Skip to main content
. 2022 Sep 22;9:580. doi: 10.1038/s41597-022-01618-6

Table 2.

LightOCT model performance on the AIIMS14, Srinivasan’s16 and Kermany’s15 datasets with training, validation and testing sets split using different strategies.

Dataset Split strategy MCC [−1, 1] (m ± std) AUC [0,1] (m ± std) F1-score [0,1] (m ± std) Accuracy [0,1] (m ± std) Precision [0,1] (m ± std) Recall [0,1] (m ± std)
AIIMS14 per-image 0.958 ± 0.038 1.000 ± 0.000 0.978 ± 0.021 0.978 ± 0.021 1.000 ± 0.000 0.978 ± 0.021
per-volume/subject 0.881 ± 0.102 0.996 ± 0.009 0.934 ± 0.063 0.935 ± 0.060 0.993 ± 0.014 0.935 ± 0.060
Srinivasan16 per-image 0.853 ± 0.039 0.985 ± 0.005 0.898 ± 0.030 0.899 ± 0.029 0.973 ± 0.009 0.899 ± 0.029
per-volume/subject 0.426 ± 0.116 0.817 ± 0.055 0.593 ± 0.088 0.603 ± 0.078 0.702 ± 0.078 0.603 ± 0.078
Kermany15 version 2 original_v2 0.886 0.993 0.909 0.911 0.983 0.911
per-image 0.707 ± 0.021 0.953 ± 0.003 0.764 ± 0.022 0.770 ± 0.019 0.886 ± 0.007 0.770 ± 0.019
per-volume/subject 0.588 ± 0.025 0.890 ± 0.006 0.644 ± 0.033 0.669 ± 0.023 0.769 ± 0.012 0.669 ± 0.023
Kermany15 version 3 original_v3 0.644 0.964 0.678 0.704 0.916 0.704
per-image 0.673 ± 0.021 0.950 ± 0.003 0.729 ± 0.022 0.738 ± 0.019 0.886 ± 0.007 0.738 ± 0.019
per-volume/subject 0.600 ± 0.021 0.911 ± 0.006 0.651 ± 0.028 0.671 ± 0.021 0.795 ± 0.012 0.671 ± 0.021

Performance metrics are reported as mean ± standard deviation (m ± std) over the models trained through ten-times repeated five-fold cross validation and classes, for the per-image and per-volume/subject splits. For the original splits given by Kermany, results are reported for the single given split. AUC: area under the receiver operating characteristic curve, MCC: Matthews Correlation Coefficient.