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BACKGROUND/OBJECTIVES: This study aimed to evaluate a deep learning model for estimating uncorrected refractive error using
posterior segment optical coherence tomography (OCT) images.

METHODS: In this retrospective study, we assigned healthy subjects to development (N = 688 eyes of 344 subjects) and test
(N =248 eyes of 124 subjects) datasets (prospective validation design). We developed and validated OCT-based deep learning
models to estimate refractive error. A regression model based on a pretrained ResNet50 architecture was trained using horizontal
OCT images to predict the spherical equivalent (SE). The performance of the deep learning model for detecting high myopia was
also evaluated. A saliency map was generated using the Grad-CAM technique to visualize the characteristic features.

RESULTS: The developed model showed a low mean absolute error for SE prediction (2.66 D) and a significant Pearson correlation
coefficient of 0.588 (P < 0.001) in the test dataset validation. To detect high myopia, the model yielded an area under the receiver
operating characteristic curve of 0.813 (95% confidence interval [Cl], 0.744-0.881) and an accuracy of 71.4% (95% Cl, 65.3-76.9%).
The inner retinal layers and relatively steepened curvatures were highlighted using a saliency map to detect high myopia.
CONCLUSION: A deep learning algorithm showed that OCT could potentially be used as an imaging modality to estimate refractive
error. This method will facilitate the evaluation of refractive error to prevent clinicians from overlooking the risks associated with

refractive error during OCT assessment.

Eye (2022) 36:1959-1965; https://doi.org/10.1038/s41433-021-01795-5

INTRODUCTION

Refractive error is defined as the state in which light is not
accurately focused on the macula due to the ocular shape. Low
vision due to refractive error is a leading cause of treatable
blindness worldwide [1]. A recent study reported that uncor-
rected refractive error was associated with visual impairment in
about 100 million patients in 2010 [2]. In particular, myopia is
expected to increase exponentially among East Asian popula-
tions with a large socioeconomic burden [3]. Moreover,
refractive error, including both severe myopia and hyperopia,
is associated with an increased risk of several retinal ocular
diseases and glaucoma [4, 5]. High myopia is associated with the
risk of vision-threatening complications such as myopic choroid
neovascularization and chorioretinal atrophy. However, refrac-
tive error may be overlooked in many low-vision cases because
clinicians tend to focus on ocular diseases with pathological
lesions [6].

Optical coherence tomography (OCT) provides structural
information on the posterior pole of the eye with cross-sectional
images. Currently, assessments of the retina and optic disc have
been widely implemented using OCT to detect vision-threatening
diseases such as diabetic retinopathy, age-related macular
degeneration, and glaucoma [7]. Various studies have shown that
retinal structure measured by OCT is closely related to refractive
error. Generally, retinal nerve fiber layer thickness is associated

with refractive error [8]. A previous study reported that the
choroidal thickness measured by OCT was associated with myopic
eyes [9]. OCT provides a diagnostic ability for various pathological
conditions in patients with high myopia, such as retinoschisis,
chorioretinal atrophy, and posterior staphyloma [10]. Because
refractive error can affect the accuracy for diagnosis of several
conditions, such as glaucoma, macular edema, and choroid
neovascularization, it still remains an important factor during
assessment of OCT images [4, 11].

Deep learning has achieved promising classification perfor-
mance in ocular imaging domains [12, 13]. It can also predict
clinical parameters that doctors have not been able to do before
by extracting hidden features of medical images [14]. Automated
interpretation of OCT images with deep learning has improved the
diagnostic performance for detection of retinal diseases [15]. In
addition, deep learning has provided new insight about the
previously unknown relationship between retinal morphology and
physiological variables [14]. In particular, a previous study
conducted by Google revealed that uncorrected refractive error
could be predicted using fundus photographs through deep
learning [16]. A recent study reported that a deep learning
algorithm was able to detect eyes with high myopia with high
accuracy from fundus photographs [17]. However, no studies have
used OCT to directly estimate refractive error by analyzing the
shape of the retina and optic disc.

TB&VIIT Eye Center, Seoul, South Korea. 2Department of Ophthalmology, Aerospace Medical Center, Republic of Korea Air Force, Cheongju, South Korea. 3VISUWORKS, Seoul,

South Korea. ®email: eyetaekeunyoo@gmail.com

Received: 5 May 2021 Revised: 10 September 2021 Accepted: 24 September 2021

Published online: 5 October 2021

SPRINGER NATURE


http://crossmark.crossref.org/dialog/?doi=10.1038/s41433-021-01795-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41433-021-01795-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41433-021-01795-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41433-021-01795-5&domain=pdf
http://orcid.org/0000-0003-0890-8614
http://orcid.org/0000-0003-0890-8614
http://orcid.org/0000-0003-0890-8614
http://orcid.org/0000-0003-0890-8614
http://orcid.org/0000-0003-0890-8614
https://doi.org/10.1038/s41433-021-01795-5
mailto:eyetaekeunyoo@gmail.com
www.nature.com/eye

T.K. Yoo et al.

1960

(A) Datasets

Healthy Korean patients without
refractive surgery

Posterior pole
of the retina

(B) Machine learning technique

oCT

Uncorrected refractive error prediction

N =936 eyes (468 patients) Manifest
refractlon I
Sphencal
! equivalent
Development dataset | | Test dataset (Diopter)
N =688 eyes H N =248 eyes
(344 patients) ! (124 patients)
. 4 Deep learning regression
Sep 2016 1 Oct 2016
i
i
! OCT dataset /
> d .
5-fold cross-validation ‘ Training dataset V’”” ‘ Regression H > ‘ Final prediction “
: ML model training and |
selection Refractive error
— ]
—
Internal validation . o = "
(validated prospectively) Convolutional neural networks (Pre-trained ) + fully layers

Fig. 1

Workflow for data assignment and deep learning model development for refractive error prediction. A Data management for

training models and validation. B Schematic of the deep learning algorithm to predict refractive error.

To this end, we analyzed retinal OCT images from healthy
subjects without refractive surgery. We aimed to use a deep
learning-based regression technique to develop a novel prediction
model for estimating the uncorrected refraction error using OCT
images. In addition, we aimed to identify OCT imaging features
that contributed to the estimation of refractive error using an
explainable technique.

MATERIALS AND METHODS

Dataset

This retrospective study protocol was approved by the Institutional Review
Board of Korean National Institute for Bioethics Policy (P01-202104-21-010),
which waived the requirement for informed consent. This study adhered to
the tenets of the Declaration of Helsinki. In the current study, we analyzed
the preoperative ocular data of healthy patients who intended to undergo
refractive surgery at the B&VIIT Eye Center from January 2016 to December
2016. We retrospectively collected preoperative refractive error and OCT
measurements that were used to develop a machine learning model to
exclude patients who underwent refractive surgery. All patients underwent
preoperative measurements of best-corrected distance visual acuity and
manifest refraction, slit-lamp examinations of the anterior segment, and
dilated fundus examinations. Subjects with a history of ocular surgery,
corneal diseases, cataract, glaucoma, uveitis, and retinal diseases were
excluded from the study. Subjects with missing data (refractive error or
OCT images) or low-quality OCT images were also excluded. The inclusion
criteria at the B&VIIT Eye Center were as follows: age between 21 and 50
years, stable refraction, +5.00 to —20.00 diopters of hyperopia or myopia
with astigmatism of 5.00 D or less, and examination of retina and optic disc
using three-dimensional OCT (Topcon 3D OCT-1 Maestro, Tokyo, Japan).
We captured retinal cross-sections passing through the center of the retina
(fovea) along the horizontal and longitudinal axes during OCT
examination.

Finally, this study comprised 936 eyes of 468 healthy subjects with no
history of refractive surgery. For the prospective validation design [18], we
assigned the subjects who visited before September 2016 (73.5%, N = 688
eyes of 344 subjects) to the training dataset, and those after October 2016
(26.5%, N = 248 eyes of 124 subjects) were used for the internal validation
dataset. In the training process, we performed fivefold cross-validation, the
preferred technique for assessing performance and optimizing prediction
models.

Definition of refractive error

The refractive error was measured by expert optometrists during manifest
refraction without cycloplegia. The target metric for refractive error is the
spherical equivalent (SE), which is defined as the average spherical power
considering both the spherical refractive power and astigmatism. The SE is
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calculated by adding the sum of the spherical refractive power to half of
the cylinder power. Specifically, we defined high myopia as an SE of
—6.00D or worse and moderate myopia as an SE between —6.00 and
—3.00D.

Algorithm

The overall dataset and the algorithm development processes are
illustrated in Fig. 1. For the refractive error prediction model, the OCT
images were analyzed using a deep learning architecture. In the model
development, SE was the main outcome as a continuous variable, and the
model inputs comprised OCT images. In this study, the deep learning
model consists of two parts: a convolutional neural network feature
extractor and a fully connected layer. Pretrained deep learning architec-
tures, including ResNet50, InceptionV3, and VGG16, were adopted as
feature extractors. These neural network architectures were pretrained on
the ImageNet database and imported into MATLAB R2020b (MathWorks
Inc., Natick, MA, USA) platform. These architectures have been extensively
and successfully used in previous studies involving ophthalmic disease
detection using OCT, implying state-of-the-art performance [19, 20]. The
input images were resized into the original input tensor of each deep
learning architecture. A fully connected layer was used to concatenate the
feature information from deep learning architectures for SE prediction. For
this regression, a linear activation function was used in the fully connected
layer [21]. In this study, we focused on ResNet50, which reformulated the
layers as learning residual functions with reference to the layer inputs
using skip connection, instead of learning unreferenced functions [22].
During the training, to prevent overfitting, data augmentation was
performed using linear transformation, including left and right flip, width,
and height translation from —5 to +5%, random rotation from —30° to 30°,
zooming from 0 to 10%, and random brightness change from —10 to 10%.
The loss function consisted of the mean square error between the
regression output and reference SE because it showed a more stable
performance during training than other metrics. The training iterations
were tuned for each deep learning model to avoid overfitting. The model
was optimized with Adam with a batch size of 20 and a base learning rate
of 0.00001 for transfer learning of the model. Because there are
fundamental differences, such as the presence or absence of the optic
disc, we built deep learning models for horizontal and longitudinal OCT
domains, respectively. A saliency map was generated using the Grad-CAM
technique to visualize the characteristic features of high myopia and
controls for interpretability.

Statistical analysis

To evaluate the prediction performance of deep learning models, we
used metrics of the mean absolute error (MAE), median absolute
prediction error (MedAE), and Pearson correlation coefficient, of SE
values in fivefold cross-validation and test dataset validation. Compar-
ison of MAE between the models was performed using a paired t-test. To
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Table 1. Characteristics of the subjects for development and test validation datasets.
Total Development set Test set P value*

Number of subjects 468 344 124
Number of eyes 936 688 248
Age at visit (years) 29.01 +£5.81 28.82+5.87 29.54 +£5.59 0.177
Gender, number of subjects (%, female) 302 (64.5) 225 (65.4) 77 (62.1) 0.925
Mean SE (D) —5.72+287 —5.77 +£2.84 —5.55+3.00 0.409
Refractive error classification (number of eyes) 0.753

High myopia (%, SE< —6 D) 376 (40.2) 282 (41.0) 94 (37.9)

Moderate myopia (%, —6 D <SE< —3D) 408 (43.6) 299 (43.5) 109 (44.0)

Mild myopia or emmetropia (%, —3 D <SE<0D) 145 (15.5) 102 (14.8) 43 (17.3)

Hyperopia (%, SE >0 D) 7 (0.7) 5(0.7) 2 (0.8)

OCT optical coherence tomography, SE spherical equivalent.

*Comparison between the development and test sets using t-test and x° test.

Table 2.
validation datasets.

Performance of deep learning models for estimating uncorrected refractive error in development (fivefold cross-validation) and test

MAE £SD (D) MedAE (D) Pearson correlation coefficient P value for correlation P value for MAE comparison
Fivefold cross-validation (688 eyes)
Horizontal axis
ResNet50 242+1.74 2.15 0.636 <0.001 Reference
InceptionV3 247175 2.16 0.633 <0.001 0.090
VGG16 249+ 1.75 2.19 0.629 <0.001 0.119
Longitudinal axis
ResNet50 251+1.76 2.26 0.625 <0.001 0.008
InceptionV3 253+1.76 2.27 0.617 <0.001 0.005
VGG16 2.53+1.76 227 0.610 <0.001 0.005
Test set validation (248 eyes)
Horizontal axis
ResNet50 2.66 + 1.88 232 0.588 <0.001 Reference
InceptionV3 2.68+1.89 2.34 0.585 <0.001 0.333
VGG16 271191 2.40 0.583 <0.001 0.121
Longitudinal axis
ResNet50 2.75+1.89 233 0.576 <0.001 0.043
InceptionV3 2.76 +1.89 234 0.568 <0.001 0.021
VGG16 2.79+1.90 237 0.562 <0.001 0.004

MAE mean absolute prediction error, MedAE median absolute prediction error, SD standard deviation.

detect moderate myopia and worse (SE<—3.00D) and high myopia
(SE< —6.00D), we calculated the area under the receiver operating
characteristic curve (ROC-AUQ). Youden's index, which is a widely used
estimate of the optimal threshold giving equal weight to sensitivity and
specificity, was adopted in this study.

RESULTS

The characteristics of the subjects and images in the development
dataset (N =688 eyes of 344 subjects) and test dataset (N =248
eyes of 124 subjects) are summarized in Table 1. The subjects had
a mean age of 29.01 years and a mean SE of —5.72 D in the total
dataset. There was 41.0% and 37.9% high myopia among the
development and test datasets, respectively. Eyes with hyperopia
were very rare, with 0.7% and 0.8% among the development and
test datasets, respectively. The distribution of the two datasets
showed no significant differences in age, sex, or refractive error.

Eye (2022) 36:1959 - 1965

The SE estimation performances of the deep learning models
are presented in Table 2. The ResNet50 model with a horizontal
axis showed the best performance with a MAE of 242D and a
MedAE of 2.15 D, in the fivefold cross-validation. Similarly, it also
showed the lowest error with a MAE of 2.66 D and a MedAE of
232D in the test validation dataset. The ResNet50 with the
horizontal axis showed significantly better prediction performance
than that with the longitudinal axis in both the fivefold cross-
validation (P=0.008) and test validation (P =0.043). The differ-
ence between deep learning architectures in MAE was not
statistically significant in the horizontal axis domain (P> 0.05, for
all comparisons).

Figure 2A, B shows the distribution of the actual versus
predicted SE values using ResNet50 as a backbone architecture.
The Pearson correlation coefficient between the actual SE and
predicted SE was 0.636 (P<0.001) using fivefold cross-
validation. The test dataset validation showed a Pearson
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Fig. 2 Performance of the developed ResNet50 model with horizontal OCT images via fivefold cross-validation and test dataset
validation. Distribution of the predicted spherical equivalent against the actual spherical equivalent A in the fivefold cross-validation and B in
the test dataset validation. Distribution of the error to show the accuracy of the predicted spherical equivalent to the actual spherical
equivalent C in the fivefold cross-validation and D in the test dataset validation.

correlation coefficient of 0.588 (P < 0.001). Figure 2C, D shows
the percentage of eyes within a given range of SE prediction
errors. When we used the ResNet50 model with the horizontal
axis, which showed the lowest error to predict SE, 24% of the
eyes were within the error range of +1.00D and 63% were
within the error range of £3.00 D in the fivefold cross-validation.
The test dataset validation showed that 22% of the eyes were
within the error range of £1.00 D and 66% were within the error
range of £3.00D.

In our test dataset, we attempted to detect moderate myopia
and worse (SE < —3.00D) and high myopia (SE < —6.00 D) using
the developed models. Precision-recall curves and ROC curves are
shown in Fig. 3A, B. The ResNet50 model with the horizontal axis
worked with the highest ROC-AUC of 0.789 (95% confidence
interval [95% ClI], 0.689-0.888) to detect moderate myopia and
worse. Based on the Youden index, the ResNet50 model showed a
classification performance with an accuracy of 79.8% (95% Cl,
74.3-84.7%), sensitivity of 823% (95% Cl, 76.3-87.3%), and
specificity of 68.9% (95% Cl, 53.4-81.8%). Similar findings have
been observed in the prediction of high myopia. The ResNet50
model gave a ROC-AUC of 0.813 (95% Cl, 0.744-0.881), accuracy of
714% (95% Cl, 653-76.9%), sensitivity of 87.2% (95% (|,
78.8-93.2%), and specificity of 61.7% (95% Cl, 53.5-69.4%).
Figure 3C shows examples of the results from the developed
ResNet50 model predicting the uncorrected refractive error with a
saliency map. The inner retinal layers and relatively steepened
curvatures were highlighted by the saliency map to detect high
myopia based on the Grad-CAM technique. Grad-CAM frequently
highlighted the fovea and optic nerve when the model detected
eyes without high myopia.
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DISCUSSION

In this study, we applied a deep learning technique to estimate
the uncorrected refractive error using OCT images containing the
retina and optic disc. Our work shows that morphological factors
of OCT images contribute to the detection of eyes with refractive
errors, and artificial intelligence has the potential to accurately
estimate uncorrected refractive error. This prediction using OCT
has not been carried out by ophthalmologists before, indicating
the development of novel medical artificial intelligence to aid in
their diagnosis. To the best of our knowledge, this is the first
automated model for estimating refractive error in posterior
segment OCT images. Several previous studies have developed
the deep learning models using OCT to predict degenerative
conditions in patients with myopia [23, 24]. However, it is also
important for patients with myopia to determine the risk of
development before degenerative changes occur. In the future,
our algorithm will be very useful to detect patients with refractive
error if OCT is used as an eye disease screening device for general
populations.

We observed that the output result from Grad-CAM highlighted
visualizations of the characteristic OCT features of myopic eyes to
predict eyes with high myopia. Our results are explicable based on
previous literature studying OCT [10]. There were regional changes
in retinal thickness within the macular region, thickness variations
that correlated with axial length [25]. The thickness of the retinal
nerve fiber layer is negatively associated with axial length [8].
Because axial length critically affects refractive error of the eyes,
OCT of the macular region can provide clues to estimate refractive
error. The steepened curve of the posterior pole may be a sign of
thin sclera and long axial length of the eye [10]. Optic disc
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the developed deep learning (ResNet50) results predicting the uncorrected refractive error with a saliency map using the Grad-CAM

technique.

changes due to stretching of the scleral canal and lamina cribrosa
are also frequent in eyes with high myopia [26].

In the current analysis, the accuracy of the deep learning
algorithm for refractive error estimation using OCT (MAE = 2.66 D
for validation) is lower than that using fundus photography (0.56 D
for UK biobank and 091D for AREDS datasets), which was
reported by the Google team [16]. A previous study conducted in
Singapore showed that the ROC-AUC for high myopia detection
using fundus photographs was 0.978, which was higher than our
result using OCT (AUC=0.813) [17]. This may be because the
fundus photograph contains distorted images with a relatively
wide retinal area and vessel arcades, while the OCT provides only
information from a narrow area that is relatively undistorted. The
distorted retinal image may provide information about the
curvature of the cornea and lens of the anterior segment. A small
amount of training data in this study might also affect training,
resulting in a lower accuracy of refractive error estimation.

Until now, deep learning researchers using OCT have focused
on developing models for diagnosing specific ocular diseases,
such as age-related macular degeneration, macular hole, and
central serous chorioretinopathy [19, 20]. Recently, studies have
been widely conducted to extract hidden clinical information as
well as ocular pathological information from fundus photography
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using artificial intelligence [27]. One previous study predicted that
artificial intelligence, which is able to diagnose dementia using
OCT, will emerge soon using a large neuroimaging and OCT
database [28]. We also focused on finding signs in OCT images
that we have not seen before. In this study, we observed that OCT
images alone provided previously elusive information for refrac-
tive error prediction by analyzing the cross-sectional shape of the
retina and optic disc.

In recent decades, OCT has become the standard imaging tool
for examination of structural information of the retina and optic
disc [29]. We believe that this method will expand the utility of
OCT imaging for more accurate diagnosis. For example, using our
method, it is possible to estimate the severity of preoperative
refractive error in patients who have undergone refractive or
cataract surgery. Since the risk associated with high myopia
remains after refractive surgery, our method is very useful in
estimating such risk in screening ocular diseases using OCT.
Preoperative refractive error can also provide a more accurate
diagnosis of glaucoma and macular edema in patients with
refractive surgery because myopic eyes have thinner baseline
retinal and nerve fiber layer thickness [10].

A strength of this study was the use of uncorrected refractive
error for deep learning algorithm development from posterior
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segment OCT. However, this study had several limitations. First,
the datasets consisted of an East Asian population from a single
center. A previous study showed that structural retinal parameters
measured by OCT varied by ethnicity [30]. Therefore, it is not
confirmed whether our method can be used in other ethnic
groups. Second, the developed model was not validated using an
independent external dataset. There are many factors that can
affect OCT images, such as product specifications, software, and
inspector skill. Their impact can be evaluated when the algorithm
is verified on a variety of external datasets. Third, the distribution
of SE in the datasets was biased toward myopia. Because there
were very few subjects with hyperopia, we aimed to build a model
to predict moderate or high myopia. Therefore, the developed
deep learning model could not be fully validated in emmetropic
and hyperopic eyes. Fourth, our study did not analyze axial length,
which is highly associated with retinal thickness and refractive
error [26]. Ocular biometry data were excluded from the analysis
because they were not fully digitalized at the time of the study in
the B&VIIT Eye Center. Based on the current findings, axial length
is also presumed to be related to the cross-sectional shape of the
retina, which should be addressed in future studies.

In summary, we developed a deep learning model to estimate
the uncorrected refractive error from posterior segment OCT
images. A deep learning algorithm shows that OCT could
potentially be used as an imaging modality to estimate refractive
error. This method will facilitate the evaluation of refractive error
to prevent clinicians from overlooking the risks associated with
refractive error during OCT assessment. We hope that the
developed artificial intelligence will contribute to reducing the
global burden of refractive error.

Summary
What was known before

® Retinal structure measured by OCT is closely related to
refractive error. OCT provides a diagnostic ability for various
pathological conditions in patients with high myopia.

What this study adds

® A deep learning technique can directly estimate the
uncorrected refractive error using posterior segment OCT.
This method will facilitate the evaluation of refractive error to
prevent clinicians from overlooking the risks associated with
refractive error.
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