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Protecting the privacy of patients is central to healthcare deliv-
ery and has important ethical and medicolegal ramifications. 
Privacy protection has attained prominence over the past 

decade because of digitalization and increasingly widespread shar-
ing of medical records and concerns about data breaches. Previous 
studies have explored the application of anonymization technolo-
gies for medical images. Researchers have proposed eliminating all 
digital imaging and communications in medicine (DICOM) meta-
data (such as patient name and sex)1, with the application of defac-
ing or skull-stripping algorithms to face or skull regions in DICOM 
images2. From a privacy perspective, clinical data involving facial 
images are especially sensitive, given that facial information clearly 
contains biometric identifying information. It is therefore impera-
tive to protect the facial information of healthcare users to main-
tain medical privacy and security; however, facial images aiming to 
record signs of disease, such as strabismus or nystagmus, inevitably 
record patients’ race, sex, age, mood and other biometric identifiers. 
Concerning facial images, common anonymizing methods, includ-
ing blurring and cropping identifiable areas, may lose important 

disease-relevant information and they cannot fully evade face rec-
ognition systems3. An important challenge is, therefore, to separate 
biometric identity from medical information that can potentially be 
derived from facial images.

Additionally, the successful development and utility of digital 
health technology depends on broad participation in medical data 
collection and the broad participation of large populations requires 
trust and protection of privacy4; however, digital data studies based 
on heavy-training image sets have also raised the potential threat 
of misusing facial recognition technology for unintended and/
or unauthorized purposes5,6. Due to the understandable privacy 
concerns of individuals, people often hesitate to share their medi-
cal data for public medical research or electronic health records, 
thus largely hindering the development of digital medical care. 
Therefore, it is necessary to update the traditional procedure used to 
obtain informed consent at the front end of data collection, particu-
larly by ensuring adequate privacy protection for personal health 
information and somehow improving the willingness of healthcare 
users to engage with these emerging digital technologies.
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The storage of facial images in medical records poses privacy risks due to the sensitive nature of the personal biometric infor-
mation that can be extracted from such images. To minimize these risks, we developed a new technology, called the digital 
mask (DM), which is based on three-dimensional reconstruction and deep-learning algorithms to irreversibly erase iden-
tifiable features, while retaining disease-relevant features needed for diagnosis. In a prospective clinical study to evaluate 
the technology for diagnosis of ocular conditions, we found very high diagnostic consistency between the use of original and 
reconstructed facial videos (κ ≥ 0.845 for strabismus, ptosis and nystagmus, and κ = 0.801 for thyroid-associated orbitopa-
thy) and comparable diagnostic accuracy (P ≥ 0.131 for all ocular conditions tested) was observed. Identity removal valida-
tion using multiple-choice questions showed that compared to image cropping, the DM could much more effectively remove 
identity attributes from facial images. We further confirmed the ability of the DM to evade recognition systems using artificial 
intelligence-powered re-identification algorithms. Moreover, use of the DM increased the willingness of patients with ocular 
conditions to provide their facial images as health information during medical treatment. These results indicate the potential 
of the DM algorithm to protect the privacy of patients’ facial images in an era of rapid adoption of digital health technologies.
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In whole facial images, periocular biometrics is one of the most 
distinctive subsets of individual biometric information of an indi-
vidual and it can be used to assist in building robust identity veri-
fication systems7. Additionally, periocular features are important 
signs of eye and general health. For example, periocular features, 
such as deep forehead wrinkles and periorbital wrinkles, are signifi-
cantly associated with coronary heart disease8 and abnormal topo-
logical changes in eye dynamics indicate poor visual function and 
visual cognitive development problems9. This study aims to protect 
the biometric information of patients and focuses on four patho-
logical ocular manifestations, namely, thyroid-associated orbitopa-
thy (TAO), strabismus, ptosis and nystagmus, which involve more 
than ten abnormal behavioral phenotypes, such as eyelid retraction, 
overactive or underactive extraocular muscles, horizontal or verti-
cal strabismus, changes in the double eyelid line, poor fixation and 
compensatory head position.

To extract these disease-relevant features but remove patient 
identity features from facial images of patients, we developed the 
DM, a new technology based on real-time three-dimensional (3D) 
reconstruction and deep-learning algorithms. The DM takes an 
original video as input and outputs a reconstructed video that con-
tains disease information, while discarding as much of the patient’s 
identity as possible. The refined eye reconstruction is highlighted. 
Converting DM-reconstructed videos back to raw videos is impos-
sible because most of the information necessary to recreate the orig-
inal attributes has been discarded and is no longer present in the set 
of digital representations that constitute the mask.

To demonstrate the feasibility of the proposed DM approach, we 
designed a clinical trial (NCT05058599) and evaluated the consis-
tency of the diagnoses of patients with ocular diseases from recon-
structed videos and original videos. Identity removal validation was 
also used to show whether the DM could effectively remove per-
sonal biometric attributes. Additionally, we performed an empiri-
cal investigation of the receptiveness of patients to applying this 
new technology to their personal health information. Finally, we 
conducted an artificial intelligence (AI)-powered reidentification 
validation to evaluate the performance of the DM in evading recog-
nition systems. The following results show that DM proposes a new 
approach to safeguarding patient privacy, provides an additional 
data format for privacy protection and enhances the willingness of 
patients to share their medical data, thereby benefiting the quickly 
evolving field of digital health.

Results
The workflow of the DM. In this work, the proposed DM patient 
privacy protection technology was based on the complementary use 
of deep learning and 3D reconstruction. Deep learning achieved 
feature extraction from different facial parts, and 3D reconstruc-
tion automatically digitalized the shapes and motions of 3D faces, 
eyelids and eyeballs based on the extracted facial features (Fig. 1). 
Different from other face reconstruction methods10–16, the proposed 
technology focused on accurate ocular reconstruction, including 
both shapes and movements.

In 3D reconstruction, we used three predefined parametric mod-
els for faces, eyelids and eyeballs. The face model was mathemati-
cally a bilinear model17 (Methods) that represented a 3D face as a 
shape vector wfs and a motion vector wfm. Given a particular wfs and 
a wfm, the bilinear face model can reconstruct a particular 3D face 
mesh Mf. The face model can represent the overall geometry of the 
face, but eye regions lack details. Since the eye regions are important 
for diagnosis, we used a linear eyelid model18 to represent detailed 
eye regions. Similar to the face model, given this eyelid model, a 
detailed eyelid Me (of one eye) was represented by an eye shape vec-
tor wes and an eye motion vector wem. To additionally reconstruct the 
eyeballs, we used the simplified geometry and appearance eyeball 
model (SGAEM), introduced in our previous study19. The model 

approximated eyeballs as spheres and used three parameters, the 
eyeball radius re, the iris radius ri and the position pe relative to the 
face, to represent the static properties of an eyeball and the eyeball 
rotation in polar coordinates to represent eyeball motion.

Deep-learning techniques were leveraged to extract facial fea-
tures that were used to infer the aforementioned model parame-
ters to obtain the facial reconstruction results. First, a pretrained 
neural network was used as a face landmark detector to extract 
two-dimensional (2D) face landmarks Lface from an input red, green 
and blue color space (RGB) image. With the landmarks Lface, we 
estimated the face pose T (rotation and translation), face shape 
vector wfs and face motion vector wfm by minimizing the Euclidean 
distance between the 2D landmarks Lface and the 2D projections 
of the corresponding points on the 3D face Mf. Second, an eye-
lid landmark detector was used to extract 2D eyelid landmarks 
Leyelid and an eyelid semantic line detector was used to extract 2D 
eyelid semantic lines Seyelid. These two detectors were also neural 
networks trained by deep-learning techniques. Then, we similarly 
estimated the eyelid shape vector wes and the eyelid motion vector 
wem by minimizing the Euclidean distance between the 2D land-
marks Leyelid and the projections of the corresponding points on 
the eyelid mesh Me, as well as by making the projected points on 
the semantic lines close to the detected semantic lines Seyelid on the 
image. Here, semantic lines provided rich and continuous infor-
mation on the eyelid area, while landmarks were robust discrete 
features for tracking eyelid motions. Combining these two types of 
features made the reconstruction more accurate and stable. Finally, 
for the eyeballs, we trained another neural network as an iris land-
mark detector to extract 2D iris landmarks Liris from the input RGB 
image. As the eyeball radius re, iris radius ri and relative position 
pe were invariant in a video, we predicted them in the first frame 
and then fixed them in the following video frames. Per-frame eye-
ball rotations were estimated by minimizing the Euclidean dis-
tance between the 2D landmarks Liris and the projections of the 
corresponding points on the SGAEM. The DM included optional 
operations for adapting to different clinical applications, such 
as dealing with eye occlusion in videos recording the alternate 
cover test or reconstructing eyebrow movements in diagnosing  
ocular diseases.

Quantitative evaluation of the DM. The feasibility of the proposed 
model was evaluated on a video dataset of patients in the clinical 
trial. From May 2020 to September 2021, 405 participants, 187 
(46.2%) males, aged 4 months to 61 years, who agreed to partici-
pate in the prospective study at the Digital Mask Program either by 
themselves or via their legal guidance; the participants consisted of 
(1) 100 outpatients from strabismus departments; (2) 92 outpatients 
from pediatric ophthalmology departments; (3) 102 outpatients 
from TAO departments; and (4) 111 outpatients from oculoplas-
tic departments (Extended Data Table 1). In total, 253 (62.47%) of 
the 420 patients were diagnosed with ocular diseases on the basis of 
face-to-face assessments of the patients’ eyes.

To evaluate the applicability of the model, different cameras, 
including a Nikon 3500, Huawei p30 and Sony 4k, were used for 
video collection according to the following standards. The whole 
appearances of participants were collected from a distance ranging 
from 33 cm to 1 m according to the specific ocular examination. 
These videos were taken under room illuminance ranging from 300 
to 500 lx.

We used the proposed DM to process all the videos and quanti-
tatively evaluated the reconstruction performance of the DM. In the 
quantitative evaluation, the performance of the DM was measured 
by the 2D normalized pixel error, with lower numbers indicating 
better reconstruction performance. We first acquired the Euclidean 
distance between the landmarks in DM-reconstructed videos and 
the corresponding landmarks in original videos (Fig. 2a). The pixel 
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errors between landmarks were then normalized by the pixel dis-
tance between the centers of the two eyes.

For the eyes of 405 patients, the average normalized pixel errors 
in images of patients with TAO, strabismus, ptosis and nystag-
mus were 0.85%, 0.81%, 0.82% and 1.00%, respectively, in eyeball 
reconstruction and 1.52%, 1.24%, 1.52% and 1.61%, respectively, 
in eyelid reconstruction (Fig. 2b). The heat map of the normalized 
pixel errors in images of patients with the abovementioned four 
diseases is shown in Fig. 2c. The normalized pixel errors remained 
small and stable most of the time, with slight fluctuations when the 

eyes were looking down, thus indicating the precise reconstruction  
of the DM.

Clinical validation of DM. To evaluate the performance of the DM 
in clinical practice, we performed a relevant diagnostic comparison 
and an identity-removal validation. In the relevant diagnostic com-
parison, 12 ophthalmologists, 3 from each of the four departments, 
were invited to diagnose patients from their departments based on 
the DM-reconstructed videos and original videos. We evaluated 
the videos regarding pathological ocular manifestations that caused 
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Fig. 1 | Development of the DM system. Our approach uses RGB images as input and outputs 3D reconstructed meshes. For a particular frame, the 
algorithm first extracts 2D face landmarks from the RGB image and fits a set of face model weights for 3D face reconstruction. Then, the algorithm extracts 
2D eyelid landmarks and 2D semantic lines and fits eyelid model weights for 3D eyelid reconstruction. Finally, the algorithm extracts 2D iris landmarks and 
solves eyeball rotation for 3D eyeball reconstruction.
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changes in the appearance of the eye and patients were diagnosed 
visually with diseases, including (1) TAO (exophthalmos, eyelid 
retraction and overactive or underactive extraocular muscles); 
(2) strabismus (horizontal or vertical strabismus and compensa-
tory head position); (3) ptosis (drooping or lowering of the upper 
eyelid); and (4) nystagmus (Fig. 3 and Supplementary Video)9. For 
each eye, both the independent diagnosis from the original vid-
eos and the diagnosis from the DM-reconstructed videos were 
recorded and compared (Fig. 4a and Supplementary Data 1). If the 
two diagnoses were excellently consistent, this would suggest that 
the reconstruction was precise enough for use in clinical practice. 
Cohen’s κ values showed very high consistency (κ = 0.845–0.934 
for strabismus, ptosis and nystagmus on both eyes and κ = 0.801 
for TAO on right eyes) of the diagnoses, made by three ophthal-
mologists under majority rule, from original and reconstructed 
videos for all comparisons (Fig. 4b and Extended Data Table 2). 

Additionally, the accuracies of the diagnoses from the original and 
reconstructed videos, compared to the ground truth, were com-
parable for all paired comparisons (P = 0.131–1; Extended Data 
Table 3). These results indicate that the DM retains the important 
clinical attributes correctly and has the potential to be adopted in  
clinical practice.

In the identity-removal validation, we compared the 
identity-removal ability of the DM with that of cropping by using 
multiple-choice questions. Specifically, we processed the original 
images of the faces of the patients by using DM and cropping to 
generate 400 DM-reconstructed images and 400 cropped images, 
respectively. The selected generated images and the original images 
were staggered in the video time sequence. Correspondingly, we 
designed 800 multiple-choice questions. For the DM test, each 
question contained a DM-reconstructed image and five original 
images. For the cropping test, each question contained a cropped 

b

c Nystagmus, case ID. 4006

Landmark number (x axis)

Strabismus, case ID. 2008 Ptosis, case ID. 3028

F
ra

m
e 

nu
m

be
r 

(3
0 

f.p
.s

.)

TAO, case ID. 1008

0
23

73718 19 38 13
7
13

8

2 

1

(%)

3

4

5

N
orm

alized pixel error

71

0

142

212

283

354

84

0

169

253

338

422

119

0

237

356

474

593

69

0

139

208

278

347

Eyeball_OD Eyeball_OS Eyelid_OD Eyelid_OS

Normalized pixel error of eyeball Normalized pixel error of eyelid

6

5

4

3

2

1

0
TAO

n = 102
Strabismus

n = 100
Ptosis

n = 111
Nystagmus

n = 92

E
ye

ba
ll_

m
ea

n 
(%

)

6

5

4

3

2

1

0

E
ye

ba
ll_

m
ea

n 
(%

)

TAO
n = 102

Strabismus
n = 100

Ptosis
n = 111

Nystagmus
n = 92

a

Landmarks in original video Landmarks in DM-reconstructed video Euclidean error

Fig. 2 | Quantitative evaluation of the digital mask. a, Schematic indicating how the Euclidean error was calculated. For both eyeball and eyelid 
reconstruction, we project the 3D points to 2D image space (yellow) and calculate the Euclidean pixel distance between them and landmarks in the 
original video (red). The Euclidean error was normalized by the pixel distance between the center of two eyes to exclude the influence of face size.  
b, The normalized pixel error of different ocular diseases for eyeball (left) and eyelid (right) reconstruction. Results were expressed as mean ± s.d. c, Heat 
map of the normalized pixel error for four cases. The frame number of each video (30 f.p.s.) is plotted on the y axis. Landmark numbers (238 in total, 38 
landmarks for eyeballs and 200 landmarks for eyelids) are plotted in order on the x axis. Normalized pixel error (0–5%) is indicated by the collar bar at the 
right. The closer the color is to blue, the more accurate the performance is. OD, right eye; OS, left eye; f.p.s., frames per second.

Nature Medicine | VOL 28 | September 2022 | 1883–1892 | www.nature.com/naturemedicine1886

http://www.nature.com/naturemedicine


ArticlesNature Medicine

image and five original images. For each question, there were six 
options, including the five original images and an ‘other’ option. 
From these options, the respondents were asked to find the original 
image corresponding to the DM-reconstructed image or cropped 
image. The results showed that the accuracy rate for those taking 
the DM test was 27.3%; however, the accuracy for those taking the 
cropping was 91.3%, which was much greater than the accuracy of 
those taking the DM test (Fig. 4c). Both accuracies were likely over-
estimated because the test was conducted on the premise that the 
respondent knew only five people. In actual situations, the numbers 
of people are far higher; however, the results still demonstrate that 

the DM can effectively remove patient identity attributes and pro-
tect patient privacy, especially compared to cropping.

In addition, to evaluate the willingness of patients to share their 
eye and facial images during the application of DM, we performed an 
empirical investigation. 3D reconstruction software was developed 
to which users could provide their videos anonymously. The videos 
were then automatically processed by the DM and delivered to clini-
cians. Clinicians were only allowed to watch the DM-reconstructed 
videos for diagnosis (Supplementary Video) and the diagnoses were 
fed back to the users. A total of 317 outpatients, randomly selected 
via clinics, agreed to participate in the empirical investigation.  
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Fig. 3 | Clinical signs of the ocular diseases studied. Main clinical signs (top) for diagnosis of each ocular disease studied are shown using schematic 
diagram, the original facial image, the image of the DM and the overlap between the original facial image and the DM. See Supplementary Video for 
details. More diverse secondary clinical signs of the four diseases are shown (bottom).
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During the investigation, the participants were asked to watch 
uploaded videos and the corresponding reconstructed videos pro-
cessed by the DM using the software. The patients then completed a 
questionnaire to investigate their willingness to use DM at the end of 
the investigation (Fig. 5a). Among the respondents, 161 were males 
(50.7%). By age group, the highest proportion of respondents was 
in the 20–30-year group. Most of the respondents had university 
degrees (82.3%) and had used smartphones for more than 7 years 
(73.8%). In addition, in the questionnaire, regarding five hypoth-
eses, 16 questions were designed from five aspects, including health 
support, privacy concerns, trust in physicians and medical plat-
forms, willingness to share information and the influences of DM 
(Fig. 5b). The Kaiser–Meyer–Olkin measure of sampling adequacy 
and Cronbach α values for each component were larger than 0.617 
and 0.718, respectively, thus supporting the reliability and valid-
ity of each question in the research design. Approximately 80% of 
the participants agreed that they had privacy concerns. Among the 
participants who had a disease with facial signs, more than 81.4% 
had privacy concerns, compared to more than 74.4% of participants 
without facial signs. Furthermore, we assessed the significance of 
the influence of the major aspects.

As shown in Extended Data Table 4, perceived benefits, such 
as health support of digital health information, positively affected 
patients’ trust in physicians and medical platforms with respect 
to digital health (β = 0.465, P < 0.001). In contrast, perceived 
concerns, such as privacy concerns, negatively affected patients’ 
trust in physicians with respect to digital health (β = −0.158, 
P = 0.005). The hypothesis that the DM had a positive impact on 
such trust was supported (β = 0.348, P < 0.001), thereby further 
improved the patients’ willingness to share information (β = 0.503, 
P < 0.001). The questionnaire details of each patient are included in  
Supplementary Data 2.

AI-powered re-identification validation of the DM. To evaluate 
the performance of the DM in evading recognition systems, we 
performed an AI-powered reidentification validation (Fig. 6a). In 
the validation, we conducted face recognition attacks by using three 
well-known deep-learning systems, namely, FaceNet20, CosFace21 
and ArcFace22. All the systems were trained on the CASIA-WebFace 
Dataset23, which contains 494,414 face images of 10,575 real iden-
tities collected from the web. Using 405 patient videos, we ran-
domly selected two frames in each video; one of the frames was 
used as the query image and the other was used as the database 
image. We processed 405 original query images to further gener-
ate 405 cropped query images and 405 DM-reconstructed query 
images. For the test, given a query image (original images, cropped 
images or DM-reconstructed images), the face recognition system 
(FaceNet, CosFace or ArcFace) was asked to match the image with 
database images of 405 patients. We used the area under the receiver 
operating characteristic curve (AUC), TAR@FAR = 0.1 (TAR, true 
accept rate; FAR, false accept rate), TAR@FAR = 0.01 and Rank-1 
to evaluate the face recognition performance. The lower values 

of TAR@FAR = 0.1, TAR@FAR = 0.01 and Rank-1 indicate the 
weaker performance of the face recognition system and the greater 
performance of the privacy protection technology. As shown in  
Fig. 6b and Extended Data Table 5, the results on all the measure-
ments show that taking original images as the query images, it was 
easy for face recognition systems to match the correct identity. 
When taking cropped images as the query images, the metrics had 
limited degradation. When using the DM, the performance of face 
recognition was significantly degraded. Rank-1 was <0.02 for all 
three systems, indicating that the systems had a very low possibil-
ity of identifying the correct identity with the DM-reconstructed 
images. Meanwhile, the receiver operating characteristic (ROC) 
curves of using DM-reconstructed images were close to y = x for all 
three systems, indicating that it was impossible to keep high TAR 
with low FAR. These results show the superiority in terms of privacy 
protection of our DM technique.

Discussion
In this study, we developed and validated a new technology called 
DM, which is based on real-time 3D reconstruction and deep learn-
ing, to retain the clinical attributes contained in patient videos, while 
minimizing access to nonessential biometric information for added 
personal privacy in clinical practice. Experimental results support 
that with the DM, examination videos of patients with manifesta-
tions of ocular disease can be precisely reconstructed from 2D 
videos containing original faces. A clinical diagnosis comparison 
showed that ophthalmologists achieved high consistency in reach-
ing the same diagnosis when using the original videos and the cor-
responding DM-reconstructed videos. This new technology could 
effectively remove identity attributes and was positively accepted by 
patients with ocular diseases, who expressed an increasing willing-
ness to share their personal information and have it stored digitally 
with this added layer of biometric protection.

It is notable that the DM offers a pragmatic approach to safe-
guarding patient privacy and data utilization in both research and 
clinical settings; patient privacy and data utilization are frequently 
cited as concerns by patients worried about data breaches. Compared 
to rather crude but still widely used options, such as covering iden-
tifiable areas with very large bars or cropping these areas out alto-
gether3, the DM is a much more sophisticated tool for anonymizing 
facial images. Even next-generation privacy-protection techniques, 
such as federated learning and homomorphic encryption, do not 
safeguard privacy well and crucially, these techniques are vulner-
able to model inversion or reconstruction attacks24. The DM selects 
relevant features for reconstruction, but it is impossible to recon-
struct original data particularly relevant to patient identification. 
Furthermore, compared with other face-swapping technologies, 
the DM can obtain quantitative parameters (such as the degree of 
eyeball rotation, eyelid shape parameters, blinking rate and rotation 
frequency), which might prove essential in the future for intelligent 
diagnosing disease or studying the relationships between diseases 
and certain facial characteristics.

Fig. 4 | Clinical validation of the DM. a, Workflow of relevant diagnostic comparisons using the original videos and the corresponding DM-reconstructed 
videos. Participants were recruited from four outpatient departments after having been diagnosed by a specialist as having TAO, ptosis, strabismus, 
nystagmus or none of these. Once the participants were enrolled in the study, facial videos of appropriate ocular examinations were taken. Each video was 
independently used by three ophthalmologists from each of the four departments for making a diagnosis. A dichotomous diagnosis of abnormal or not 
was made for both the left eye and the right eye. Both the original video and DM video from the same participant were used by the same ophthalmologist 
for diagnosis, performed in a blinded fashion using the participant number (ID-1 to ID-n; TAO, n = 102; strabismus, n = 100; ptosis, n = 111; and nystagmus, 
n = 92). b, Line plots indicating diagnostic consistency for the indicated ocular diseases (Cohen’s κ ≥ 0.81 indicates perfect consistent). c, Left, workflow 
for identity removal validation in which the identity removal abilities of the DM and those of image cropping were compared. Respondents were given six 
options, including five facial images and an ‘other’ option. From these options, the respondents were asked to choose the original image corresponding 
to the DM-reconstructed image or cropped image. Red indicates an incorrect answer; green indicates a correct answer. Accuracy of identity removal 
validation (right). Results were expressed as mean ± s.d. Each scatter-point represents the score of one set calculated from one respondent, with ten 
questions per set and a total score of 100. For each disease, 20 sets of questions (10 of DM and 10 of cropped) were taken.
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In addition to its potential utilization in research and routine 
clinical practice, the DM can be applied to telemedicine, includ-
ing online automatic diagnosis and patient triage for more efficient 

healthcare delivery25. The wider adoption of digital medicine, partly 
prompted by the ongoing COVID-19 pandemic, will require that 
the barriers to privacy protection be overcome and an important 
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step is removing biometric data that are not essential for healthcare 
delivery. The DM can encrypt data before they are submitted to the 
cloud, thereby allowing clinicians or AI algorithms to review the 
reconstructed data and removing concerns of patients whose medi-
cal records contain sensitive biometric data26.

However, ‘protecting privacy’ does not equate to ‘absolute removal 
of identity characteristics.’ According to the Health Insurance 

Portability and Accountability Act Privacy Rule, protecting patient 
privacy refers to reducing the identification risk of health informa-
tion27. One of the most important principles is balancing disclosure 
risk against data utility. Therefore, the purpose of this study is to pro-
vide an approach to health information disclosure that de-identifies 
protected health information as much as possible, without compro-
mising the need for the clinician to reach a diagnosis.

Strongly agree Agree

Neutral Disagree

Strongly disagree

Privacy concern

4. I'm worried that my health information posted on the Internet may
be resold.

5. I'm worried that other people can see my medical information on the
Internet.

6. I’m worried that the disclosure of medical and health information I
post on the Internet will affect other people's opinions on me.

DM

13. If DM is used, others can't recognize me

14. If DM is used, my facial information cannot be resold

15. If DM is used, I will not get less medical help

16. If DM is used, I prefer to provide facial medical information

Health support

1. Disclosing my health information can help me diagnose and treat
diseases

2. Establish health records to record my health information, which can
detect and control my health status and condition

3. When I encounter any health problems, the online medical website
can provide relevant information to help me solve the problems

b Questionnaire evaluation of patient willingness
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Trust in physicians and medical platforms

7. My health information will be used properly by doctors

8. My privacy will be kept secret by the online medical website

9. Without my permission, my health information will not be used for
purposes other than medical treatment

Willingness to share information

10. I’ll disclose my information online when my doctor asks me to
provide health information

11. I'm willing to provide facial information if it's helpful

12. I’ll probably publish my medical and health information on some
online medical websites

a
Evaluation of patient willingness

Perceived concern:
privacy concern

Perceived benefits:
health support

Trust in physicians
and medical platforms

Willingness to
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H4+
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H2–
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Fig. 5 | Empirical investigation of the willingness of patients to share personal health information. a, Schematic of the hypothesis. Patients’ trust in 
physicians and medical platforms was hypothesized to be positively affected by perceived benefits, such as health support of digital health information 
(H1) and negatively affected by perceived concerns, such as privacy concerns (H2). The DM was hypothesized to have a positive impact on such trust 
(H3) and further improved patients’ willingness to share information (H4). b, Questionnaire results. In the questionnaire, 16 questions were designed 
with respect to the five hypotheses; the responses were further measured using five-point scales ranging from ‘strongly disagree’ to ‘strongly agree’. The 
percentages of the responses to each item are shown (right).
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Fig. 6 | Validation of the DM using AI-powered re-identification algorithms. a, Study workflow. The re-identification algorithms were used to find the ID 
of the patient from a database of 405 patients when given the original image, a cropped image or the DM-reconstructed image of a patient as a query 
image. b, Performance of the three re-identification algorithms tested, as assessed by TAR@FAR = 0.1, TAR@FAR = 0.01, Rank-1 (left) and ROC curves 
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The study has several limitations. First, the reconstruction of 
conjunctival hyperemia, eyelid edema and abnormal growth of tis-
sues, such as ocular tumors, remains challenging because of insuffi-
cient model capacity. Model-based 3D reconstruction assumes that 
the target lies in the linear space spanned based on a set of prepared 
models; however, it is difficult to cover all shapes in the aforemen-
tioned cases because shapes differ significantly from person to per-
son. We intend to improve the DM by including a sufficiently large 
sample of abnormal cases for more detailed analysis or constructing 
an extra submodel on top of the existing model in the next research 
step. Second, this paper has demonstrated that the DM can protect 
re-identification from images but it may not work under certain cir-
cumstances if the video of the patient is exposed. We are currently 
extending our work to deal with video protection and circumvent 
this possible weakness. Third, the potential risk that the DM might 
be attacked still remains, as it might be abused to develop targeted 
attack algorithms; however, this risk can be mitigated by formulat-
ing relevant rules in the future.

In conclusion, we demonstrate the effectiveness of the DM in 
enhancing patient data privacy by making use of deep learning and 
real-time 3D reconstruction and notably, we demonstrate the DM’s 
acceptability to healthcare users. Future work is necessary to further 
evaluate the applicability of DM in a wider variety of clinical settings 
as the requirements for de-identification will vary according to the 
type of imaging dataset used.
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Methods
Ethical approval. The research protocol and ethical review of this study were 
approved by the Institutional Review Board/Ethics Committee of the Zhongshan 
Ophthalmic Center. The clinical study protocol is shown in the Supplementary 
Note. Consent was obtained from all individuals whose images are shown in 
figures or the video for publication of these images. Informed consent was obtained 
from at least one legal guardian of each infant and the tenets of the Declaration of 
Helsinki were followed throughout this study. The trial in this study was registered 
with the Clinical Research Internal Management System of Zhongshan Ophthalmic 
Center and retrospectively registered at ClinicalTrials.gov (NCT05058599).

DM technique. Our reconstruction method consisted of three main stages: face 
reconstruction, eyelid reconstruction and eyeball reconstruction. At each stage, 
a unique detector was used to extract relevant features (the face landmarks Lface 
at the first stage, the eyelid landmarks Leyelid and eyelid semantic lines Seyelid at the 
second stage and the iris landmarks Liris at the last stage). All detectors were neural 
networks based on deep-learning techniques. After acquiring the features, the 
corresponding model parameters were optimized to fit these features. The details 
of each stage are described below.

Face reconstruction. As we use a bilinear model17, we generated a 3D face 
M f

∈ R
3NF using a shape vector w fs

∈ R
Nfs and a set of motion vectors w fm

∈ R
Nfm:

M f
= Cr ×2 w fs

×3 w fm (1)

where Cr ∈ R
3NF×Nfs×Nfm is a pre-defined core tensor that stores 3D vertex 

positions of faces covering the major variations in shape and motion; ×2 and ×3 
are the tensor product operations on the second dimension and third dimension, 
respectively; NF is the number of 3D face vertices; and Nfs and Nfm are the 
dimensions of the shape vector and motion vector, respectively.

Given the face landmarks Lface ∈ R
2NLF on a video frame of a patient, we 

reconstructed a 3D face of the patient by solving an optimization problem; 
minimizing the landmark registration error Eface by searching for the optimal 
parameters wfs, wfm, R and t:

Eface
(

w fs,w fm,R, t;Cr, Lface
)

=

NLF
∑

i

∥

∥

∥

Lfacei − Π
(

M f′
cface(i)

)
∥

∥

∥

2

2
(2)

M f′
= RM f

+ t (3)

where R ∈ SO(3) and t ∈ R
3 denote the rotation and translation of a 3D mesh, 

respectively; ∏(·) is a projection function that projects 3D points to 2D points; 
cface(i) represents the corresponding face index for the ith face landmark, which is 
predefined manually; and NLF is the number of face landmarks.

Note that wfs was estimated based on only the first frame and then fixed for the 
following frames. Therefore, for the following frames, the objective function was 
slightly simplified to

Eface
(

w fm,R, t;w fs,Cr, Lface
)

=

NLF
∑

i

∥

∥

∥

Lfacei − Π
(

M f′
cface(i)

)
∥

∥

∥

2

2
(4)

Eyelid reconstruction. Similar to the bilinear face model, our eyelid model18 
contained a set of shape vectors wes

∈ R
Nes and a set of motion vectors wem

∈ R
Nem. 

Nes and Nem are the dimensions of the shape vector and motion vector, respectively. 
Given our parametric eyelid model, a particular 3D eye region Me

∈ R
3ND was 

reconstructed as follows:

Me
= Me

0 +

Nes
∑

i
wes
i M

es
i +

Nem
∑

j
wem
j Mem

j (5)

where Me
0 ∈ R

3ND is the template eyelid geometry model; Mes
∈ R

Nes×3ND and 
Mem

∈ R
Nem×3ND are also predefined and represent the basis geometry changes for 

shape and motion, respectively; and ND is the number of 3D eyelid vertices.
Before reconstruction, we first fitted two polynomial curves for the upper 

eyelid and the lower eyelid according to the detected landmarks Leyelid ∈ R
2NLd. 

Specifically, we fit cubic polynomial curves:

y = ax3 + bx2 + cx + d (6)

by solving a least-squares problem:
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x and y denote the 2D coordinates of a point on 2D image. Then, we applied 
dense sampling to acquire dense landmarks Ldense ∈ R

2NLD by uniform sampling 
xdense = {xdense1 , xdense2 , · · · , xdenseNLD

}.

Ldensei =

(

xdensei , ydensei

)

=

(

xdensei , a
(

xdensei

)3
+ b

(

xdensei

)2
+ c

(

xdensei

)

+ d
) (8)

where NLd is the number of detected eyelid landmarks and NLD is the number of 
dense landmarks.

For continuous features, the four detected semantic lines (representing the 
double-fold, the upper eyelid, the lower eyelid and the lower boundary of the 
bulge) Seyelid are irregular curves defined on the 2D image space, thus indicating the 
positions of different parts of the eyelid.

Integrating both discrete features and continuous features, we solved the 
following energy function to search for the optimal wes and wem:

Eeyelid
(

wes,wem;R, t,Me
0,M

es,Mem, Ldense
)

=

NLD
∑

i

∥

∥

∥

Ldensei − Π
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(9)

Esl
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0,M

es,Mem, Seyelid
)

=

Nsl
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j∈vsl(k)
dis

(

Π
(

Me′
j

)

, Seyelidk

)2

(10)

Me′
= RMe

+ t (11)

where ceyelid(i) represents the corresponding vertex index for the ith eyelid 
landmark, which is also manually predefined in advance. vsl(k) represents a set of 
vertex indices belonging to the kth semantic line. dis(·,·) is the distance between a 
point and the closest point on a line. Nsl is the number of semantic lines, which is 
four in this paper. R and t are calculated at the face reconstruction stage.

Similar to the face reconstruction, wes was determined in the first frame. In the 
following frames, the objective functions were changed to

Eeyelid
(

wem;wes,R, t,Me
0,M

es,Mem, Ldense
)

=

NLD
∑

i

∥

∥

∥

Ldensei − Π
(

Me′
ceyelid(i)

)
∥

∥

∥

2

2
(12)

Esl
(

wem;wes,R, t,Me
0,M

es,Mem, Seyelid
)

=

Nsl
∑

k

∑

j∈vsl(k)
dis

(

Π
(

Me′
j

)

, Seyelidk

)2

(13)

Eyeball reconstruction. Our SGAEM model19 represented a 3D eyeball B ∈ R
3NB 

based on the eyeball radius re and the iris radius ri. NB is the number of 3D eyeball 
vertices.

B = SGAEM (re, ri) (14)

The position of the eyeball relative to the face pe ∈ R
3 is also needed to be 

determined for reconstruction. Here, certain prior knowledge is used to estimate 
the three parameters (re, ri and pe) in the first frame and then fixed in the following 
frames by minimizing the following objective function:

Eeyeball
(

θ,ϕ;R, t, Liris, re, ri, pe
)

=

NLB
∑

i

∥

∥

∥

Lirisi − Π
(

B′

ciris(i)

)
∥

∥

∥

2

2
(15)

B′
= R

(

Rot (θ,ϕ)B + pe
)

+ t (16)

where θ and ϕ are the Euler angles of eyeball rotation. Rot(·,·) is a function that 
converts θ and ϕ into a rotation matrix. ciris(i) represents the corresponding vertex 
index for the ith iris landmark, which is also predefined in advance. NLB is the 
number of iris landmarks. R and t are calculated at the face reconstruction stage.

Sequence consistency. To maintain consistency between successive frames, the 
following smoothing terms were also considered for the above objective functions:

Esmooth1 = λfm
∥

∥

∥

w fm
− w fm

prev

∥

∥

∥

2

2
+ λR

∥

∥R − Rprev
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2
2 + λt

∥
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∥

∥

2
2 (17)

Esmooth2 = λem
∥

∥
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wem
− wem

prev

∥

∥

∥

2

2
(18)

Esmooth3 = λθ
∥

∥θ − θprev
∥

∥

2
2 + λϕ

∥

∥ϕ − ϕprev
∥

∥

2
2 (19)
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where subscript prev represents the parameter at the previous frame.
Finally, the objective function for the three stages becomes

E1 = Eface + Esmooth1 (20)

E2 = Eeyelid + Esl + Esmooth2 (21)

E3 = Eeyeball + Esmooth3 (22)

The Gauss–Newton method was adopted to solve the nonlinear least-squares 
problem to minimize each objective function.

Network training. We introduced how to train the networks of the three landmark 
detectors (face, eyelid and iris landmark detectors) and the eyelid semantic line 
detector (Supplementary Table 1). The network architecture for the three landmark 
detectors follows HRNet28. For the face detector, we used both the 300W29 and 
WFLW30 to train the network. For the eyelid and iris landmark detectors, we used 
UnityEyes31 to synthesize 20,000 images with groundtruth landmark positions in 
the training. The network architecture for the eyelid semantic line detector follows 
HED32 and we used the data in our previous work18 to train it. After all these 
networks were trained, we further used our own collected 775 patient portraits to 
fine-tune the networks, making the networks better able to handle the data of real 
patients. Specifically, we split 75 patient portraits from the fine-tuning dataset for 
validation and used the remaining 700 portraits for fine-tuning. The characteristics 
of the training dataset are shown in Extended Data Table 6.

Deformation transfer for eyebrow movements. Although the linear eyelid model 
provided sufficient eyelid variations, it included no degrees of freedom for motion 
in the eyebrow region. Reconstructing the eyebrow motions of patients would 
help in diagnosing TAO. To perform such a reconstruction, a deformation transfer 
method was applied, as described below.

We defined two semantic regions on both the face and eyelid models and by 
assuming that the region on the face model influences the corresponding semantic 
region on the eyelid model, the influence of the face vertex on the eyelid vertex 
could be estimated based on the influence weights wi,j:

wi,j = exp
(

−

∥
∥
∥v f

i −vej
∥
∥
∥
2

2
2r2

)

(23)

where v f
i  and vej  represent the ith face vertex and jth eyelid vertex, respectively and 

r is the influence radius. With wi,j, each eyelid vertex vej  can be deformed together 
with the motion of the face vertices as follows:

vej,t = vej,t−1 +
∑

i∈N(j)

wi,j
N

(

v f
i,t − v f

i,t−1

)

(24)

where t and t − 1 represent the time index of the current frame and the previous 
frame, respectively. N (j) is a set of face vertex indices related to vej  and N is the 
number of related vertices. Notice that all the vertices were in the local coordinate 
system, which removes the influence of global rotation R and global translation t.

Definitions of pathological ocular manifestations for the clinical evaluation. 
Ptosis is defined as the upper eyelid falling to a position that is lower than normal 
(typically 1.0–2.0 mm below the superior corneoscleral limbus)33. The palpebral 
fissure distance is often evaluated by guiding the patient’s eye fixation to a distant 
target34. The frontalis muscle, levator palpebrae muscle and orbicular muscle 
are analyzed based on a series of movement guidelines to preliminarily explore 
the cause of ptosis; these movement guidelines include having the patient gaze 
upwards and downwards, maintain an upwards gaze for 1 min and close his or her 
eyes tightly shut35. Additionally, the presence of Brown’s ocular movements and jaw 
motion are all provided to aid in diagnosing ptosis36.

Strabismus is characterized as the eyes not properly aligning with each 
other when looking at an object. The cover test and alternate cover test are 
used in diagnosing strabismus37. Because most people have exotropia but do 
not need treatment, we excluded exotropia when determining the diagnosis of 
strabismus. The test allows wearing glasses, especially in the case of patients with 
accommodative esotropia.

TAO is diagnosed by positive responses of eyelid retraction and at least two of 
the following four sets of findings: chemosis or eyelid edema, lid lag or restrictive 
lagophthalmos38,39.

Nystagmus is characterized as the eyes moving rapidly and uncontrollably; 
this movement can be observed and diagnosed during eye movement recording40. 
Additionally, compensatory head position and median zone are important features 
of nystagmus41.

Statistical analysis. In the sample size estimate of the clinical trial, the power was 
set at 0.9, the significance level was 0.025 and a one-sided test was used. Assuming 
k1 = 0.85 and k0 = 0.6, the probabilities of abnormal findings were 0.3 to 0.7 and 

the sample size for each disease was at least 82 estimated using the irr package in R 
4.1.1 (R Project for Statistical Computing).

Our quantitative evaluation was based on the 2D pixel distance between 
the detected 2D landmarks and projected 2D positions of the 3D points on the 
reconstructed face. To exclude the influence of face size, we evaluated our method 
using the normalized pixel distance rather than the absolute pixel distance.

To acquire the normalized pixel distance, we calculated the absolute pixel 
distance first:

Dabs
i = ∥Li − Π (Vi)∥2 (25)

where Li is the ith 2D landmark and Vi is the ith 3D point.
Then, we calculated the absolute pixel distance between the two eyes:

Deye
=

∥

∥

∥

Cleft
− Cright

∥

∥

∥

2
(26)

where Cleft and Cright are the center positions of the left and right eyes, respectively.
Finally, we normalized the pixel distance between landmarks according to the 

distance between the two eyes, that is,

Dnorm
i =

Dabs
i

Deye (27)

To further validate the reconstruction, the maximum normalized error and 
average normalized error were defined as

MRE = max {Dnorm
1 , Dnorm

2 , …, Dnorm
N } (28)

ARE =

∑N
i=1 D

norm
i

N (29)

Generally, n = 38 for eyeball validation and n = 200 for eyelid validation, but we 
excluded some (landmark, point) pairs when they were occluded, especially in the 
strabismus dataset.

In the clinical validation, the characteristics of the participants were described 
as the frequency (proportion) for categorical variables and the median (IQR) for 
continuous variables due to nonnormal distributions. Cohen’s κ statistics were used 
to evaluate the diagnostic consistency in the relevant diagnostic comparison. Kappa 
was interpreted as recommended by Landis and Koch, where κ ≤ 0.00 is considered 
as poor, 0.00–0.20 as slight, 0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 
as substantial and ≥0.81 almost perfect42. In addition, based on the groundtruth, 
we measured the accuracies of diagnoses from the original videos and diagnoses 
from the reconstructed videos and compared them using the McNemar test. In 
the empirical investigation, principal-component analysis was used to generate 
five factors from the 16 questions in the questionnaire. The Kaiser–Meyer–Olkin 
measure of the sampling adequacy and Cronbach’s α for each component were 
used to evaluate the reliability and validity of each question. Linear regression was 
used to measure the associations between components.

In the AI-powered re-identification validation, we used AUC, TAR@FAR = 0.1, 
TAR@FAR = 0.01 and Rank-1 to evaluate the performance of face-recognition 
systems. The TAR is the proportion of authorized people who the system correctly 
accepts and is defined as

TAR =
TP

TP+FN (30)

The FAR is the proportion that the system incorrectly accepts nonauthorized 
people, defined as

FAR =
FP

FP+TN (31)

By setting different threshold values for similarity scores (given by the face 
recognition systems), we obtain different TARs and FARs, resulting in a ROC 
curve. The AUC measures the 2D area underneath the ROC curve. TAR@FAR = X 
represents the TAR value when FAR equals X. Rank-1 is the probability that the 
similarity score of the same identity ranks first among all the identities.

Data were analyzed using SPSS (v.23.0, IBM Corp), R (v.4.1.1, R Project for 
Statistical Computing), C++ (v.11, Standard C++ Foundation) and Python (v.3.6, 
Python Software Foundation) with a designated significance level of 5%.

Algorithm efficiency. Although considerable engineering effort is still needed to 
build a practical application, our main algorithm can run in real time. In detail, our 
algorithm takes approximately 7 ms, 14 ms and 4 ms per frame for face, eyelid and 
eyeball reconstruction, respectively, on one Intel i7 CPU and one NVIDIA 1080 GPU.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are divided into two groups: shared 
data and restricted data. Shared data are available from the manuscript, references, 
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supplementary data and video. Restricted data relating to individuals in this study 
are subject to a license that allows for use of the data only for analysis. Therefore, 
such data cannot be shared.

Code availability
To promote academic exchanges, under the framework of data and privacy 
security, the code proposed by DM is available at https://github.com/StoryMY/
Digital-Mask. In the case of non-commercial use, researchers can sign the license 
provided in the above link and contact H.L. or F.X. to access the code.
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Extended Data Table 1 | Characteristics of participants in the clinical trial
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Extended Data Table 2 | Primary outcomes of the diagnostic comparison in the clinical trial
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Extended Data Table 3 | Secondary outcomes of the diagnostic comparison in the clinical trial
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Extended Data Table 4 | Prospective evaluation of the hypotheses included in questionnaire in the empirical investigation
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Extended Data Table 5 | Performance of the face recognition systems in AI-powered reidentification validation

Nature Medicine | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


ArticlesNature Medicine

Extended Data Table 6 | Characteristics of the training datasets
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