Table 2.
Dataset | Split strategy | MCC [−1, 1] (m ± std) | AUC [0,1] (m ± std) | F1-score [0,1] (m ± std) | Accuracy [0,1] (m ± std) | Precision [0,1] (m ± std) | Recall [0,1] (m ± std) |
---|---|---|---|---|---|---|---|
AIIMS14 | per-image | 0.958 ± 0.038 | 1.000 ± 0.000 | 0.978 ± 0.021 | 0.978 ± 0.021 | 1.000 ± 0.000 | 0.978 ± 0.021 |
per-volume/subject | 0.881 ± 0.102 | 0.996 ± 0.009 | 0.934 ± 0.063 | 0.935 ± 0.060 | 0.993 ± 0.014 | 0.935 ± 0.060 | |
Srinivasan16 | per-image | 0.853 ± 0.039 | 0.985 ± 0.005 | 0.898 ± 0.030 | 0.899 ± 0.029 | 0.973 ± 0.009 | 0.899 ± 0.029 |
per-volume/subject | 0.426 ± 0.116 | 0.817 ± 0.055 | 0.593 ± 0.088 | 0.603 ± 0.078 | 0.702 ± 0.078 | 0.603 ± 0.078 | |
Kermany15 version 2 | original_v2 | 0.886 | 0.993 | 0.909 | 0.911 | 0.983 | 0.911 |
per-image | 0.707 ± 0.021 | 0.953 ± 0.003 | 0.764 ± 0.022 | 0.770 ± 0.019 | 0.886 ± 0.007 | 0.770 ± 0.019 | |
per-volume/subject | 0.588 ± 0.025 | 0.890 ± 0.006 | 0.644 ± 0.033 | 0.669 ± 0.023 | 0.769 ± 0.012 | 0.669 ± 0.023 | |
Kermany15 version 3 | original_v3 | 0.644 | 0.964 | 0.678 | 0.704 | 0.916 | 0.704 |
per-image | 0.673 ± 0.021 | 0.950 ± 0.003 | 0.729 ± 0.022 | 0.738 ± 0.019 | 0.886 ± 0.007 | 0.738 ± 0.019 | |
per-volume/subject | 0.600 ± 0.021 | 0.911 ± 0.006 | 0.651 ± 0.028 | 0.671 ± 0.021 | 0.795 ± 0.012 | 0.671 ± 0.021 |
Performance metrics are reported as mean ± standard deviation (m ± std) over the models trained through ten-times repeated five-fold cross validation and classes, for the per-image and per-volume/subject splits. For the original splits given by Kermany, results are reported for the single given split. AUC: area under the receiver operating characteristic curve, MCC: Matthews Correlation Coefficient.