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High-throughput mutagenesis identifies mutations
and RNA-binding proteins controlling CD19 splicing
and CART-19 therapy resistance
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Following CART-19 immunotherapy for B-cell acute lymphoblastic leukaemia (B-ALL), many
patients relapse due to loss of the cognate CD19 epitope. Since epitope loss can be caused by
aberrant CDT19 exon 2 processing, we herein investigate the regulatory code that controls
CD19 splicing. We combine high-throughput mutagenesis with mathematical modelling to
quantitatively disentangle the effects of all mutations in the region comprising CD19 exons
1-3. Thereupon, we identify ~200 single point mutations that alter CD19 splicing and thus
could predispose B-ALL patients to developing CART-19 resistance. Furthermore, we report
almost 100 previously unknown splice isoforms that emerge from cryptic splice sites and
likely encode non-functional CD19 proteins. We further identify cis-regulatory elements and
trans-acting RNA-binding proteins that control CD19 splicing (e.g., PTBP1 and SF3B4) and
validate that loss of these factors leads to pervasive CD19 mis-splicing. Our dataset repre-
sents a comprehensive resource for identifying predictive biomarkers for CART-19 therapy.
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ARTICLE

-cell acute lymphoblastic leukemia (B-ALL) is a haemato-

logic malignancy that causes a significant number of

childhood and adult cancer deaths. During CART-19
immunotherapy, chimeric antigen receptor-armed autologous
T-cells (CARTs) are engineered to target the surface antigen
CD19 on B cells by linking the single-chain variable fragment
(scFv) of an anti-CD19 antibody to the intracellular signalling
domain of the T-cell receptor!. Upon CD19 recognition, the
chimeric antigen receptors activate the cytotoxic T-cells to attack
the tumour cells. CART-19 therapy was recently approved for the
treatment of paediatric B-ALL in the US and Europe, achieving
initial remission rates up to 90%2. This indicates that B-ALL cells
at initial screening are typically CD19-positive. Unfortunately, up
to 50% of children relapse under CART-19 therapy, and response
rates are even worse in adults®*. Several studies reported that in
40-60% of relapse cases, the cancerous B cells become invisible to
the CARTSs because they lose expression of the CD19 epitope
(CD19-negative)>-8. This recurrently involves alternative splicing
of the CD19 pre-mRNA%-11,

Splicing involves the excision of introns and the joining of
exons by the spliceosome to generate mature mRNAs. In alter-
native splicing, certain exons can be either included or excluded
(“skipped”), resulting in different transcript isoforms. The spli-
cing outcome at each exon is controlled by a large set of cis-
regulatory elements in the RNA sequence which are recognised
by trans-acting RNA-binding proteins (RBPs) that guide the
spliceosome activity. It is increasingly recognised that widespread
alterations in splicing are a molecular hallmark of cancer and
often contribute to therapeutic resistance (reviewed in ref. 12). For
instance, intron retention, ie., the failure to remove certain
introns, often disrupts the open reading frame (ORF) with pre-
mature termination codons (PTCs) and thereby compromises the
expression of the encoded proteins. Consistent with the wide-
spread splicing changes, cancer-causing driver mutations fre-
quently occur in splice-regulatory cis-elements, and many splicing
factors have oncogenic properties, being commonly mutated or
dysregulated in cancer!?-14,

Multiple alternative splicing events in CD19 mRNA have been
described to interfere with CART-19 therapy®!b1>-18, Most
prominently, skipping of exon 2 results in a truncated CD19
protein which is no longer presented on the cell surface and hence
fails to trigger CART-19-mediated killing>!°. In addition, it was
reported that relapsed patients showed retention of intron 2
which introduces a PTC, thereby disrupting CD19 expression!l.
Similarly, simultaneous skipping of exons 5 and 6 introduces a
PTC?. The splicing alterations can be caused by mutations within
the CDI19 gene or by changes in the expression of trans-acting
RBPs. For instance, it has been shown that the known splicing
regulator SRSF3 binds to cis-regulatory elements within CDI19
exon 2 to promote its inclusion’. Of note, alternative CDI9 iso-
forms showing exon 2 skipping were observed to pre-exist in
patients prior to CART-19 therapy!®, suggesting that CDI9
splicing patterns may harbour predictive information and could
be modulated to re-establish sensitivity to CART-19-mediated
killing. However, Orlando and co-workers suggested that alter-
native splicing changes in B-ALL patients are present in diag-
nostic samples already (albeit at low frequencies) and may not
contribute meaningfully to CD19 epitope loss®. We, therefore, set
out to investigate CDI9 alternative splicing and its molecular
determinants in B-ALL in more detail.

High-throughput mutagenesis screens combined with next-
generation sequencing provide comprehensive insights into the
regulatory code of splicing!?-22. The interpretation of such data is
challenging, as the mutation effects often depend on other
mutations and are typically most pronounced at intermediate
exon inclusion levels!®20:23, We and others have shown by

mathematical modelling that kinetic models account for the
context-dependence of mutation effects on splice isoforms!®20.
By utilising these models, systems-level insights can be gained
into complex cis-regulatory landscapes, effects of trams-acting
RBPs, and principles of splicing regulation!9-20:24,

In this work, we combine B-ALL patient data with high-
throughput mutagenesis, mathematical modelling and RBP
knockdowns to comprehensively characterise cis-regulatory
mutations and trans-acting RBPs controlling CDI9 exon 2 spli-
cing. Unlike previous mutagenesis screens, we determine all
intronic and exonic mutation effects in a 1.2kb region and
quantify the abundance of 100 alternative isoforms, including
intron 2 retention and alternative 3'/5’ splice site usage. Many of
these isoforms encode for a non-functional CD19 protein and are
therefore likely to impair CART-19 therapy. By in silico analyses
and RBP knockdowns, we identify trans-regulators of CDI9
splicing that promote the production of the therapy-impacting
isoforms. Taken together, our dataset allows for a systems-level
understanding of the splicing code and provides a comprehensive
resource of predictive markers for CART-19 therapy resistance.

Results

CART-19 patients show increased CDI9 intron 2 retention
after relapse. To resolve the contribution of CDI9 splicing in
CART-19 therapy, we re-analysed RNA-seq data from Orlando
and co-workers®, in which B-ALL cells of 17 patients were
sequenced at initial screening and after relapse. In contrast to the
original study, we expanded the analyses to intron retention
events surrounding CDI9 exon 2. We found that the average
frequency of intron 2 retention across patients is unexpectedly
high (63%) before therapy and significantly increases to 82% after
relapse (P value = 0.009, Wilcoxon signed-rank test; Fig. la, b).
The trend towards higher intron 2 retention in the therapy-
resistant tumours is preserved in seven out of nine individual
patients that were sequenced both before therapy and after
relapse (Fig. 1b). Since the resulting isoform does not encode a
functional CD19 protein, this suggests that increased intron 2
retention contributes to CART-19 therapy resistance, as reported
in a recent study!l.

Given the high prevalence of intron 2 retention even before
CART-19 therapy, we extended our analysis to 220 B-ALL
patients from the Therapeutically Applicable Research To
Generate Effective Treatments (TARGET) programme. Although
these patients had not been treated with CART-19, intron 2
retention appears as the predominant isoform in almost all of
them (Fig. 1c, Supplementary Fig. 1a, b). This suggests that the
cancer cells generally exhibit CDI9 mis-splicing. Interestingly,
strong intron 2 retention is also observed in immature B-cell
precursors from healthy donors, whereas it is negligible in mature
B cells (Fig. 1d). Therefore, incomplete B-cell differentiation in
B-ALL may be accompanied by CDI9 mis-splicing which is
further aggravated during CART-19 therapy.

Somatic mutations in relapsed patients cause splicing altera-
tions. To learn about the genetic causes of the splicing alterations
during relapse, we took a closer look at the mutations accumu-
lating in the B-ALL patients of the Orlando study®. The majority
of relapsed patients (12 out of 17) harbour somatic mutations
within the CDI19 gene, including frameshift insertions, deletions
and single nucleotide missense variants. We selected nine muta-
tions in exons 2 or 3 from eight patients for further analysis
(Supplementary Table 1). To test for effects on splicing, we
constructed a minigene reporter that harbours CDI9 exon 1-3
including the two intervening introns 1 and 2 (Fig. le). We
confirmed that the minigene gives rise to the same transcript
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Fig. 1 Mutations from B-ALL patients cause CD19 mis-splicing. a Patient #4 shows increased CD19 intron 2 retention after CART-19 therapy relapse. Re-
analysed RNA-seq data from Orlando et al.>. Selected isoforms (GENCODE) are shown. b Intron 2 retention increases in B-ALL patients after CART-19
therapy relapse. Intron 2 retention frequency (as % of all isoforms) is shown for nine patients with matched RNA-seq data at screening and after relapse. P
value = 0.009, one-sided paired Wilcoxon signed-rank test. Grey lines connect matched samples. Boxes represent quartiles, centre lines denote 50th
percentile, and whiskers extend to most extreme values within 1.5% interquartile range (IQR). ¢, d Intron2-retention is the predominant isoform in B-ALL
patients and pre B cells. Stacked bar chart shows relative usage (percent selected index, PSI; left y axis) of junctions originating from exon 3
(Supplementary Fig. 1a) in 220 patients from the TARGET B-ALL programme (c) and normal B cells#4 75> (n=21) (d). Black dots in d indicate total
CD79 mRNA expression, in transcripts per million (TPM; right y axis). Cell lines NALM-6 and K562 are shown for comparison. e The CD19 minigene spans
exons 1-3 and the intervening introns from the CD19 gene. f, g The minigene generates the same isoforms as the endogenous CD19 gene in NALM-6 cells.
Gel-like representation (f) and quantification (g) of semiquantitative RT-PCR showing isoforms intron2-retention (blue), inclusion (grey) and skipping
(turquoise) for the WT minigene in NALM-6 cells. Isoforms of CD19 gene in NALM-6 cells are shown for comparison. Asterisk indicates a previously
reported RT-PCR artefact®® (see Methods). Error bars indicate standard deviation of mean (s.d.m.), n = 3 replicates. P value > 0.1 for all isoforms, one-way
ANOVA. h, i Patient mutations cause splicing changes in the CD19 minigene. Top: Location of the tested mutations. Patient IDs as reported in Orlando
et al.>. 14.1 and 14.2 correspond to distinct mutations from patient #14. Gel-like representation (h) and quantification (i) of semiquantitative RT-PCR as in
f, g. Additional isoform alt-exon2 (purple) includes a truncated version of exon 2. Error bars indicate s.d.m., n =3 replicates. *P value < 0.05, **P
value < 0.01, ***P value < 0.001, two-sided Student's t test. Source data including P values are provided as a Source Data file.
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Fig. 2 High-throughput mutagenesis identifies splicing-affecting mutations and cryptic isoforms in the CD19 minigene. a High-throughput detection of
splicing-affecting mutations and cryptic isoforms. Mutagenic PCR creates mutated minigene variants (top) that upon transfection into NALM-6 cells give
rise to alternatively spliced transcripts (bottom). Mutations (stars) and corresponding splicing products are characterised by DNA and RNA sequencing,
respectively, and linked by a unique 15-nt barcode sequence in each minigene (coloured boxes). Black and grey boxes depict constitutive and alternative
exons, respectively. b A large number of CD19 splice isoforms arise in the minigene library. CD19 splice isoforms with the highest maximal isoform
frequency across all 9321 minigene variants. Schematic representation (left) of 5 major and 18 cryptic isoforms depicts exons 1-3 (boxes) and introns
(horizontal lines) with splice junctions for each isoform (arches). Colour indicates coding potential (blue, coding; orange, non-coding). In-frame stop
codons are indicated by red lines. Bar graph (right) shows average and maximal isoform frequency across all minigenes. Cryptic isoforms are sorted by
maximal isoform frequency (Supplementary Data 2). ¢ Inclusion isoform dominates in WT minigenes, whereas mutated variants show broad spread in all
major isoforms. Frequencies of five major isoforms in replicate 1 for all wild type (black; n =195) and mutated (grey; n = 9476) minigenes in the library.
Minigene variants harbouring a mutation in the 3’ splice site of exon 2 (n =174) are highlighted in blue. “"Other” refers to the sum of 96 cryptic isoforms.

isoforms with quantitatively similar frequencies as the endogen-
ous gene in the human B-ALL cell line NALM-6 (Fig. 1f, g,
Supplementary Fig. 1c).

When introducing the patient mutations into our minigene
reporter, we found that six out of nine tested mutations lead to
the production of alternative CDI19 isoforms linked to CART-19
therapy resistance (Fig. 1h, i, Supplementary Fig. 1d): The
mutation from patient #2 induces exon 2 skipping, while
mutations from patients #4 and #14 (#14.2) cause intron 2
retention. The latter mirrors the increase of this isoform in the
same patients after CART-19 therapy relapse (Fig. 1b). In
addition, three mutations enhance the production of an
additional isoform that uses an alternative 3’ splice site in exon
2 (termed alt-exon2; mutations from patients #5, #14.1 and #15).
We note that as reported by Orlando and co-workers®, most of
the patient mutations also introduce frameshifts and therefore
perturb CD19 protein expression by disrupting the open reading
frame. Interestingly, splicing effects and frameshifts potentially
interact in a non-intuitive way: For instance, the deletion in
patient #5 causes a frameshift, but at the same time activates an
alternative 3’ splice site (alt-exon2) which restores the open
reading frame (Supplementary Fig. le). Thus, taking splicing
information into account is essential to understand whether a
targetable CD19 protein is generated in a patient harbouring
CD19 mutations.

High-throughput screening of alternative splicing of CDI9
exons 1-3. To systematically study the effects of point mutations
on CDI9 exons 1-3 splicing, we adopted our previously devel-
oped massively parallel splicing reporter assay!® (Fig. 2a). To this
end, we randomly introduced point mutations as well as short

insertions and deletions into the CDI9 minigene reporter by
error-prone PCR. This yielded a pool of 10,295 minigene variants,
each with a different set of mutations and tagged with a unique
15-nt barcode sequence. As an internal control, 194 wild type
(WT) minigenes with distinct barcodes were added. Mutations in
all minigene variants were mapped using targeted long-read DNA
sequencing (DNA-seq, PacBio SMRT-seq, Supplementary Fig. 2a,
b) and validated for 30 minigene clones via Sanger sequencing.
The DNA-seq data shows that the minigene variants contain on
average 9.7 mutations (Supplementary Fig. 2c). This allows for a
comprehensive characterisation of the mutation landscape, as
each position is on average mutated in 80 different minigene
variants and 90% of the mutations are present in at least four
distinct minigene variants (Supplementary Fig. 2d, e). To measure
splicing outcomes, the minigene pool was transfected into
NALM-6 cells and the resulting transcripts were quantified by
targeted RNA sequencing (RNA-seq) using 350 nt + 250 nt
paired-end reads (Illumina MiSeq, Supplementary Figs. 2a, 3a).
We detected around 100 different splice isoforms (see below)
which were unambiguously identified by paired-end sequencing.
Two replicate experiments showed a high correlation in the
measured isoform frequencies (R between 0.91 and 0.98 for the
different isoforms, Supplementary Fig. 3b). Based on the common
barcode sequence, information from DNA and RNA sequencing
could be combined, linking mutations at the DNA level to fre-
quencies of RNA splice isoforms for a total of 10,295 minigenes in
two replicate experiments (Supplementary Data 1).

Therapy-impacting isoforms accumulate in response to
numerous point mutations. To our surprise, the screen revealed
a high complexity of CDI9 exon 1-3 splicing, with a total of 101
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alternative isoforms occurring with a frequency of >5% of all
transcripts in at least two minigene variants (Supplementary
Data 2). Out of these, the five major isoforms exceed 1% in WT
minigenes, whereas the others, termed cryptic isoforms, only
accumulate in mutated minigene variants (Fig. 2b). In WT, the
most abundant major isoform by far is exon 2 inclusion (termed
“inclusion”), followed by exon 2 skipping (termed “skipping”)
and intron 2 retention (termed “intron2-retention”). Two addi-
tional major isoforms in WT originate from alternative 3’ splice
site usage within exon 2 (alt-exon2) and 3 (alt-exon3) (Fig. 2b, c).
Notably, alt-exon2 uses the same splice junction that we had
observed upon introducing patient mutations into the CDI9
minigene (Fig. 1i). As expected, the measured frequencies for the
major isoforms show little variance for the 194 unmutated WT
minigenes (standard deviation <6%, Fig. 2¢). In contrast, many
mutated minigene variants show strong changes relative to WT,
suggesting a large impact of specific mutations on splicing out-
comes (Fig. 2¢). For instance, all minigenes with a mutation in the
3/ splice site of exon 2 lose the inclusion isoform, accompanied by
strong alterations in the remaining major isoforms. Taken toge-
ther, these observations support the accuracy of our screening
results.

All major isoforms, except exon 2 inclusion, could contribute
to therapy resistance either by generating an altered CD19 protein
lacking a functional CART-19 epitope or by decreasing its
production. Our unbiased screening approach extends the list of
potentially therapy-impacting CDI19 mutations, since 1721 out of
9127 mutated minigenes show exon 2 skipping, intron 2 retention
and/or alt-exon2 isoform frequencies of >25% (Fig. 2c). However,
since the minigene variants carry on average 9.7 point mutations,
the observed splicing changes represent the combined effects of
several mutations. To extract the impact of individual mutations,
we adapted our previous mathematical modelling framework!?
and implemented a multinomial logistic regression approach.
Here, the splicing change in each minigene variant is described as
the sum of the underlying point mutation effects (Fig. 3a, see
Methods). These single-mutation effects are unknown and are
determined by simultaneously fitting the model to all minigene
measurements. Thereby, we were able to infer the individual
effects of 4255 point mutations on the five major isoforms
(Fig. 3a, Supplementary Fig. 4a). We validated the reliability of
this model in describing combined mutations using a 10-fold
cross-validation approach, in which we left out 10% of all
minigene variants from fitting and were able to accurately predict
them after model fitting (Pearson correlation coefficients
0.68-0.95; Fig. 3b, Supplementary Fig. 4b). In particular, isoforms
abundant in WT or strongly accumulating in response to a large
number of mutations (inclusion, skipping and alt-exon3) were
predicted with high accuracy, whereas the prediction power was
slightly lower for isoforms with a worse signal-to-noise ratio
(intron2-retention and alt-exon2; Fig. 2c). Furthermore, we
estimated that the model performed well in predicting single-
mutation effects, as soon as a mutation occurred in three or more
minigenes in the dataset (Supplementary Fig. 4c), which applied
to 90% of all mutations (Supplementary Fig. 2e).

Out of 4255 quantified single-mutation effects, we find 193
splicing-affecting mutations that significantly alter the frequency
of at least one isoform in the two replicates beyond the 2.5 and
97.5% quantiles of the WT minigene distribution (Fig. 3c,
Supplementary Data 3, Source Data file). 37 of these splicing-
affecting mutations overlap with single nucleotide variants
(SNVs) that were previously reported in the human population
from whole-genome or exome sequencing data, as well as
reported cancer-associated mutations, with some of them
predicted to have a pathogenic or likely pathogenic effect in the
disease context (Supplementary Data 3). The strongest mutation

effects accumulate around the four main splice sites and
throughout exon 2 and correspond to the core cis-regulatory
elements, such as splice site dinucleotides, branchpoint and
polypyrimidine tract, as well as auxiliary elements (Fig. 3¢, d). In
particular, 21% of all positions within exon 2 (55 out of 267 nt)
harbour at least one splicing-affecting mutation for any isoform,
suggesting that CD19 exon 2 is densely packed with cis-regulatory
elements.

Inspecting in more detail the 83 mutations that specifically
impact CDI9 exon 2 skipping, we find them to cluster within and
around exon 2 (odds ratio 2.06 for such mutations to occur inside
exon 2, P value = 0.002614, Fisher’s exact test). In addition, we
observe smaller clusters of mutations within the introns and
flanking constitutive exons which likely represent more distal cis-
regulatory elements (Fig. 3c). Similarly, we explored the 54
splicing-affecting mutations impacting on intron2-retention. As
expected, strongest effects are observed at the splice sites of intron
2. In addition, we find clusters of splicing-affecting mutations in
intron 2 and exon 3 that might reflect important cis-regulatory
elements. The predicted effects of all mutations on the five major
isoforms can be explored in the associated Source Data file.

To test a subset of the regression predictions, we generated
19 minigenes with individual point mutations that are predicted
to affect at least one isoform, including two previously reported
SNVs (Supplementary Fig. 5a, Supplementary Data 4). Using
semiquantitative RT-PCR, we were able to confirm that
mutations near the splice sites of exon 2 predominantly lead to
exon 2 skipping, whereas mutations in exon 3 result in intron2-
retention and/or alt-exon3 formation (Fig. 3e, Supplementary
Fig. 5b). Overall, the splicing measurements for the individual
minigenes show high correlation with the regression predictions
for the respective mutations across all five major isoforms (Fig. 3f,
Supplementary Fig. 5c). In conclusion, our combined screening
and modelling approach quantitatively describes alternative
splicing of CDI19 exons 1-3 by predicting the effects of all
individual point mutations and combinations thereof. Our screen
thereby represents a comprehensive resource for the identification
of mutations with potential clinical relevance in CART-19
therapy resistance.

Cryptic isoforms destroy the CDI9 ORF and are associated
with recurrent mutations. Besides the five major isoforms, the
CD19 exons 1-3 can give rise to 96 cryptic isoforms which are
rare (<1%) in WT, but accumulate upon certain mutations
(Fig. 2b, Supplementary Data 2). The cryptic isoforms involve a
total of 71 cryptic splice sites (Fig. 4a). Of note, 33 of these cryptic
isoforms make up >50% of total transcripts and are therefore
dominant in certain minigene variants (Fig. 2b, c). To assess
whether these cryptic isoforms impact on CD19 epitope pre-
sentation, we analysed their coding potential and found that the
vast majority of cryptic CD19 isoforms (78 out of 96) show a
frameshift and/or carry a PTC (Fig. 4b). This will either lead to
the production of truncated CD19 peptides that likely do not
allow for presentation on the cell surface!® or will induce
nonsense-mediated mRNA decay of the cryptic isoforms and will
hence reduce CDI9 transcript and protein levels.

To derive a mechanistic understanding of cryptic isoform
biogenesis, we analysed the underlying point mutations. To this
end, we calculated a prevalence score which quantifies the degree of
association between an isoform and a point mutation by multiplying:
(i) the frequency of a mutation being present if the isoform level is
high (>5%), and (ii) the frequency of the isoform level being high
given that the mutation is present. A prevalence score of 1 indicates
perfect correspondence between mutation and isoform, whereas a
prevalence score of 0 is observed if they are unrelated. This score-
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based analysis revealed 38 mutation-isoform pairs with prevalence
scores > 0.25 which could explain the genesis of 36 cryptic isoforms
based on 31 point mutations (Supplementary Fig. 6a, Supplementary
Data 2). The remaining 60 cryptic isoforms do not show a specific
association, implying that they can either be generated by multiple
redundant mutations, or that our screen lacks sufficient coverage to
support a reliable association. To directly test the predicted
associations, we introduced five mutations with a specific association
to a cryptic isoform in our minigene reporter (C535G, chrlé:
28932405, prevalence score =0.18; C806A, chr16:28932676, 0.68;
A827T, chr16:28932697, 0.93; C864G, chr16:28932875, 1; G1005A,
chr16:28932734, 0.89). Semiquantitative RT-PCR confirmed that all
five tested mutations lead to the appearance of the associated cryptic
isoform (Fig. 4c, d).

delta isoform frequency
by regression model (%)

Altogether, our analysis provides a list of 31 mutations that are
likely to trigger cryptic isoform formation. Importantly, the
resulting cryptic isoforms show a maximum usage of up to 91%
(Supplementary Data 2), which is expected to drastically interfere
with normal CDI9 splicing, protein production, and subsequent
epitope presentation. Screening for the occurrence of the 96
cryptic isoforms in the TARGET B-ALL patient samples, we
readily detected two junctions of cryptic isoforms that had been
present already prior to CART-19 therapy (Fig. 1c, Supplemen-
tary Fig. 1a). Other cryptic isoforms predicted from our screen
were not found in these patients that had not been treated with
CART-19 therapy, but could already exist subclonally and/or may
only emerge under the selective pressures of CDI19-directed
immunotherapy. The same applies to the associated mutations
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Fig. 3 Quantitative modelling predicts single-mutation effects on splice isoforms. a Based on the experimentally measured frequencies of five major
isoforms in 9321 minigene variants (top box), a softmax regression model was formulated to estimate 4255 single-mutation effects (middle box) using L1
penalisation. Splicing-affecting mutations were selected for each isoform based on their respective empirical WT frequency distribution using the 2.5% and
97.5% quantiles as cutoff. b The model performs well in fitting and 10-fold cross-validation. Bars show Pearson correlation coefficients between model and
data for two replicates and each of the five isoforms across all combined mutation minigenes considered in model training and validation, respectively
(Supplementary Fig. 4a, b). ¢ Splicing-affecting mutations accumulate in distinct regions around exons 2 and 3. Landscape of model-predicted single-
mutation effects on five major isoforms. Predicted isoform frequencies are plotted as a function of the position of a mutation. Colours indicate nucleotide
substitution of splicing-affecting point mutations (see legend), and non-effective mutations (grey). d Zoom-in shows model-predicted delta inclusion
isoform frequency (frequency for a point mutation - frequency in WT) for nucleotides 445-552 of the minigene. Splicing-affecting mutations are
highlighted as filled circles. e Model validation by splicing analysis of 19 minigene variants containing single point mutations. Isoform frequencies (in %) of
the five major isoforms (see legend) are shown as mean values of three biological replicates (error bars, s.d.m.). ‘NALM-6', splicing pattern of WT
minigenes (RNA-seq) in the mutagenesis screen, 'HEK293’, RT-PCR-based quantification of the baseline minigene containing mutation G742C (see
Methods) in HEK293 cells. G748C* is a minigene containing G748C but lacking G742C. Schematic representation of CD19 minigene (top) highlighting
mutated regions (red rectangles). Error bar represent s.d.m., n = 3 replicates. f Splicing outcomes from e (y axis) are related to single-mutation predictions
of the regression model (x axis; mean of two fits, each explaining one mutagenesis replicate). Changes in isoform frequency of the major isoforms (see
legend) are expressed as differences (delta) relative to the baseline. Pearson correlation coefficient and P value (two-sided) were calculated over all

isoforms (see Supplementary Fig. 5c for correlations of individual isoforms). Source data are provided as a Source Data file.

identified from our screen which were also not present in the
TARGET B-ALL data (Supplementary Data 4).

The cryptic isoforms are caused by mutations that disrupt or
create splice sites. Due to their potential clinical relevance, we
wanted to learn more about how the mutations activate the
cryptic isoforms. We found that the majority of mutations with a
prevalence score > 0.25 are either in close proximity or directly
overlap with the associated cryptic splice site (77.4% with dis-
tance <5 nt; odds ratio 7.55, P value = 1.793e-07, Fisher’s exact
test; Fig. 4e). Further inspection showed that the underlying
mutations either destroy the original splice site (7.9%) or generate
a new cryptic splice site (57.9%). Hence, the cryptic isoforms do
originate from the generation or destruction of core cis-regulatory
elements rather than affecting auxiliary elements.

Currently, major efforts are ongoing to implement artificial
intelligence (AI) tools to predict the effect of clinical variants on
the splicing outcome. We therefore tested whether the state-of-
the-art neural network SpliceAI*>, which predicts changes in the
splicing patterns induced by single point mutations, captures the
gain and loss of splice sites in CD19. We applied SpliceAl using
all possible single-point mutations in the CDI9 minigene as an
input. Similar to the results from our mutagenesis screen (Fig. 4a),
SpliceAI predicts cryptic splice site activation by mutations
throughout the minigene, with an increased density around the 3/
splice site of exon 3 (Supplementary Fig. 6b). All SpliceAl-
predicted mutations are close to the affected cryptic splice sites
(Supplementary Fig. 6¢). Hence, SpliceAl successfully reflects the
global landscape of mutation-induced cryptic splice site activation
in the CDI9 minigene.

With respect to the accuracy of the individual predictions, we
found that 10 out of 38 mutations with strong SpliceAl
predictions (SpliceAl score > 0.5) indeed lead to the accumulation
of splice isoforms with the corresponding cryptic splice sites in
the experimental data (prevalence score > 0.25, Fig. 4f). In the
remaining 28 cases, either weak overall cryptic splice site
activation occurred in the data (9 cases) or a different cryptic
splice site was activated than predicted by SpliceAI (19 cases;
Supplementary Fig. 6b). In quantitative terms, the likelihood of a
cryptic splice site activation according to the SpliceAl prediction
(“SpliceAl score”) is correlated to the magnitude of the prevalence
score linking the mutation to the corresponding cryptic isoform
in our screen (Fig. 4f). Overall, the comparison supports that
SpliceAI can guide the interpretation of mutation effects in
clinical samples, though direct experimental validation is
necessary. Due to the robust performance of SpliceAl, we decided

to predict splice-changing mutations throughout the entire CD19
gene and overlapped them with publicly reported single
nucleotide variants (SNVs; Supplementary Fig. 6c). These
predictions and variant overlap are provided as a resource
(Supplementary Data 5) and can be used to evaluate the impact of
new patient mutations on CD19 splicing in the future.

From our mutagenesis data, we found that the cryptic isoforms
arise from numerous 3’ and 5 cryptic splice sites that distribute
over the entire minigene and accumulate at exon 3 (Fig. 4a). In
line with their high prevalence, 26 cryptic splice sites reach >50%
usage upon certain mutations, particularly around the start of
exon 3. We hypothesised that cryptic splice site activation occurs
in exon 3 because its canonical splice site can be outcompeted by
neighbouring cryptic sites. To test this, we scored the strength of
local consensus sequences using MaxEntScan?®, and indeed
found that the 3’ splice site of exon 3 is weak compared to all
other canonical splice sites of CDI9 exons 1-3 (Fig. 4g,
Supplementary Fig. 6e, f). In line with our hypothesis, mutations
around the 3’ splice site of exon 3 frequently create stronger splice
sites than elsewhere in the minigene that exceed the strength of
the canonical 3’ splice site of exon 3 (Fig. 4g). This suggests that
weak splice sites are particularly vulnerable to the activation of
competing cryptic splice sites and should be of particular interest
when assessing the impact of clinical variants on splicing
outcomes.

An extensive network of RBP regulators might drive CDI9
mis-splicing. Besides CDI19 mutations, CART-19 therapy resis-
tance may also stem from altered expression of trans-acting RBPs
which bind to the CDI19 pre-mRNA to control alternative spli-
cing. To identify putative RBP regulators, we explored publicly
available databases containing experimentally determined RBP
binding motifs (ATtRACT?” and oRNAment?®). Furthermore, we
included RBP binding information from the public resource of
ENCODE eCLIP datasets?”. Since the CDI9 mRNA is hardly
expressed in the ENCODE cell lines and binding events in CD19
can therefore not be directly extracted, we employed the predic-
tion algorithm DeepRiPe3. The underlying neural network has
been trained on the PAR-CLIP and ENCODE eCLIP datasets and
thereby allows to predict changes of RBP binding upon mutation
in any RNA sequence. In combination, these tools predict a total
of 198 RBPs to bind within CD19 exons 1-3 (ATtRACT: 62 RBPs;
oRNAment: 70 RBPs) or to decrease (or increase) binding upon
mutation (DeepRiPe: 128 RBPs; Fig. 5a, b, Supplementary
Fig. 7a).
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Fig. 4 CD19 mutations frequently activate cryptic splice sites. a Alternative splicing of CD19 minigene variants involves 71 cryptic splice sites. Splice site
usage (sum of junction-spanning reads in a splice site / total number of reads in minigene) was calculated for each minigene variant. Maximum usage
across all minigenes is plotted against the corresponding position to the cryptic splice sites. b Cryptic isoforms code for non-functional CD19 proteins. Out
of 96 cryptic isoforms, 8 run into a premature termination codon (PTC) and 70 are out-of-frame. The remaining 18 remain in frame, but are shortened or
extended relative to the reference inclusion isoform. ¢, d Experimental validation of five point mutations associated with distinct cryptic isoforms. Predicted
cryptic isoforms are indicated by red arrowheads. Gel-like representation (c¢), with major isoforms indicated on the right, and RT-PCR quantification (d).
Error bars indicate s.d.m., n =3 replicates. @ Mutations leading to cryptic isoforms are often located within or near cryptic splice sites. For 31 cryptic
isoforms that are highly associated with a mutation (prevalence score > 0.25; y axis), the position of the mutation (x axis) was related to the used cryptic
splice site (y axis). f SpliceAl correctly predicts single mutations leading to the generation of cryptic isoforms. SpliceAl scores of 0-1 reflecting the
probability to gain a cryptic splice site in response to a mutation (see Methods). Scatterplots compare the SpliceAl score against the prevalence score
(association of a mutation with a cryptic isoform) from our data, for 254 mutation-splice site pairs that match in their positions with SpliceAl. Separate
panels are shown for each canonical splice site (circle in schematic minigene representation). g Exon 3 harbours a weak 3’ splice site and is preceded by
many potentially competing cryptic 3’ splice sites. Dotplot shows splice site strengths (MaxEnt score) for putative 3’ splice sites (AG dinucleotides) in the
CD19 minigenes. MaxEnt score was calculated in 23-nt sliding window for WT sequence (red and blue dots) and hypothetical mutant minigenes with all
possible single-point mutations (grey dots). 3’ splice sites used in the five major isoforms are highlighted in red. Source data are provided as a Source
Data file.

To link the putative RBP regulators to the observed splicing affecting mutation (affecting any of the five major isoforms).
changes, we overlaid the predicted binding sites (or predicted Furthermore, 105 (5%) of the mutations predicted to change RBP
mutations for DeepRiPe) with splicing-affecting mutations from  binding by DeepRiPe overlap with splicing-affecting mutations,
our screen. Overall, we find that 79% and 60% of ATtRACT and  suggesting that modulating RBP binding at these sites may have a
oRNAment binding sites, respectively, overlap with a splicing- functional impact on CDI9 splicing (Fig. 5c, Supplementary
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Fig. 5 In silico predictions identify RBP regulators of CD19 alternative splicing. a Pipeline for the identification of potential RBP regulators of CD19

splicing. Starting with in silico predictions, we obtained 198 candidate RBPs with predicted binding motifs (ATtRACT/oRNAment) or predicted differential
binding upon mutation (DeepRiPe). These were prioritised by overlapping with the splicing-affecting mutations from our screen. Additionally, based on
publicly available RNA-seq data, we required a minimum mean expression in RNA-seq data from B-ALL patients3! and NALM-6 cells’>. Together with
literature information, we shortlisted 11 candidate RBPs for knockdown (KD) experiments, including SRSF3 as a positive control. b, ¢ In silico analyses

predict dozens of RBPs binding to CD19. Venn diagrams show overlap of RBPs in initial predictions (b) and after overlay with splicing-affecting mutations
(c). d The 11 candidate RBPs are predicted to bind throughout the CD19 minigene region. For each RBP, the binding sites predicted by ATtRACT and

oRNAment and disrupting mutations predicted by DeepRiPe are indicated (see legend). Sites overlapping with splicing-affecting mutations are framed in
red. The schematic summary (left) shows that all 11 candidate RBPs have at least one predicted site that overlaps with a splicing-affecting mutation. A full
list of predicted binding sites (ATtRACT/oRNAment) and differential binding mutations (DeepRiPe) is provided in Supplementary Data 6. e, f Seven RBP
KDs significantly change CD19 splicing. Gel-like representation (e) and quantification (f) of semiquantitative RT-PCR showing detected isoforms exon 2
inclusion (grey), intron 2 retention (blue), and skipping (turquoise) from the endogenous CD19 gene in KD and control NALM-6 cells. Asterisk indicates a
previously reported RT-PCR artefact®® (see methods). Error bars indicate s.d.m., n = 3 replicates. **P value < 0.01, ***P value < 0.001, two-sided Student's t
test. Measurements for all 11 KD experiments are shown in Supplementary Fig. 8c, d. Source data including P values are provided as a Source Data file.

Fig. 7a). By merging these sets, we obtained a list of 119 RBPs that
may regulate splicing by binding to CDI9 exons 1-3 (Supple-
mentary Data 6). Most of these are expressed in cancerous B cells
from B-ALL patients from3! (80 with mean FPKM [fragments per
kilobase of transcript per million mapped reads] > 10; Supple-
mentary Fig. 7b) and could thus modulate CD19 splicing. Among
these RBPs are SRSF3, a previously reported regulator of CDI19
splicing?®, but also new candidates such as PTBP1. Overall, the in
silico predictions suggest the presence of an extensive RBP
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network that controls CDI9 splicing and may impact the CART-
19 therapy success.

Depletion of PTBP1 and several other RBPs results in non-
functional CD19 isoforms. Based on our experimental data, in
silico predictions, expression, literature information and manual
curation, we shortlisted 11 RBP candidates for further analysis,
including SRSF3 as a positive control (Fig. 5d). All 11 RBPs are

9


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

expressed in normal B cells and B-ALL patient samples from the
TARGET B-ALL cohort (Supplementary Fig. 8a). To test their
impact on endogenous CD19 splicing, we generated NALM-6 cell
lines stably expressing shRNAs against the shortlisted RBPs
(depletion to <40% transcripts; Supplementary Fig. 8b). As pre-
viously described®, knockdown of SRSF3 leads to increased exon
2 skipping in the endogenous CDI9 transcripts, confirming that
this SR protein is required for exon 2 inclusion (Fig. 5e, f).
Importantly, we find that knockdown of six additional RBPs
(PTBP1, PCBP2, SF3B4, HNRNPK, MBNLI and HNRNPM) has
significant effects on CD19 alternative splicing (Fig. 5e, f, Sup-
plementary Fig. 8¢, d). The knockdown of these factors reduces
CD1I9 exon 2 inclusion, while promoting intron2-retention and/
or exon 2 skipping, thus shifting the cells towards expression of
the relapse-associated CD19 isoforms. This implies that reduced
levels of these factors can impair targetable CDI9 epitope
expression.

PTBP1 stands out among the putative regulators as it shows
the strongest effects on intron2-retention. This splicing event
introduces a premature termination codon that likely reduces
CD19 transcript and protein expression via nonsense-mediated
mRNA decay (Fig. 2b). In line with a role of PTBP1 in CD19 mis-
splicing in tumours, we find that patient samples from the
TARGET B-ALL cohort on average show lower PTBPI mRNA
expression compared to healthy B cells (Supplementary Fig. 8a).
Within the B-ALL samples, PTBPI expression negatively
correlates with CDI9 intron2-retention, as expected based on
our knockdown experiments (R = -0.24; Fig. 6a, left). In addition,
we investigated PTBP2 mRNA expression, which is tightly
repressed by the PTBP1 protein via alternative splicing and
nonsense-mediated mRNA decay>2 and hence serves as a direct
sensor for PTBP1 activity in the cells. Indeed, we find a strong
correlation between increased PTBP2 mRNA levels, i.e., lowered
PTBP1 protein activity, and increased CDI19 intron2-retention
(R=10.56; Fig. 6a, right). To test for changes upon CART-19
relapse, we extracted PTBPI and PTBP2 from expression data
provided by the Orlando study®. Although we do not detect
systematic changes in the PTBP1 mRNAs levels, the PTBP2
mRNA levels are significantly increased at relapse relative to
screening, possibly indicating lowered PTBP1 protein levels (P
value = 0.037, Wilcoxon rank-sum test; Fig. 6b). Together, these
analyses suggest that PTBP1 is a regulator of CDI9 alternative
splicing, which we decided to explore further.

PTBP1 recognises clusters of UC-rich motifs®334. Remarkably,
ATtRACT predicts almost 100 such PTBP1 binding motifs across
the studied CD19 region, including 25 that overlap with splicing-
affecting mutations (Fig. 5d, Supplementary Data 6). Moreover,
DeepRiPe predicts 78 mutations in 63 positions that change
PTBP1 binding, out of which 10 are splicing-affecting in our
screen (odds ratio 3.21, P value = 0.002481, Fisher’s exact test).
The high number of predicted binding sites suggests a partial
redundancy, indicating that PTBP1 regulation might be difficult
to disrupt with individual point mutations as introduced in our
screen. To experimentally test if PTBP1 binds to the predicted
sites, we performed PTBP1 iCLIP2 experiments®> in NALM-6
cells. In line with a role in intron2-retention, we find extensive
PTBP1 binding, particularly in intron 2, where it spreads over an
extended cluster of predicted binding sites (Fig. 6¢). This suggests
that PTBP1 directly regulates CDI9 splicing via intron 2 binding.

Next, we chose to assess whether PTBP1-mediated splicing
changes affect CD19 surface exposure on B cells. To test this, we
performed siRNA-mediated knockdown of PTBPI in P493-6 and
MHHCALL4 cells (Supplementary Fig. 9a, b) and confirmed that
the knockdown increased levels of CDI9 intron2-retention in
both cell lines (Supplementary Fig. 9c, d). Then, we measured
CD19 protein surface expression using CD19 antibody staining

and flow cytometry analysis (Supplementary Fig. 9e). Strikingly,
we found that both cell lines show reduced CD19 surface
exposure upon PTBPI1 depletion (Fig. 6d-f, Supplementary
Fig. 9f). Thus, by interfering with CD19 protein expression on
the cell surface, PTBP1 depletion could indeed contribute to
CART-19 therapy resistance.

Taken together, our data suggest that both cis-acting mutations
and trans-acting RBPs can lead to unproductive CDI9 splicing
which in turn disrupts CD19 epitope presentation. Therefore, the
splicing-affecting mutations and RBP regulators identified in this
work may harbour predictive information for CART-19 therapy
success.

Discussion

Massively parallel reporter assays such as our high-throughput
mutagenesis screen provide comprehensive insights into the
regulatory code of splicing, as they characterise the complete set
of cis-acting sequence mutations and reveal the binding sites of
trans-acting RNA-binding proteins (e.g.,!9-21:36-38). The inter-
pretation of these datasets is challenging due to nonlinear inter-
actions of individual mutation effects. For instance, competition
effects in splicing reduce the impact of individual mutations at
low and high isoform frequencies, i.e., depending on the muta-
tional background!®20. In addition, other factors such as RBP
expression patterns and cell type/tissue identity determine the
effects of sequence mutations. Using kinetic modelling, we and
others derived regression models taking competition in splicing
into account, thereby showing that the effects of complex muta-
tion combinations can be quantitatively described as the sum of
individual mutation effects'®20. Thus, mutations seem to control
splicing additively rather than synergistically, and this principle
also holds for CD19 splicing.

In our CDI9 mutagenesis dataset, we comprehensively char-
acterise the full set of splice isoforms generated in response to
thousands of sequence mutations. In particular, we find that
cryptic splice site activation and thus alternative 3’ and 5’ splice
site usage are common modes of alternative splicing. Intriguingly,
such events do not require extensive sequence remodelling, but
can often be triggered by single point mutations, as indicated by
strong associations between putative cryptic isoforms and certain
nucleotide substitutions. This suggests, in accordance with pre-
vious reports®’, that neighbouring splice sites frequently compete
for spliceosome assembly, especially if the canonical splice site is
comparably weak. While this finding shows the enormous iso-
form complexity that can arise already from such a simple exon
configuration, it raises the question of how protein function can
be robustly maintained, since most cryptic CDI9 splicing iso-
forms likely encode non-functional proteins.

Unlike previous mutagenesis screens which mainly focused on
exonic sequence mutations, the present CDI9 dataset char-
acterises the complete set of intronic and exonic mutations in a
1200 nt sequence stretch. The complete characterisation of CD19
exons 1-3 required the use of long-read sequencing technology.
Given that introns in human protein-coding genes on average
span ~8.1 kb (GENCODE v31), the long-read sequencing meth-
odology described in this work opens the approach for broad
applications. For CDI19, we find that strong mutation effects are
mainly centred around canonical and cryptic splice sites, whereas
in other examples such as MSTIR exon 11 or FAS exon 6,
mutation effects are more dispersed across intronic and exonic
sequences!?40. This suggests that CDI9 exon 2 splicing may be
controlled by multiple splicing enhancers that act redundantly
and render inclusion less sensitive to individual point
mutations2’, Therefore, CDI9 exon 2 may require more specific
perturbations and as we show here, does not only respond with
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Fig. 6 PTBP1 is a regulator of CD19 alternative splicing. a PTBPT and PTBP2 mRNA levels correlate with CD19 intron2-retention. Scatterplots comparing
mMRNA levels (TPM) to intron2-retention frequency for 220 B-ALL patient samples from TARGET B-ALL data. Pearson correlation coefficients and P values
(two-sided) are given. b PTBP2 mRNA levels are increased upon CART-19 therapy relapse. Box and violin plots showing PTBPT and PTBP2 mRNA expression
(fragments per kilobase of transcript per million mapped reads, FPKM) for patient samples (n=9) from initial screening and upon CART-19 therapy

relapse>. Grey lines connect matched samples of the same patients before therapy and after relapse. Boxes represent quartiles, centre lines denote 50th
percentile, and whiskers extend to most extreme values within 1.5x IQR. One-sided paired Wilcoxon signed-rank test. ¢ PTBP1 shows extensive binding to
CD19 intron 2. Bar diagram shows the number of PTBP1iCLIP2 crosslink events from NALM-6 cells on each nucleotide in endogenous CD19 exons 1-3.
Predicted PTBP1 binding motifs (ATtRACT) and mutations predicted to alter PTBP1 binding (DeepRiPe) are shown below (see legend in Fig. 5d). Nucleotide
positions are given relative to minigene sequence. d-f CD19 cell surface staining is reduced upon PTBPT knockdown in P493-6 (d) and MHHCALL4 (e)
cells. Distributions of CD19 surface protein, as measured in 45-50 x 103 cells (per replicate) by CD19 antibody staining and flow cytometry, in cells

transfected with PTBPT siRNA (orange) or non-targeting control siRNA (blue). f Dotplot shows mean and data points for measurements of cell surface

CD19 in replicate 1 (d, ) and 2 (Supplementary Fig. 9f).

exon skipping, but tends to employ alternative splice sites and
intron retention, both of which are clinically relevant in the case
of CART-19 therapy resistance.

Our retrospective analyses of clinical B-ALL samples implicate
unproductive CD19 splice isoforms in the development of CART-
19 therapy resistance. Using minigene assays, we directly show
that CD19 mutations that are observed in relapsed patients lead to
exon 2 skipping, intron 2 retention or an additional isoform that
uses an alternative 3’ splice site in exon 2. Furthermore, based on
our mutational scan, we report ~200 additional point mutations
that significantly affect these and other therapy-impacting iso-
forms. Thus, our results indicate that far more CDI9 mutations
can create isoforms that would escape CART-19 recognition. In
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the future, targeted CRISPR/Cas9 replacement experiments using
the endogenous CD19 gene should be performed to validate that
the predicted mutations cause physiological changes in splicing,
loss of CDI19 protein exposure on cell surface and CART-19
therapy resistance. Furthermore, the detection of such mutations
in longitudinal samples may provide predictive biomarkers for
therapy response in the future.

Likewise, alterations in the expression of trans-acting RBPs can
induce aberrant CDI9 splicing, explaining the emergence of
CD19-negative relapses in samples without mutations or with
low-allelic-frequency mutations or without mutations in the
CD19 locus. Interestingly, we find that the differentiation status of
B cells affects CDI9 splicing: in mature B cells, almost complete
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exon 2 inclusion occurs, implying that all CDI9 transcripts give
rise to functional CD19 protein. In contrast, intron 2 retention
occurs in approximately half of the CDI9 transcripts in undif-
ferentiated B-cell precursors (Fig. 1d). Likewise, retention of
intron 2 is predominant in B-ALL patient samples from the
TARGET B-ALL cohort, with 93% of patients exhibiting reten-
tion frequencies above 50% (Supplementary Fig. 1b). Hence,
incomplete B-cell differentiation in B-ALL may induce a tran-
scriptional and posttranscriptional programme, likely involving
altered RBP expression, that reduces (but does not completely
eliminate) the functional CD19 protein pool. This partial intron 2
retention may predispose the cancer cells to therapy resistance
before they are actually subjected to CART-19 treatment, as
observed in sorted B-cell populations from a B-ALL patients
before and after CART-19 therapy relapse!”. For the development
of complete CART-19 resistance, some B-ALL patients thus likely
host subclonal CD19-negative B-ALL cells which are further
selected under the treatment!”. The causes of complete CD19 loss
in these subclonal cell populations are likely to be manifold,
involving (epi)genetic changes such as hypermethylation of the
CD19 promoter?!, mutations in the CDI9 gene, splicing factor
expression and combinations thereof.

Mutations in splicing factors such as SRSF2, SF3B1 and U2AF1
are common in myelodysplastic syndrome/acute myelogenous
leukemia#? and chronic lymphocytic leukemia®3, and are associated
with aberrant splicing. In B-ALL, mutations in splicing factors are
not common, but previous work suggests that splicing factor
expression is deregulated*t. In the context of CD19, we confirm
that SRSF3 deregulation induces exon 2 skipping® and identify
several other RBPs that promote the expression CD19 protein
isoforms invisible to the immunotherapeutic agent, including
PTBPI1, PCBP2, SF3B4, HNRNPK, MBNL1 and HNRNPM. Sev-
eral of the newly identified regulators have been found as deregu-
lated in other cancer types and are discussed as potential targets for
anti-cancer therapy*>~%’. In addition, upregulation of PTBP1 has
been implicated in acquired resistance to the chemotherapeutic
agent gemcitabine in pancreatic ductal carcinoma cells*8. In the
context of lymphocytes, PTBP1 is upregulated in B cells and
required for early B-cell selection?®. It was reported, however, that
treatment of leukemic cells with the targeted therapy drug imatinib,
which inactivates the BCR-ABL kinase encoded by the translocated
Philadelphia (Ph) chromosome, lowers PTBP1 levels®. In the light
of our finding that PTBP1 knockdown increases CDI9 intron 2
retention and thereby reduces CD19 epitope presentation, previous
treatments with imatinib may have negative impact on the sub-
sequent response to the CART-19 therapy in a subset of Ph+
B-ALL patients. In addition, a recent study showed that the repeat
RNA PNCTR sequesters substantial amounts of nuclear PTBP1 in
various cancers’!. Thus, in addition to regulation of PTBP1
expression, other factors such as availability may also influence
PTBP1-mediated regulation in B-ALL cells under CART-19
therapy.

Currently, we cannot predict which patients with a CD19-
positive B-ALL have a high risk of developing CD19-negative
relapses. The pre-existence of isoforms skipping exon 2 or exons
5-6 has been previously discussed as a possible biomarker!®17.
Moreover, in a comparison of B cells from a B-ALL patient, it was
found that intron 2 retention had already occurred prior to
CART-19 therapy (CD19-positive B cells) and had become pre-
dominant in the CD19-negative B cells after relapse!”. Our results
point to the need to extend the analysis to additional CDI9 iso-
forms and to incorporate the expression of splicing factors in
screening approaches to identify patients at risk of relapse on
CART-19 therapy. Notably, the same biomarkers might also be
relevant for other malignancies arising from B-cell lineage, such
as large B-cell lymphoma. Loss of CD19 following CART-19

therapy has been described as a mechanism for relapse®?,
accounting for 60% of relapses in recent clinical studies®. Our
data show that CDI19 splicing is highly complex, with already
~100 alternative isoforms concerning just exons 1-3. Of them,
~80% encode for a CD19 protein lacking a functional CART-19
epitope and are thus expected to contribute to therapy resistance.
The specific detection of alternative splicing might serve as a
reliable biomarker and may provide a novel approach to monitor
disease progression as already suggested in other tumour
entities>®. To assess the role of the predicted cryptic splice iso-
forms in patients, we screened sequencing data from the TAR-
GET B-ALL cohort and indeed recurrently found two junctions
from the cryptic isoforms that we had observed in the muta-
genesis data. Even though other cryptic junctions were absent and
mutations associated with cryptic isoforms according to screen
were also not found in the patient data, these may still emerge
during CART-19 selection. Currently, there is a shortage of large-
scale sequencing data of patient material before and after CART-
19 therapy°. Future analysis of such data with a special focus on
cryptic splice site usage will be important to identify mutations or
splice isoforms that are predictive for CART-19 therapy success.

The contribution of aberrant splicing to CART-19 resistance
may further be relevant for future combination therapies. Small-
molecule splicing modulators are currently in clinical trials for
myeloid neoplasms and splice-switching antisense oligonucleo-
tides are in development for different targets (reviewed in!2). Our
mutagenesis dataset provides a strong basis for designing and
systematically evaluating splice-switching oligonucleotides for the
modulation of CD19 splicing. The combined application of these
splicing modulators with immunotherapy may represent a way to
limit the generation of resistance to CART therapies.

Methods

Cell lines. NALM-6 cells were obtained from ATCC and cultured in RPMI
medium (Life Technologies) with 10% fetal bovine serum (Life Technologies) and
1% L-glutamine (Life Technologies). HEK293T cells were obtained from DSMZ
and grown with the same additives as for NALM-6. For validation experiments
(Fig. 3e), HEK293 cells were obtained from DSMZ and were cultured in Gibco
Dulbecco’s Modified Eagle Medium (DMEM, Thermo Fisher Scientific) with
L-Glutamine + 10% Gibco foetal bovine serum (FBS, Thermo Fisher Scientific). All
cells were kept at 37 °C in a humidified incubator containing 5% CO,. They were
routinely tested for mycoplasma infection.

Cloning. The CD19 minigene was amplified from human genomic DNA (Promega)
with the primers 5'-catAAGCTTgaccaccgecttectetetg-3’ and 5'-cat-
GAATTCNNNNNNNNNNNNNNNGGATCCttcecggeatctecccagte-3'. pcDNA3.1
was used as the vector backbone for the CDI9 minigene plasmid. Both the back-
bone as well as the minigene amplicons were digested with the restriction enzymes
EcoRI and HindIII (New England Biolabs). The backbone was extracted from a 1%
agarose gel using QIAquick Gel Extraction Kit (Qiagen) and the minigene insert
was cleaned up using QIAquick PCR Purification Kit (Qiagen). Ligation was
conducted overnight at 16 °C with T4 DNA Ligase (New England Biolabs). All
minigene mutations were introduced via Q5 Site-Directed Mutagenesis Kit (New
England Biolabs). Position 748 (nucleotide 6 of intron 2) was exchanged from G to
T to raise the baseline level of exon 2 inclusion in the WT CDI19 minigene to a
similar level as in the endogenous CDI9 gene. The nine mutations from eight
patients in Orlando et al.> listed in Supplementary Table 1 were inserted into the
WT CD1I9 minigene. For validation experiments (Fig. 3e), 19 individual point
mutations with predicted effects on at least one isoform were inserted into a CD19
minigene variant that additionally contained the mutation G742C to adjust the
baseline of splice isoforms in HEK293 cells to the pattern seen in NALM-6 cells. All
kits were used according to the manufacturers’ recommendations.

Mutagenesis of minigene and library construction. For the random mutagenesis
of the CD19 minigene, GeneMorph II Random Mutagenesis Kit (Agilent) was used
according to manufacturer’s recommendations using 500 ng CD19 minigene for 30
cycles at 56 °C with the amplification primers 5’-catAAGCTTgaccaccgccttectetetg-3/
and 5'-catGAATTCNNNNNNNNNNNNNNNGGATCCttcccggeatctecccagte-3'.

PCR products were purified using QIAquick Gel Extraction Kit (Qiagen), digested
with EcoRI and HindIII (New England Biolabs) and then ligated into the backbone.
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Transfection with minigenes. Cells were twice washed in Dulbecco’s phosphate-
buffered saline (DPBS, Gibco Thermo Fisher Scientific) and then collected in R
buffer with a density of 2 x 107 cells/ml. For electroporation, we used 5 pg plasmid
DNA (with a concentration of at least 1 ug/pl) to 2 x 10° cells in R buffer for a
100 pl NEON electroporation pipette tip (Thermo Fisher Scientific) at 1600 V for
30 ms and 1 pulse. Cells were harvested 24 h later. For validation experiments
(Fig. 3e), 7 x 10° cells per well were seeded in six-well TC plates one day prior to
transfection. 24 h later, cells were transfected with a mixture of 2 ug plasmid DNA
and 20 pg linear Polyethylenimine MW 2500 (PEI 2500, Polysciences), and Gibco
Opti-MEM (Thermo Fisher Scientific) was added to 100 pl total volume. This
mixture was added dropwise to 1,9 ml fresh DMEM covering the cells, followed by
incubation for 24 h.

Quantification of splicing isoforms using semiquantitative RT-PCR. Semi-
quantitative RT-PCR was used to quantify ratios of CD19 mRNA isoform variants.
To this end, reverse transcription was performed on 500 ng RNA with RevertAid
Reverse Transcriptase (Thermo Fisher Scientific) according to the manufacturer’s
recommendations. Subsequently, 1 pl of the cDNA was used as template for the
RT-PCR reaction with OneTaq DNA Polymerase (New England Biolabs). PCRs
were run at the following conditions: 94 °C for 30's, 28 cycles (minigene) or 34
cycles (endogenous CD19) of [94 °C for 20s, 55 °C for 30s, 68 °C for 30 s] and final
extension at 68 °C for 5 min. The primers 5~ ACCTCCTCGCCTCCTCTTCTTC-3’
and 5'-GCAACTAGAAGGCACAGTCG-3’ were used for the CDI19 minigene, and
5'-ACCTCCTCGCCTCCTCTTCTTC-3’ and 5-CCGAAACATTCCACCGGAA
CAGC-3' for the endogenous CDI19 gene. A TapeStation 2200 capillary gel elec-
trophoresis instrument (Agilent) was used for quantification of the PCR products
on D1000 tapes.

For the semiquantitative RT-PCR experiments in HEK293 cells, cells were
harvested 24 h after transfection and pelleted. RNA was isolated using the QiaGen
RNeasy kit following the manufacturer’s protocol with the exception of adding only
100 pl of cell lysate onto the gDNA removal columns to ensure proper removal of
genomic and/or plasmid DNA. 1-2 ug RNA per sample were used to generate
cDNA with the ThermoScientific RevertAid cDNA kit. We changed the second
temperature step of the manufacturer’s synthesis protocol from 4 °C to 25°C
(5min) to further reduce RNA dimerisation or formation of secondary structures.
Subsequently, 1 ul of cDNA was used as template for the RT-PCR reaction with
OneTaq DNA Polymerase (New England Biolabs). PCRs were run at the following
conditions: 94 °C for 30's, 28 cycles of [94 °C for 20's, 52 °C for 30's, 68 °C for 30 s]
(minigene) or 34 cycles of [94 °C for 20's, 55 °C for 30's, 68 °C for 30s]
(endogenous CD19) and final extension at 68 °C for 5 min. The primers 5'-
ACCTCCTCGCCTCCTCTTCTTC-3" and 5-GCAACTAGAAGGCACAGTCG-3/
were used for the CD19 minigene, and 5'-ACCTCCTCGCCTCCTCTTCTTC-3’
and 5-CCGAAACATTCCACCGGAACAGC-3’ for the endogenous CD19 gene.
The PCR products were quantified using the TapeStation 4200 system and the
High Sensitivity D1000 reagents and tapes (Agilent) according to the
manufacturer’s protocol.

Significance of differences in isoform abundance for comparing WT minigenes
vs. mutated variants (Fig. 1i) or RBP knockdown vs. control (Fig. 5f) was calculated
by a Student’s ¢ test separately for each isoform, reporting the smallest P value for
each comparison. A one-way ANOVA was used to test whether isoform
abundances are different in any of the three conditions shown in Fig. 1g.

Generation of stable and inducible shRNA knockdown cell lines

Production and preparation of lentivirus. Oligonucleotides with shRNA inserts
against eleven RBPs (Supplementary Table 2) were ordered as Ultramer DNA
Oligos from Integrated DNA Technologies (Leuven, Belgium). All sequences were
based on°®. Oligonucleotides containing shRNA inserts were PCR-amplified with
primers 5-TCTCGAATTCTAGCCCCTTGAAGTCCGAGGCAGTAGGC-3 and
5'-TGAACTCGAGAAGGTATATTGCTGTTGACAGTGAGCG-3' and purified
with QIAquick PCR Purification Kit (Qiagen). shRNA inserts and miR-
E18_LT3GEPIR_Ren714 backbone (inducible via Tet-On system) were cut with
EcoRI and Xhol (New England Biolabs). Backbone was purified from agarose gel
with QIAquick Gel Extraction Kit (Qiagen). The fragments were then ligated with
T4 DNA Ligase (New England Biolabs) at 16 °C overnight.

Constructs were transduced into NALM-6 via HEK293T-produced lentiviruses.
To this end, 10 cm dishes of HEK293T were transfected using 30 pl Lipofectamine
2000 (Thermo Fisher Scientific) with three plasmids: 4 pg shRNA-producing
constructs + 2 ug psPAX2 (lentiviral packaging) + 1 ug pMD2.G (lentiviral
envelope) at 72 h prior to transduction. On the first day after transfection, the
medium was changed. Work with cells used for lentiviral production was
conducted in the S2 laboratory.

Transduction of NALM-6 cells. Lentiviral production was confirmed with Lenti-X
GoStix (Takara) and lentiviruses were concentrated with Lenti-X Concentrator
(Takara) according to the manufacturer’s recommendations. For transduction,

1 x 106 NALM-6 cells in 500 pl of medium were added to the concentrated virus.
5 pg/ml polybrene (Sigma-Aldrich) was added. The cells were centrifuged at 800 g
and 32 °C for 30 min. Cells were then transferred into 6-well plates and cultivated
in normal growth medium without antibiotics. Selection was started after 48 h with
0.5 ug/ml puromycin (Thermo Fisher Scientific). Antibiotic medium was

exchanged every 2-3 days. As soon as cells were not dying under selection anymore
and the population was stable, induction experiments were started. After trans-
duction, cells remained in the S2 laboratory for at least 6 weeks. Then, Lenti-X
GoStix was used to check for any remaining lentivirus.

Induction of stable shRNA-expressing NALM-6 cells. Controlled by the Tet-
responsive TRE3G promoter, the expression of sStRNA was induced by addition of
doxycycline (Thermo Fisher Scientific). To this end, 2 x 10 NALM-6 cells were
seeded into a six-well plate in 2 ml medium containing 0.5 ug/ml puromycin and
induced with 0.5 pug/ml doxycycline, diluted in RPMI 1640 medium (Thermo
Fisher Scientific). Induction was conducted at 37 °C and 5% CO, and cells were
harvested after 48 h. During induction, the shRNA expression system is coupled to
the production of eGFP, which was examined by fluorescence microscopy before
harvesting.

Quantitative real-time PCR (qPCR). RNA was extracted from the induced har-
vested cells using the RNeasy Plus Mini Kit (Qiagen). This RNA was used for gPCR
to validate the RBP knockdown as well as for semiquantitative RT-PCR experi-
ments to check the splicing pattern of endogenous CD19. The qPCR was conducted
using the Luminaris HiGreen qPCR Master Mix, low ROX (Thermo Fisher Sci-
entific) according to the manufacturer’s recommendations. Oligonucleotide
sequences of all QPCR primers are given in Supplementary Table 3.

Targeted DNA sequencing. DNA-seq of the minigene library was performed on the
PacBio SMRT sequencing platform at MPI-CBG Dresden. For this purpose, the
minigene plasmid library was digested with EcoRI and HindlIIl (New England
Biolabs) and run on an agarose gel. The desired band at the size of 1301 nt was cut
out and purified using QIAquick Gel Extraction Kit (Qiagen). For the run on the
PacBio SMRT cell, standard library preparation was performed.

Targeted RNA sequencing. NALM-6 cells were electroporated with the mutated
minigene library (see above). 24 h later cells were harvested and RNA was isolated
via the RNeasy Mini Kit (Qiagen). 20 pg isolated RNA was poly-A-selected using
Dynabeads Oligo (dT),s beads (Invitrogen) according to the manufacturer’s
recommendations. Reverse transcription was performed on 500 ng poly-A-selected
RNA with RevertAid Reverse Transcriptase (Thermo Fisher Scientific) according to
the manufacturer’s recommendations. To prevent chimeric amplicons, the RNA-
seq libraries were amplified via emulsion PCR® using the Phusion DNA Poly-
merase (New England Biolabs). The following primers containing Illumina adap-
tors were used in the PCR: 5- CAAGCAGAAGACGGCATACGAGATCGGTCTC
GGCATTCCTGCTGAACCGCTCTTCCGATCTNNNNNNNNNNGGAACCTCT
AGTGGTGAAGG-3' (fwd) 5-AATGATACGGCGACCACCGAGATCTACACT
CTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNNNCCGCCAGTGTG
ATGGATATC-3 (rev) under following conditions: 98 °C for 30, 25 cycles of
[98 °C for 10's, 63 °C for 20s, 72 °C for 1 min] and final extension at 72 °C for

5 min. Amplicons were purified using Agencourt AMPure XP beads (Backman
Coulter). Purified products were analysed on the TapeStation 2200 capillary gel
electrophoresis instrument (Agilent) and quantified using the Qubit assay (Thermo
Fisher Scientific). RNA-seq was carried out on the Illumina MiSeq platform using
paired-end reads of 350 nt + 250 nt length and a 10% PhiX spike-in to increase
sequence complexity.

PTBP1iCLIP2 experiments. We used the iCLIP2 approach for transcriptome-wide
mapping of PTBP1 binding to RNA in NALM-6 cells. iCLIP2 was performed
according to our previously published protocol®. Briefly, the iCLIP2 libraries were
made from NALM-6 cells grown in RPMI as described above (2 x 10° cells per
replicate). To induce protein-RNA crosslinks, the cells were irradiated with 150 mJ/
cm? UV light at 254 nm. Next, PTBP1 protein-RNA complexes were immuno-
precipitated using 2 g of anti-PTBP1 antibody (Santa Cruz, sc-56701). RNase
digestion was performed by adding 10 ul of 1/300 or 1/500 diluted RNase I
(Ambion) to the sample. RNA purification, reverse transcription and library pre-
paration were done as described in3>.

PTBP1 siRNA electroporation in MHHCALL4 and P493-6 cells. The cell lines
MHHCALL4 and P493-6 were electroporated with a specific siRNA targeting PTBP1
(TAGCAAGATGATACAATGGTA[AT][dT]; Sigma, sR90) or a Scramble control
(D-001810-10-50, Dharmacon) using the Neon Transfection System (Thermo Fisher
Scientific). In short, 5 x 10° cells were resuspended in 10 pl of 5 uM siRNA in buffer R
and electroporated using the Neon Transfection System 10 uL Kit (MPK1096,
Thermo Fisher Scientific) with the following settings: 1700 V, 20 ms, 1 pulse. After
electroporation, the cells were cultured in the recommended media for 48 h and
collected for CD19 cell surface staining, quantitative real-time PCR and Western blot.

CDI19 cell surface staining. In all, 1 x 10% cells were resuspended in 50 ul of PBS,
20% FBS, 1 mM EDTA and 2.5 ul of Human TruStain FcX blocking (422302,
BioLegend) and incubated for 20 min. After blocking, 2.5 ul of APC anti-human
CD19 antibody (1:20, 982406, BioLegend) was added to the cells and incubated for
30 min. Cells were washed twice with PBS, 20% FBS, 1 mM EDTA and the
CD19 staining was measured using the BD Accuri C6 Plus Flow Cytometer
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instrument (BD Biosciences). Flow cytometry data was analysed with FlowJo
(version 10.7.2) software.

Western blot. Cell pellets were resuspended in RIPA buffer with Protease/Phos-
phatase Inhibitor (1861282, ThermoScientific) and 30 ug of protein were loaded in
a 10% pre-cast gel (456-1035, BioRad). Antibodies against CD19 (1:1000, #3574,
Cell Signalling), PTBP1 (1:500, sc-56701, Santa Cruz Biotechnology) and p-Actin
(1:5000, 8H10D10, Cell Signalling) were used for total protein expression detection.
Images were acquired with GBox instrument (Syngene).

Quantitative real-time PCR. RNA was extracted using the Maxwell RSC Instrument
(Promega) and the Maxwell® RSC simplyRNA Cells Kit (AS1390, Promega). 0.5 g
or RNA were reverse-transcribed using the SuperScript™ IV Reverse Transcriptase
kit (18090010, Invitrogen) following the manufacturer’s protocol. RNA expression
was measured using SYBR Green Master MIX (Thermo Fisher Scientific). Quan-
titative real-time PCR was performed in a QuantStudio™ 7 Pro Real-Time PCR
System (Thermo Fisher Scientific) with specific primers (Supplementary Table 3)
spanning the exon-exon junctions between exons 2 and 3 (E2E3 1&2), 3 and 4
(E3E4), and 10 and 12 (E10E12) as well as the exon-intron junctions from exon 2
to intron 2 (e2i2), from intron 2 to exon 3 (i2e3).

Re-analysis of RNA-seq data from Orlando et al. We re-analysed RNA-seq data
of B-ALL patients at screening and after CART-19 therapy relapse from Orlando
et al.” to quantify intron 2 retention in CDI9. Since raw data were not available, we
obtained BAM files for the different patients deposited in the Short Read Archive
(SRA) under the accession SRP141691. For 10 patients, matched data were avail-
able at screening and relapse. We excluded one patient (patient #17) after visual
inspection indicating that the submitted data in fact corresponded to DNA-seq
rather than RNA-seq data. The data contained the aligned reads mapped to several
genes from the immune system including CD19. Using custom scripts, we extracted
the sequence of the reads, reformatted them and generated fastq files. We then
mapped the fastq files to our minigene sequence using STAR®® (v2.6.1). We used
the re-mapped reads to quantify the levels of intron 2 retention in the different
samples using the R/Bioconductor package ASpli® (version 1.12.1).

For the expression analysis of B-ALL patients at screening and after CART-19
therapy relapse, we used the gene read counts provided in Supplementary Data
Table 1 of Orlando et al.”. Gene lengths were taken from BiomaRt (version 2.4.21)
for the human genome version GRCh37 accessed through the R/Bioconductor
package OrgDb (version 3.10.0). Normalisation and RPKM calculations were
performed using the R/Bioconductor package edgeR® (version 3.28.1).

DNA-seq barcode demultiplexing. We obtained the circular consensus sequences
(CCS), stored as fastq files. Two rounds of sequencing yielded a total of 337,215 CCS.
We kept only reads with a length of 150-1150 nt. We adapted the demultiplexing
procedure described in'®. In this case, we searched for the 15-nt barcode in the last 50
nt of the read. If the barcode was not found, we searched in the last 50 nt of the reverse
complementary strand. We only allowed the recovery of barcodes ranging from 14 to
16 nt, which would account for barcodes containing one nucleotide inserted or
deleted. Before proceeding with the variant calling, we determined a cutoff to decide
the minimal number of CCS to call variants on. Here, we kept only barcodes sup-
ported by at least 4 CCS. In total, we recovered 68.5% of all the demultiplexed
barcodes which corresponded to 10,558 different minigenes, closely resembling the
~10,000 minigene clones that were used to generate the library.

DNA-seq mapping and variant calling. We use BLASR®! with the standard
parameters to map the demultiplexed minigene sequences to the minigene reference.
We performed variant calling in the aligned BAM files using the GATK®? Haploty-
peCaller (version 4.0.10) with the parameters --kmer-size 10 --kmer-size 15 --kmer-
size 25 --allow-non-unique-kmers-in-ref. We used different k-mer sizes to improve the
detection of problematic regions. Mixed barcodes, i.e., barcodes containing two
classes of mutations, were removed based on the “penetrance score”, reported as allele
frequency (AF) in the GATK vcf output files, such that barcodes with more than 25%
variants of low penetrance (AF < 0.8) were discarded. Using this strategy, we were
able to recover 100,135 mutations of high quality coming from 10,295 distinct
minigenes plus an additional 194 unmutated WT minigenes with distinct barcodes.
57.4% of the mutations appeared in at least ten different minigenes.

RNA-seq barcode demultiplexing. RNA-seq libraries were sequenced on Illumina
MiSeq as 350 nt + 250 nt paired-end reads, yielding approximately 23 million
reads. We controlled their quality using FastQC (version 0.11.5, https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) and removed bad quality ends of
reads using Trimmomatic®? (version 0.36, parameters: SLIDINGWINDOW:6:10
MINLEN:0). After trimming, we filtered for read pairs with a minimal length of
305 nt (read1) and 157 nt (read2) and, as done in Braun et al.!®, we used
matchLRPatterns() and trimLRPatterns() from the R/Bioconductor package Bio-
strings to extract the 15-nt barcode in readl between the two flanking restriction
sites (Lpattern = TGCAGAATTC, Rpattern = GGATCC) allowing one mismatch.
All read pairs with barcode length between 14 and 16 nt were kept for further
processing. Barcode sequences were added to the read names in the fastq file and 5/

ends of reads were trimming (readl: everything until the second anchor sequence
GGATCC, read2: the first 12 nt). After identifying and trimming the barcode and
other regions, we used Cutadapt®* (version 1.6, parameters: --adaptor=TA-
GAGGTTCC --overlap=3 --error-rate=0.1 --no-indels --minimum-length=244
--pair-filter=both) to remove remaining primer sequences from readl. Lastly, the
barcode information attached to the read names was used to demultiplex all read
pairs into individual fastq files for each minigene.

Isoform quantification from RNA-seq data. Only barcodes/minigenes also
detected in the DNA-seq library were kept for further analysis. All minigenes with
insertions or deletions of 10 or more base pairs were removed from further ana-
lysis. For better mapping results, we shortened readl to at most 260 nt. Read pairs
of each minigene were mapped to the respective minigene (including all mutations
with penetrance >0.8, but excluding insertions and deletions) using STAR%®
(version 2.6.1b). An annotation of three isoforms (exon 2 inclusion and skipping,
as well as the artefact PCR product Aex2part which lacks an internal fragment of
exon 2 due to a reverse transcription artefact®) was provided to STAR during
mapping and an --sjdbOverhang of 259 was set. When running STAR, all SAM
attributes were written, up to ten mismatches were allowed, soft-clipping was
prohibited on both ends of the reads and only uniquely mapping reads were kept
for further analysis. BAM files were sorted and indexed using SAMtools®®
(version 1.5).

Properly and consistently mapped pairs were used for isoform reconstruction
using a custom Perl script. Read pairs were considered properly mapped if they
mapped with the right orientation on opposite strands. Read pairs mapped
consistently if they either did not overlap or in case of an overlap, agreed in their
detected splice junctions. Besides, only read pairs for which both mates exceeded the
constitutive exon boundaries by at least 10 nt were used for isoform reconstruction.
All other pairs were removed since they did not provide any isoform information.
Only minigenes covered by at least 100 read pairs usable for isoform reconstruction
were kept for further analysis. For each read pair, the CIGAR strings of the two mates
were used to reconstruct their splicing isoform. Regarding the artefact product
Aex2part, we combined the eight possible mappings of the missing internal fragment
of exon 2 which are possible due to the associated 8-nt repeat sequence®. Only
isoforms, which were supported by > 1% of the read pairs and at least two read pairs
in at least one minigene, were kept for further analysis.

The analysis described above was done separately for two replicates. All
isoforms occurring with a frequency of at least 5% in two or more minigene
variants in either of the two replicates were kept as individual isoforms. All other
detected isoforms were summarised into a category “discarded”. Isoforms with
Aex2part, i.e., excluding the internal intron in exon 2, were combined with their
“real” counterparts without Aex2part by merging isoforms that only differed in the
exclusion of the internal fragment of exon 2. In total, this leads to a set of 101
individual isoforms.

Estimation of single-mutation effects and splicing-affecting mutations. Since
the majority of the minigenes in the dataset exhibit more than one mutation, with a
mean of 9.6 mutations per minigene, the splicing-affecting mutations cannot be
read out directly from the data. We used multinomial logistic regression to infer the
effects of single mutations from combined measurements. The regression is based
on hypothetical minigenes containing only one mutation, and on the assumption
that mutation effects (log fold-changes compared to WT) add up into combined
ones at the levels splice isoform ratios!®.

For regression, we focused on the five major isoforms that are already present in
the WT minigene (see main text). Therefore, minigenes exhibiting more than 5%
cryptic isoforms were removed from the dataset, and for the remaining minigenes
the cryptic isoforms were merged into a lumped splicing category which we termed
“other”. Thus, six categorical splicing outputs (inclusion, skipping, intron2-
retention, alt-exon2, alt-exon3, other) were considered in the regression model, and
the probability of each these outputs to be observed was assumed to equal the
measured isoform frequencies. The regression was formulated as a softmax
regression problem using the LogisticRegression command from the Python
package scikit-learn®”.

Given the large number of mutations per minigene in the dataset, the regression
was prone to overfitting (i.e., mutations with weak effects on splicing were assigned
non-zero coefficients to fit random fluctuations in the data; not shown). To avoid
this problem, we employed L1 penalisation. The strength of the penalty was
optimised by tenfold cross-validation, and the resulting inverse regularisation
strength was C = 10 for both replicates.

The goodness of the model in describing the measured combined mutation
effects (minigenes) was tested by assessing the correlation between model and data
in training and test datasets (Supplementary Fig. 4a). Tenfold cross-validation was
performed by once randomly splitting the dataset into ten parts. In ten distinct
model evaluations, nine of the data sections were simultaneously for model
training, whereas the remaining section served as test data. Therefore, each data
point is only once part of the test data, and the mean Pearson correlation
coefficient between model prediction and test data was used to assess the model
performance. Cross-validation at the final penalisation strength (with the highest
correlation between model and test data) showed that the method performs very
well in estimating the minigene isoform frequencies of the test dataset
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(Supplementary Fig. 4b). Since we saw little variability in the prediction power for
these ten validation runs, we report the average correlation coefficient in Fig. 3b:
The Pearson correlation coefficients between softmax predictions of combined
mutation effects and measurements lie for the single isoforms between 0.68-0.95
for the first replicate and between 0.71-0.93 for the second replicate.

The accuracy of the model-predicted single-mutation effects in the softmax
regression was assessed by leaving out 56 directly measured single-mutation
minigenes (i.e., minigenes bearing only one mutation) from the training data. Since
most of these 56 mutations are not splicing-affecting, we focused our analysis on
the seven mutations that change the inclusion isoform level beyond two standard
deviations of the WT minigene distribution: For each of the seven mutations, we
performed multiple softmax fits in which the training data: (i) contained all
minigenes not harbouring the mutation of interest, (ii) excluded its single-mutation
minigenes, and (iii) comprised varying numbers of combined mutation minigenes
containing the mutation. For each mutation occurrence between 1 and 10, we used
up to 7 different, randomly chosen combinations of multiple mutated minigenes
including the mutation of interest. For each of these models, we generated
predictions for the single-mutation effect. The prediction accuracy was assessed by
calculating the difference between model and direct single-mutation measurements
for a certain mutation occurrence. The standard deviation of the difference
between model and data was used as a measure for the model error. We find that a
mutation occurrence of 3 leads to an error level equal to two WT standard
deviations (calculated based on inclusion levels of all WT minigenes in the first
replicate). For higher mutation occurrences, the prediction accuracy does not
improve further (Supplementary Fig. 4c).

The final modelling step was to identify splicing-affecting mutations. For this
purpose, we adopted an approach analogous to empirical P values, i.e., we compared
predicted single-mutation effects to empirical isoform frequency distributions in the
WT. Isoform frequencies were measured for 195 and 194 WT minigenes in the two
replicates. For each isoform and replicate, we chose the 2.5% and 97.5% quantiles of
the respective empirical WT frequency distribution as cutoffs (corresponding to a
two-sided 5% cutoff). A mutation was considered to have an effect on a splice isoform
if, for both replicates, the frequencies predicted by the model were beyond the
respective cutoffs and if the effects were in the same direction.

Splice site characterisation. Splice site usage for a given position represents the
frequency of the isoforms using a given splice site in a particular minigene divided
by the sum of all isoform frequencies for the same minigene. For Fig. 4a, we used
the maximum usage of a particular splice site across all minigenes. The strength of
putative splice sites along the minigene was calculated using MaxEnt scores?® in
sliding windows of 9 nt or 23-nt to evaluate the corresponding sequences as
potential 5" or 3’ splice sites, respectively. The procedure was repeated for all
individual point mutations to assess their potential to create cryptic splice sites. For
the calculations, we used the Python implementation of MaxEnt (maxentpy, ver-
sion 0.0.1, https://github.com/kepbod/maxentpy). We filtered the output by
keeping only windows that contained a GU or AG dinucleotide in the positions 4-5
(5" splice site) or 19-20 (3 splice site), respectively.

We compared the effects of single-point mutations in our library to predictions
by the state-of-the-art deep learning algorithm SpliceAT?>. We ran SpliceAl
(version 1.3.1) with the default parameters plus masking (-M1), using
GENCODES®8 (v31) annotation for the human genome version hg38 as a reference.
Given that SpliceAl results are reported in terms of a probability of gain or loss of a
particular splice site, we assigned the gained splice sites in our cryptic isoforms by
comparison to the canonical exon 2 inclusion isoform, such that if a new splice site
appears in the cryptic isoform, it is considered as “gained” with respect to the “lost”
WT splice site. All splice sites in a cryptic isoform were given the same prevalence
score, i.e., the prevalence score of the mutation-isoform pair. To compare the
SpliceAl scores for a given splice site gain with our prevalence score (Fig. 4f), we
considered the mutations that (i) share the same gain-loss pair of positions in both
assays, and (ii) are predicted by SpliceAl to gain of a new splice site (i.e., a cryptic
site where score_gain > score_loss) upon a given mutation.

RBP binding site predictions. For the prediction of RBP binding motifs, we used
the web versions of the oRNAment?8 (http://rnabiology.ircm.qc.ca/oRNAment)
and ATtRACT? (https://attract.cnic.es/) databases to query the minigene sequence
for presence of RBP motifs (Supplementary Fig. 7a). From the obtained predic-
tions, we collapsed overlapping binding sites from the same tool and RBP.

We used DeepRiPe3? to predict the potential impact of single-point mutations
on RBP binding. To this end, we downloaded the trained models for PAR-CLIP
and ENCODE eCLIP data on 159 RBPs available in the GitHub repository (https://
github.com/ohlerlab/DeepRiPe). We scored each mutation (annotated with regards
to the hg38 reference genome) across the individual RBP models and reported
every mutation for which the model score changed by at least 0.1 in either direction
compared to the WT sequence (Supplementary Data 6, worksheet “DeepRiPe
mutations”). Positive and negative delta scores refer to a predicted increase or
reduction in RBP binding, respectively. The scoring functions are based on the
iPython notebooks provided by DeepRiPe: https://colab.research.google.com/drive/
18yeqRE7KmOjfbUaLAfJ6rMBjAulYo-Uc?usp=sharing

For the definition of significant RBP binding sites, we used the following strategy.
For binding sites predicted by oRNAment and ATtRACT, we first checked their

overlap separately for each isoform. If a binding site overlapped in at least one
position with a splicing-affecting mutation with respect to this particular isoform, we
defined this binding site as an isoform-specific significant binding site. All binding
sites that were significant for at least one isoform were collapsed into the complete list
of significant binding sites, yielding a total of 315 significant binding sites for 74 RBPs.
In the case of DeepRiPe, a mutation with a delta score >0.25 for a given RBP model
was required to overlap with a splicing-affecting mutation for a particular isoform
(our screen) to be considered an isoform-specific significant RBP-changing mutation.
In a similar manner, all isoform-specific mutations for any isoform were collapsed
into a complete list of significant RBP-changing mutations, yielding a total of

222 significant mutations that affected the binding of 58 RBPs.

iCLIP data processing. iCLIP libraries were sequenced on an Illumina NextSeq
500 sequencing machine as 92 nt single-end reads including a 6 nt sample barcode as
well as 5 + 4 nt unique molecular identifiers (UMIs). Basic quality controls were done
with FastQC (version 0.11.8) (https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) and reads were filtered based on sequencing qualities (Phred score) in the
barcode region using the FASTX-Toolkit (version 0.0.14) (http://hannonlab.cshl.edu/
fastx toolkit/) and seqtk (version 1.3) (https://github.com/lh3/seqtk/). Reads were
demultiplexed based on the experimental barcode, which is found on positions 6 to 11
of the reads, using Flexbar®® (version 3.4.0). Afterwards, barcode regions and adaptor
sequences were trimmed from read ends using Flexbar. Here, a minimal overlap of 1
nt of read and adapter was required, UMIs were added to the read names and reads
shorter than 15-nt were removed from further analysis. Downstream analysis was
done as described in Chapters 3.4 and 4.1 of Busch et al.”%. Genome assembly and
annotation of GENCODE®S v31 were used during mapping.

Patient data analysis. RNA-seq data of 222 B-ALL patients from the Ther-
apeutically Applicable Research To Generate Effective Treatments (TARGET)
programme (https://ocg.cancer.gov/programs/target) were processed from fastq
files. Sequencing adaptors were trimmed with TrimGalore”! (version 0.6.6), aligned
to the hg38 human genome assembly with STAR®® (version 2.5.2a), and sorted and
indexed with SAMtools®® (version 1.11). Splice junctions were quantified indivi-
dually for each sample using MAJIQ’? (version 2.2) and ENSEMBL reference
transcriptome GRCh38.9473. Only splice junctions with a usage level (percent
selected index, PSI) of at least 5% in any given TARGET B-ALL samples were
quantified. The local splicing variation (LSV) harbouring alternative splicing in the
region of the CDI19 minigene (Supplementary Fig. 1a) was quantified in 220 out of
222 B-ALL patients. For comparison, we used RNA-seq data of immature and
mature B cells from healthy donors from*474.

Annotated variant call format (VCF) files were downloaded for the TARGET
B-ALL patient cohort from the NCI Genomic Data Commons (GDC) Data Portal
(accessed 11/18/2021). These files are available under controlled access (see
Acknowledgements). In brief, the VCF files had been generated from patient whole-
exome DNA-seq data using the GDC DNA-seq Analysis Pipeline (https://docs.gdc.
cancer.gov/Data/Bioinformatics_Pipelines/DNA_Seq_Variant_Calling Pipeline/)
which includes genomic alignment with BWA, data clean-up with Picard tools and
GATK, and calling of somatic variants from matched samples of tumor and adjacent
normal tissue for each patient with Mutect2. The raw VCF files were further
annotated using the Variant Effect Predictor (VEP) tool to infer the location of each
mutation, its consequence (frameshift/silent mutation) and the affected gene(s) as
well its overlap with known variants in databases such as ClinVar and dbSNP. Using
custom scripts, a total of 468 VCF files of TARGET B-ALL patients were parsed for
CD19 mutations. This identified 39 patients with somatic mutations within the CD19
gene, including 11 mutations in the CDI19 minigene region (Supplementary Data 4).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The sequencing data generated in this study have been deposited in the Gene Expression
Omnibus (GEO) database under accession code GSE182894. The collection consists of
the PacBio DNA-seq libraries (GSE182892) [https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE182891], the lllumina RNA-seq libraries (GSE182892) and the PTBP1
iCLIP2 libraries in NALM-6 cells (GSE182893). The results published here are in whole
or part based upon data generated by the Therapeutically Applicable Research to
Generate Effective Treatments (https://ocg.cancer.gov/programs/target) initiative,
phs000218. The data used for this analysis are available at https://portal.gdc.cancer.gov/
projects. The remaining data are available within the Article, Supplementary Information
or Source Data files. Source data are provided in this paper.

Code availability

The computational code for the analyses and figure generation is available in Zenodo
[https://doi.org/10.5281/zenodo.6614454]/Github [https://github.com/mcortes-lopez/
CD19_splicing_mutagenesis] under an open-source MIT license.
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