al. 2021b; Smargiassi et al.

2020b; Demi et al. 2022), clinically validated (Perrone et

al. 2021) and adopted (Bonadia et al. 2020).

An additional problem related to semi-quantita-

tive approaches is the subjectivity of the analysis.

Indeed, even though scoring systems are used, they

are based only on the coding of visually interpreted

LUS patterns into scores. Hence, the operator depen-

dence is impossible to overcome. To this end, the use

of AI to automatically score LUS data could be

instrumental in reducing subjectivity in the evaluation

of LUS patterns. Nevertheless, given the strong sub-

jectivity of the task (Lerchbaumer et al. 2021), it is

not reliable to expect levels of agreement between AI

and human operators at the video or frame level

around 90%�100% (Mento et al. 2021a; Demi et al.

2022). Indeed, the use of AI algorithms could lead to

more reproducible analyses but cannot completely

avoid subjectivity, as AI training remains based on

the subjective labeling performed by clinicians.

Another problem that emerged during the COVID-

19 pandemic was the extensive development of AI solu-

tions regardless of domain knowledge on LUS. As an
example, AI systems have been proposed for the diagno-

sis of COVID-19 based on the simple evaluation of LUS

videos or frames (Horry et al. 2020; Awasthi et al. 2021;

Diaz-Escobar et al. 2021). This application of AI is falla-

cious as it is not possible to diagnose COVID-19 based

on LUS. Indeed, positive patients may still not present

any alterations along the lung surface. Moreover, LUS

imaging patterns are strongly unspecific (Demi 2020).

As an example, different LUS artifacts (e.g., vertical arti-

facts and “white lung") or anatomical findings (e.g., con-

solidations) that were observed in patients with COVID-

19 could be observed in many other diseases (e.g., CPE,

PF and ARDS).
CONCLUSIONS

Quantitative approaches represent the future of

LUS, as they could provide a physical metric able to

characterize the lung surface by applying an acquisition

technique specifically designed for the lung. Neverthe-

less, to develop these techniques, the genesis of vertical

artifacts needs to be more deeply investigated and under-

stood by means of controlled in vitro and in silico stud-

ies. In the meantime, semi-quantitative approaches

based on image analysis techniques should be exploited

to estimate the state of lungs by detecting and recogniz-

ing specific LUS patterns that do signal different levels

of aeration. However, to reduce the impact of confound-

ing factors, standardization of the imaging protocols

and scoring systems is essential. In this context, AI

algorithms could be used to guide the acquisition and

analysis of LUS data.

Finally, the potential risks associated with the appli-

cation of unnecessary high-pressure fields to lung exami-

nations should be carefully investigated. Indeed, the

presence of air within lungs seems to suggest the use of

a MI significantly below the limit of 1.9 imposed for

standard ultrasound imaging in soft tissues. This is more-

over not conflicting with the possibility to acquire high-

quality LUS data. Indeed, the pleural line lies only a few

centimeters from the skin, and lower MIs are thus suffi-

cient for imaging. In particular, it is suggested that the

MI be set below 0.7 for LUS applications (Soldati et al.

2020d).
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