
Article https://doi.org/10.1038/s41467-022-33148-5

Topical application of an irreversible
small molecule inhibitor of lysyl oxidases
ameliorates skin scarring and fibrosis

Nutan Chaudhari1,2, Alison D. Findlay3, Andrew W. Stevenson 1,
Tristan D. Clemons2,4, Yimin Yao3, Amar Joshi3, Sepidar Sayyar5,6,
Gordon Wallace 5,6, Suzanne Rea7, Priyanka Toshniwal1, Zhenjun Deng1,
Philip E. Melton8,9,10, Nicole Hortin1, K. Swaminathan Iyer2, Wolfgang Jarolimek3,
Fiona M. Wood1,7 & Mark W. Fear 1

Scarring is a lifelong consequence of skin injury, with scar stiffness and poor
appearance presenting physical and psychological barriers to a return to
normal life. Lysyl oxidases are a family of enzymes that play a critical role in
scar formation andmaintenance. Lysyl oxidases stabilize themain component
of scar tissue, collagen, and drive scar stiffness and appearance. Here we
describe the development and characterisation of an irreversible lysyl oxidase
inhibitor, PXS-6302. PXS-6302 is ideally suited for skin treatment, readily
penetrating the skin when applied as a cream and abolishing lysyl oxidase
activity. In murine models of injury and fibrosis, topical application reduces
collagen deposition and cross-linking. Topical application of PXS-6302 after
injury also significantly improves scar appearance without reducing tissue
strength in porcine injury models. PXS-6302 therefore represents a promising
therapeutic to ameliorate scar formation, with potentially broader applica-
tions in other fibrotic diseases.

Currently, there are no effective therapeutics to ameliorate scar for-
mation and, consequently, patients with significant injuries often
endure repeated and expensive surgical and adjunct interventions to
improve the scar. Scar appearance and stiffness are largely a result of
excess, densely packed collagen in the dermal extracellular matrix
(ECM), a consequence of wound repair.

The lysyl oxidase family of enzymes [comprising 5members; lysyl
oxidase (LOX) and lysyl oxidase-like 1-4 (LOXL1-4)] plays a critical role
in collagen deposition and stability. Their primary function is the

oxidation of side chain lysine residues in collagen and elastin, leading
to the formation of aldehydes which spontaneously react to form
covalent crosslinks. Initially, divalent crosslinks are formed, also
known as the reducible or immature crosslinks dehydrohydroxy-
lysinonorleucine (HLNL) and dehydrodihydroxy-lysinonorleucine
(DHLNL)1. HLNL and DHLNL undergo further reactions to form
stable, trivalent compounds also called mature or non-reducible
crosslinks such as pyridinoline (PYD) and deoxypyridinoline (DPD)2.
Under normal physiological conditions, crosslinks are essential for the
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structural integrity of collagen, elastin, and the skin3. However, under
some pathological/ disease settings, including scar formation,
increased production of ECMproteins leads to excessivemature cross-
link formation, increased matrix stability and, ultimately, fibrosis4–6.

β-aminoproprionitrile (BAPN) is a well-known inhibitor of all lysyl
oxidases (pan-LOX inhibitor). When given systemically to developing
animals, BAPN results in lathyrism (weakness and fragility of con-
nective tissues such as skin, bones and blood vessels as a result of
increased collagen solubility)7–10. Nevertheless, the fundamental
mechanism by which lysyl oxidase inhibition diminishes, and poten-
tially reverses, fibrosis has warranted evaluation in clinical studies10. In
patients with scleroderma9,10 long-term BAPN treatment increased the
relative amount of soluble collagen, providing a mechanistic proof of
concept. Shorter-term treatment has also proven effective in pre-
venting the recurrence of keloids after surgery10,11. Prolonged admin-
istration of BAPN does, however, result in toxicity12, including allergic
skin rash, anemia9,12,13, and lathyritic bone changes12,14. These side
effects are dose-related and likely driven by off-target and metabolite-
mediated effects. Inhibition of LOX and LOXL enzymes with a more
selective compound designed for topical application therefore
remains a promising approach to reduce collagen deposition in scar-
ring and fibrosis. Here we show that fluoroallylamine-based small
molecule pan-LOX inhibitors readily permeate skin when applied
topically, and reduce collagen deposition and crosslinking in vitro. The
inhibitors reduce skin fibrosis and improve scar appearance in animal
models, suggesting they may be effective in the amelioration of scar
formation after skin injury.

Results
PXS-4787 is a mechanism-based specific and effective pan-LOX
inhibitor
BAPN has long been recognized as an irreversible, mechanism-based
small molecule inhibitor of all lysyl oxidases, yet its shortcomings have
limited widespread clinical use. Based on the demonstrated successes
of fluoroallylamine-based inhibitors for semicarbazide-sensitive amine
oxidase (SSAO) and LOXL215,16, we sought to design a series of pan-lysyl
oxidase inhibitors incorporating this motif. At the outset, key drivers
and measures of success were deemed to be comparable potency for
all lysyl oxidase isoforms, an irreversible mode of inhibition and good
selectivity over related amine oxidases. Moreover, in light of the toxi-
cities associated with BAPN, postulated to be a consequence of
unwanted substrate activity at several amine oxidases, including SSAO
and diamine oxidase (DAO)14, identifying a compound devoid of off-
target substrate capacity was an important criterion. Lastly, as the
intended routeof administrationwas topical, a development candidate
with a small molecular weight and excellent permeability was sought.

Using the endogenous substrate lysine as inspiration and extra-
polating to mofegiline (reported in patent literature to be a modest
inhibitor of chicken lysyl oxidase activity17) to incorporate the fluor-
oallylamine necessary for mechanism-based inhibition, provided
a sound starting point from which to begin structure-activity-
relationship (SAR) investigations (Fig. 1a, b). To more readily facil-
itate analog preparation an oxygen linker was incorporated, providing
1 and 2. However, as this modification resulted in a slight reduction in
lysyl oxidase (LOX) potency we took the opportunity to survey alter-
native fluoroallylamine configurations (including 3) before identifying
4 as a promising candidate (LOX IC50 8 µM) albeit with substantial
SSAO substrate activity. To address this shortcoming we investigated
the nature of the linker and, while introduction of nitrogen (5 and 6)
and sulfur7 proved unhelpful, incorporation of a sulfone, resulting in
PXS-4787, provided a compound with the desired level of balanced
lysyl oxidase activity and no unwanted off-target amine oxidase
activity (as either inhibitor or substrate).

The irreversible nature of PXS-4787-mediated inhibition was
confirmed by a jump dilution assay (Fig. 1c) in which 100-fold

dilution from 10x the IC50 led to only a small (9%) recovery in
LOXL1 activity (LOXL1 was used as a surrogate for LOX owing to
similar pharmacology). Intrigued by the stark difference in (irre-
versible) inhibition displayed by PXS-4787 (SO2-linker) compared
to 4 (O-linker) we also profiled the corresponding sulfone analog
of 3 (denoted 8 in Fig. 1c) and a similar trend was observed.
Overall, the sulfone linker in PXS-4787 is both unique and critically
important in achieving a compound with a suitable profile for
successful clinical development.

PXS-4787 dose-dependently inhibits lysyl oxidases with IC50

values ranging from 0.2 µM (LOXL4) to 3 µM (LOXL1) (Fig. 2a) and
displays comparable inhibitory activity across species (Supplementary
Table S1). As expected for a mechanism-based inhibitor, PXS-4787
displays increased potency upon longer pre-incubation times (Fig. 2b).
In jump dilution experiments, PXS-4787 demonstrated irreversible
inhibition of LOXL1, LOXL2, and LOXL3 (3, 9, and 8% recovery of
enzyme activity, respectively, Fig. 2c). In contrast, the activity of
enzyme exposed to a reversible inhibitor (lacking the fluoro leaving
group) was virtually completely recovered. PXS-4787 competes with a
model substrate (putrescine) for the LOX binding site (Fig. 2d). The
allylamine of PXS-4787 interacts with the co-factor of the enzyme and
elicits mechanism-based inhibition (Fig. 2e). Through careful optimi-
zation, and in contrast to BAPN, PXS-4787 selectivity targets lysyl
oxidases and is neither an inhibitor of, nor a substrate for, related
oxidases (Fig. 2f, g and Supplementary Table S1). Furthermore, PXS-
4787 was clean when profiled in a broad panel of macromolecular
targets using enzyme and radioligand binding assays (LeadProfi-
lingScreen, Eurofins CEREP Panlabs, 68 assays, test concentration
10 µM; Supplementary Data S1).

LOX expression in normal skin and scar tissue and fibroblasts
Injury is known to cause an upregulation of lysyl oxidases. To deter-
mine whether these changes are sustained over time, qPCR for LOX
and LOXL transcripts was conducted using fibroblasts isolated from
matched scar and normal skin samples. LOX and LOXL1 were sig-
nificantly increased in scar fibroblasts compared to normal skin
(Fig. 3a). Immunohistochemistry for LOXwas also performed from the
tissue samples of normal human skin tissue and normotrophic scar
tissue fromwhich fibroblasts were isolated at least 2 years after injury.
LOX protein expression was observed in epithelial and endothelial
cells as well as dermal cell populations and significantly increased in
scar when compared to the matched control skin (Fig. 3b–d).

PXS-4787 reduces deposition and crosslinking of collagen I
secreted by human fibroblasts in vitro
To establish that PXS-4787 does not have any unwanted effects on cell
viability, primary human fibroblasts were treated with a range of PXS-
4787 concentrations (0–100 µM) for 72 h. PXS-4787 had no effect on
fibroblast cell viability (Supplementary Fig. S1) and treatment of
HepG2 cells with the same range of concentrations did not induce
phospholipidosis (score 0, data not shown). In pharmacological
experiments, the highest concentration used was 10 µM which
achieved complete inhibition of the least sensitive lysyl oxidase
after 2 h.

To determine the effects of PXS-4787 on collagen cross-link for-
mation, primary human fibroblasts from six different participants (six
biological replicates) were cultured for 11 days using ‘scar-in-a-jar’
conditions in the presence of 0, 1, and 10 µM of inhibitor. Liquid
chromatography with tandem mass spectrometry (LC-MS/MS) was
used to measure hydroxyproline and cross-link concentrations in
these samples. Hydroxyproline concentration provides a close esti-
mate of collagen concentration as it is present in high concentrations
in collagens and is critical to fibril formation. Baseline levels of
hydroxyproline and crosslinks showed high variation between biolo-
gical samples, likely reflecting differences in age, gender, and body site
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from which cells were isolated. At a concentration of 1 µM, PXS-4787
did not reduce the hydroxyproline concentration. However, 10 µM
significantly (p = 0.0385) diminished hydroxyproline concentration,
albeit to a small degree when compared to control (Fig. 4a). The
concentration of DHLNL, themore abundant immature cross-link, was
dose-dependently reduced by PXS-4787 (Fig. 4b) whileHLNL showed a
trend reduction at the highest tested concentration (Fig. 4c). Both
types of mature crosslinks (DPD and PYD) were dose-dependently
reduced (Fig. 4d, e). Interestingly, a significant and sustained reduction
in collagen I production was observed after PXS-4787 treatment at the
highest dose (Fig. 4i).

Having demonstrated PXS-4787 treatment significantly reduces
cross-link formation and collagen secretion in de novo matrix pro-
duction in vitro,we next examinedwhether this reduction in crosslinks
alters the ECM structure. Fibrillar collagen I deposition was measured
using confocal image analysis (Fig. 4f–k). Deposited fibrillar collagen I
was significantly reduced in the 10 µM treatment group (p <0.01,
Fig. 4f) compared to control and 1 µM treatment. Furthermore,
coherency analysis18 was used to determine collagen alignment. This
analysis specifically analyses the alignment of collagen fibers, with
more alignment increasing the score and more random distribution
provided a lower score. In scar tissue scores are higher as fibers are

densely parallel aligned in contrast to normal skin18. In both treatment
groups PXS-4787 significantly reduced coherency (p <0.01) when
compared to control (Fig. 4k) suggesting inhibition of crosslinking
reduces the stability of deposited collagen and changes the distribu-
tion to be more like that seen in normal skin in vitro. No change in
COL1A1 or LOX RNA levels was observed (Supplementary Fig. S4)
indicating treatment does not impact COL1A1 or LOX transcription.

Other studies have suggested LOX has non-enzymatic functions
linked to epithelial differentiation19,20. Given that PXS-4787 would be
applied topically, we investigated whether PXS-4787 had an impact on
both keratinocyte and fibroblast transcriptomes using RNASeq. Since
the target of interest is extracellular LOX activity, we wanted to
understand if PXS-4787 also affected intracellular LOX activity. PXS-
4787 (10 µM) was applied to cultured fibroblasts and keratinocytes
isolated from five different patients and treated for 24 h. RNASeq
analysis showedonly four geneswith significant differential expression
(FDR <0.05) in fibroblasts and only two differentially expressed genes
in keratinocytes (Supplementary Fig. S2 and Supplementary Table S3).
The underlying biological mechanisms related to extracellular matrix
biology of these six genes are unclear and these results suggest PXS-
4787 does not impact on intracellular functions of LOX relevant for
skin biology. This suggests application of the compound should
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Fig. 1 | Discovery and characterizationofpan-lysyl oxidase inhibitors, PXS-4787
andPXS-6302. aAnalog generation en route to the discoveryof PXS-4787 and PXS-
6302. b The measurement of enzymatic inhibitory activity was measured using an
Amplex Red oxidation assay, as described previously16. For compound oxidation
assays, the amount of hydrogen peroxide generated at a single concentration
(30 µM) of compound relative to DMSO was measured. Minimum of n = 2 for each
experiment. *Bovine (aorta) LOXused for analog screening due to ready availability

and pharmacological similarity to native human LOX. **Human recombinant
LOXL2. ***Human recombinant SSAO. c Jump dilution assay used to measure the
irreversible nature of LOXL1 inhibition (LOXL1 was used as a surrogate for LOX
owing to similar pharmacology (data are presented as mean ± standard deviation
(n = 17 independent experiments for reversible inhibitor,n = 3 for cpd3,4 and8 and
n = 22 and 4 for PXS-4787 and PXS-6302 respectively)). Source data are provided as
a Source Data file.
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effectively target extracellular LOX without impacting on skin cell
phenotype or leading to a compensatory response.

PXS-6302, a second-generation analog with improved drug-like
properties
PXS-4787 proved that the shortfalls of the archetypal pan-lysyl oxidase
inhibitor BAPN can be overcome, achieving an excellent efficacy and
selectivity profile. Stability data in cream formulations indicated that
some unwanted degradation occurred which stopped further pre-
clinical development. This necessitated the design of an analog,
PXS-6302 (Fig. 1a), chemically modified to improve stability in cream
formulations, that operates via the same irreversible mechanism of

lysyl oxidase inhibition as PXS-4787. Like PXS-4787, PXS-6302 is amore
selective inhibitor thanBAPN and is also optimally designed for topical
application (for in vitro potency, selectivity and off-target screening
data see Supplementary Table S1, Supplementary Data S2). It is a small
(molecularweight < 300), hydrophilicmoleculewith highpermeability
across artificial membranes, a pre-requisite for good skin penetration,
as determined by in vitro and ex vivo measurements. In the parallel
artificial membrane permeability assay (PAMPA) assay, PXS-6302
demonstrated high permeability. The penetration of PXS-6302
across a monolayer of cells was tested using Caco-2 or MDCKII cells
transfected with P-glycoprotein (Pgp). In both assays PXS-6302
exhibited a high permeability that was unaffected by the presence of
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Fig. 2 | Characterization of the mode of action of PXS-4787. a Lysyl oxidase
inhibitory profile of PXS-4787 (n = 11). b Time-dependent increase in potency of
PXS-4787 (n = 12 at each timepoint). c Irreversible inhibition of LOXL1, LOXL2, and
LOXL3 by PXS-4787 and BAPN asmeasured in a jump dilution assay and compared
to a reversible inhibitor. d Substrate (putrescine) competition showing a reduction
of potency with increasing substrate concentration due to competition for the
enzymatic pocket. e Postulated mechanism of irreversible inhibition by PXS-4787.

f Oxidation of PXS-4787 and BAPN by SSAO (n = 2–4 independent experiments,
p values 0.0097, 0.058 for 30 and 60 micromolar concentration, respectively).
g Oxidation of PXS-4787 and BAPN by DAO (n = 2–4 independent experiments,
p values < 0.0001, 0.012 and 0.019 for 30, 600 micromolar concentration
respectively). Data are expressed as mean ± SEM. Subsequent statistical analysis
was performed with unpaired two-sided Student’s t tests. *p <0.05, **p <0.01,
***p <0.001and ****p <0.0001. Source data are provided as a Source Data file.
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the Pgp-inhibitor (Supplementary Table S2). After application of 3%
cream to the epidermis of human skin ex vivo, the concentration of
PXS-6302 in the opposite reservoir chamber increased 10-fold
between 2 and 6 h, with a further 10-fold increase over the next 14 h,
demonstrating good skin penetration similar to that observed for PXS-
4787 (Supplementary Fig. S4).

The ability of PXS-6302 to engage the desired target in vivo (i.e.
effectively inhibit lysyl oxidase activity in the skin) was tested in a rat
pharmacokinetic-pharmacodynamicmodel. PXS-6302 was formulated
as an oil in water cream of different concentrations (0, 0.3, 1, 10%) and
applied to a shaved area on the back of a rat (500mg cream applied to
16 cm2). After 24 h animals were sacrificed, the concentration of PXS-
6302 in the skin was measured and the lysyl oxidase activity deter-
mined. The skin concentration of PXS-6302 was found to dose-
dependently increase (0%: 0; 0.3% 7.9 ± 1.5; 1%: 8.9 ± 1.4%; 10%:
119 ± 7.8μg/g; all n = 3), resulting in a corresponding reduction in lysyl
oxidase activity. To quantify the degree of lysyl oxidase inhibition, a
signal over noise ratio was calculated for vehicle and drug-treated skin
biopsies and showed a dose-dependent inhibition of lysyl oxidase
activity. PXS-6302 cream at a concentration of 1% achieved a 67%
inhibition of the specific signal after 24 h, while 10% cream completely
abolished the signal (98% inhibition) (Fig. 5a). Recovery of the activity
in the healthy skin was slow; in animals that were sacrificed 48 h after
the last dose (1% PXS-6302) activity was 26% of pre-drug activity.

To investigate the effect of repeat dosing, cream at different
concentrations (0, 0.5, 1, and 3% PXS-6302, 400mg applied to 16 cm2)
was applied once daily for 5 consecutive days and 24 h after the last
dose, animals were sacrificed and the skin concentration determined.
PXS-6302 concentration in the skin again increased in a dose-
dependent manner (0%: 0; 0.5%: 4.9 ± 0.8; 1%: 9.3 ± 0.7%; 3%:
31.7 ± 3.28μg/g; all n = 4), with the concentration measured after

repeated dosing of 400mg of 1% cream for 5 days similar to that
measured 24 h following a single dose (500mg of 1% cream) sug-
gesting that there was no large accumulation of drug over time. Lysyl
oxidase activity was strongly reduced after 5 days (Fig. 5b).

Topical application of PXS-6302 reduces skin fibrosis in repeat
dose bleomycin-induced skin fibrosis in mice
With a pharmacokinetic and pharmacodynamic profile supportive of
thepotential as a potent topical anti-fibrotic treatment,wenextmoved
to evaluate the in vivo efficacy of PXS-6302. Intradermal injections of
bleomycin on alternate days for three weeks induces fibrosis21,22.
Exploratory studies involving the topical application of the first-
generation compound PXS-4787 cream showed that the drug reduced
fibrosis in the extracellular matrix, pharmacologically demonstrating
the significant role of lysyl oxidases in bleomycin-induced skin fibrosis
(Supplementary Fig. S5). In this model, starting from Day 3 and con-
tinuing until Day 20, bleomycin-dosed mice (0.1U, alternate days),
were treated once daily topically with 0% (vehicle) or 1.5% PXS-6302 oil
in water cream (2 ×100μL applications at a 10-min interval). Topical
treatmentwith 1.5%PXS-6302 resulted in a significant reduction inLOX
activity (Fig. 6a), as well as reduced hydroxyproline content (Fig. 6b)
and immature crosslinking (DHLNL and HLNL, Fig. 6c, d). Fibrosis was
significantly reduced as assessed by skin thickness (Fig. 6e), and
composite skin score, including assessment of Masson trichrome
stained sections (Fig. 6f, Supplementary Fig. S6), with immunohis-
tochemistry for COL1 and LOX both significantly reduced in treated
tissue samples (Fig. 6g, h). As PXS-6302 reduces lysyl oxidase activity,
and thereby the crosslinking of collagen, this results in more soluble,
easily degradable extracellular matrix. As bleomycin also stimulates
the expressionof degrading enzymes such asmatrixmetalloproteases,
the significant drop in hydroxyproline and immature crosslinks could

Fig. 3 | Abundance of LOX/LOXL enzymes in human skin dermis and scar. qPCR
of LOX family of enzymes from matched normal skin and scar fibroblasts (a).
LOX and LOXL1 expression is significantly increased in scar fibroblasts
(p = 0.0317 and p < 0.0001 respectively using Mann–whitney two-tailed test).
b Immunohistochemistry showed increased LOX intensity in scar tissue
samples when compared to normal skin (n = 11 matched biologically inde-
pendent human samples of scar and skin). Images of skin (c) and

normotrophic scar (d) immunohistochemistry for LOX from an individual
patient (n = 11 independent biological pairs were imaged and this shows one
matched pair of normal skin and scar from a single individual). Data are shown
for each matched pair of normal skin and scar samples. Subsequent statistical
analysis was performed using Wilcoxon matched-pairs signed rank test
(p = 0.0068). Scale bars 300 microns. *p < 0.05, **p < 0.01, ***p < 0.001 and
****p < 0.0001. Source data are provided as a Source Data file.
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be related to both the reduced production as well as the accelerated
degradation of these matrix proteins.

Topical application of PXS-6302 reduces collagen deposition
and crosslinking in a murine model of injury
Having established promising in vivo anti-fibrotic efficacy, we next
evaluated a full-thickness excision injury model in mice. Full-thickness
excision injuries of approximately 1.1 cm2 (approximately 2% body
surface area) of dorsal skin were created under anesthesia. FromDay 2
post-injury, animals received daily application of 0, 0.5, or 1.5% PXS-
6302 oil in water cream for 28 days. At the end of the experiment, all
animals were euthanised and scar tissue analyzed for collagen and
cross-link content. PXS-6302 application showed a dose-dependent
reduction of the hydroxyproline concentration, suggestive of a
reduction in collagen deposition (Fig. 7a). Mature and immature
(Fig. 7b–e) crosslinks were also dose-dependently diminished. There-
fore, when applied after injury and during the healing phase, PXS-6302
reduced collagen crosslinking and total collagendeposition in the scar.

Reassuringly, the efficacy of PXS-6302 was in line with earlier studies
(performed with the first-generation inhibitor, PXS-4787, Supplemen-
tary Fig. S7) albeit with what appears to be a more comprehensive
impact on crosslinking at a lower dose.

Topical application of PXS-6302 improves scar appearance with
no reduction in tissue strength in porcine models of excision
and burn injury
To confirm the anti-scarring effects of PXS-6302 in a skin model that
more closely resembles human physiology, a porcine excision injury
model was used. Eight full-thickness excisions (10 cm2) weremade on 5
female juvenile pigs (each weighing 18–20 kg) for a total of 40 injury
sites. Following on from an earlier experiment (performed with PXS-
4787, Supplementary Fig. S8, S9, S10) that examined the impact of
timing of inhibitor application, we next examined the effect of dose.
Specifically, doses of 0, 0.5, 1.5, and 3% PXS-6302 oil in water cream
were applied to the excision injury site once daily, starting 2 weeks
post-surgery and continuing for 12weeks (Supplementary Fig. S9, S10).

Fig. 4 | PXS-4787 treatment reduces collagen formation, deposition and
crosslinking in vitro. Reduced collagen crosslinks formation in primary human
dermal fibroblasts cultured in vitro after treatment with PXS-4787 at 0, 1, and 10 µM
concentrations under scar-in-a-jar conditions for 11 days, n = 6 biological replicates.
Reduction in (a) Hydroxyproline (p =0.0385), (b) DHLNL (p =0.0159, p =0.0165 for
control vs 10 μM and 1μM vs 10μM, respectively), (c) HLNL, (d) DPD (p =0.0359,
p =0.0396 for control vs 1μM and control vs 10μM, respectively), and (e) PYD
(p =0.0403 for control vs 10μM).Using a ‘scar-in-a-jar’model, collagen I expression
is significantly decreased (p <0.001, f–j) when measured using a soluble procolla-
gen I fragment detection fluorescence measure (i (p <0.0001)) and

immunohistochemical staining (j (p <0.0001)). Coherency of collagen I is also
significantly lower (k) after treatment with PXS-4787 at 0, 1, and 10 µM, (n = 6 bio-
logical replicates). f–h Representative immunofluorescence staining images of
collagen I staining of human dermal fibroblasts after treatment with PXS-4787 at (f)
0, (g) 1, and (h) 10 µM concentrations [Anti-COL1A1 antibody (Green) and DAPI
(blue)], n = 3 biological replicates with minimum two technical replicates each
sample, scale bar 50 µm. Subsequent statistical analysis was performed with one-
way ANOVA with Tukey’s method for multiple comparisons. *p <0.05, **p <0.01,
***p <0.001, ****p <0.0001. Source data are provided as a Source Data file.
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LOX activity was significantly reduced when measured in tissue
samples isolated 24 h after the final dose (at time of euthanasia,
Fig. 8a). Photos of all scars were assessed by plastic surgeons blinded
to the treatment group. Independent scoring of each scar (where each
scar was scored on a scale of 1–10, poor to excellent) showed sig-
nificantly higher scores for the 3% treated scars suggesting significant
improvement in scar appearance (Fig. 8b-d, S10).

Given the significant and positive effects observed with 3% PXS-
6302 cream on the appearance of scars following excisional injury, we
also tested this concentration inaporcinemodel ofburn injury. Briefly,
four deep-dermal contact burn wounds of approximately 50 cm2 area

were created on the back of a 20–25 kg pig. On Day 3 post-injury,
wounds were debrided by a burn surgeon and dressings replaced.
Either placebo or 3% PXS-6302 cream was applied to the wound once
daily from the time of re-epithelialisation until 24 h prior to euthanasia
(2 months post-injury). Again assessment of scar photos by plastic
surgeons blinded to the treatment group scored treated scars sig-
nificantly better than their placebo-treated controls (Fig. 8e, Supple-
mentary Fig. S10). At euthanasia, scars were excised and tensile
strength and Young’s modulus (YM) calculated using a Shimadzu
tensile tester to investigate impacts on pliability and tissue strength of
the use of PXS-6302. All scars were tested in the anterior-posterior
alignment. Stress–strain curves were generated (Fig. 8f). Young’s
modulus showed a strong trend of reduction in treated scars, with 5/6
treated scars recording a lower YM than their matched vehicle treated
scar (Fig. 8g, p =0.15), suggesting PXS-6302 treated scars are more
pliable than their placebo-treated controls. Tensile strength showed
no significant differences between treated and control scars
(Fig. 8f–h), suggesting inhibition of LOX enzymes does not lead to the
fragility of scar tissue.

Discussion
Scar formation associated with wound healing involves increased
collagen deposition and crosslinking, leading to abnormal reorgani-
zation of the ECM. Aberrant and excessive deposition of type I collagen
in the ECM is key to the development and maintenance of hyper-
trophic scars23. Underpinning this is the relative stability of mature
cross-linked collagen and its resistance to degradation. Therefore,
limiting the extent of crosslinking during scar formation may enhance
scar appearance and pliability.

The clear clinical need for therapeutics to ameliorate scarring has
driven drug development approaches. Activation of the TGFβ3 path-
way (avotermin, discontinued 2011) and inhibition of CTGF signaling24

did not provide significant clinical benefits. It is possible that targeting
fibrosis in the active wound healing phase, and upstream of the ECM
generation, may be less efficacious due to the extensive redundancies
in skin repair mechanisms. Targeting of collagen crosslinking, as the
final step in stable collagen deposition in the ECM, has the potential to
be more successful. Alternative approaches, including microRNA-29,

Fig. 6 | Topical PXS-6302 is effective in reducing bleomycin-induced skin
fibrosis. Topical treatment with 1.5% PXS-6302 cream significantly inhibited LOX
activity (a (p =0.001)), reduced hydroxyproline (b (p =0.048)) and immature
DHLNL (c (p <0.0001)) and HLNL (d (p <0.0001)) crosslinks in the skin and
reduced fibrosis as assessed by dermal thickness (e (p =0.0139 and 0.0013 vehicle
and naïve vs PXS-6302 treated respectively)) and Composite skin scores
(f (p =0.0114)). Immunohistochemistry also showed reduced Col I (g (p =0.0006))

and LOX (h (p <0.0001)) positive staining in 1.5% PXS-6302 treated tissue sections.
Naïve animals were not exposed to bleomycin, whilst vehicle and PXS-6302 groups
were treated with bleomycin to induce fibrosis (n = 9–10 per group). Statistical
analysis was performed with two-tailed Mann–Whitney test or one-way ANOVA
with Tukey’s method for multiple comparisons. p values are <0.05 (*), <0.01 (**),
<0.001 (***) and <0.0001 (****). Source data are provided as a Source Data file.

Fig. 5 | Pharmacokinetic-pharmacodynamic measurement of target engage-
ment in rat skin in vivo. Dose-dependent reduction of lysyl oxidase activity in rat
skin following a single dose (a) (p =0.0269) or (b) repeated application of cream
(p =0.0007, p =0.0002, p <0.0001 for 0% vs 0.5%, 1% and 3% respectively). Activity
was measured 24 h after last topical application. Noise in these assays was deter-
mined by measuring background fluorescent changes in the presence of a high
(>300μM) concentration of BAPN to block all lysyl oxidase activity in the presence
of other amine oxidase inhibitors (n = 3 per group). The signal (activity in the
absence of BAPN) over noise (signal of the same extract in the presence of BAPN).
Statistical analysis was performed with one-way ANOVA with Tukey’s method for
multiple comparisons. *p <0.05, **p <0.01, ***p <0.001 and ****p <0.0001. Source
data are provided as a Source Data file.
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are now currently being trialed for scarring (NCT03601052). However,
cutaneous injections such as those required for the delivery of ther-
apeutic in the microRNA-29 study pose significant challenges for
effective delivery, especially in the context of largerwounds. These can
be overcome with the use of a highly permeable anti-fibrotic cream
formulation as demonstrated with PXS-6302.

Lysyl oxidases are responsible for the oxidation of lysine side
chain residues that spontaneously react to form crosslinks. These
crosslinks render collagen and elastin less susceptible to degradation
and this increased ECM stability promotes fibrosis. Our study shows
that lysyl oxidase enzymes are expressed in scar tissue, supporting the
development of a pan-LOX inhibitor to ameliorate scarring. Moreover,
the development of a topically deliverable lysyl oxidase inhibitor in an
easily applicable cream formulation overcomes the poor compliance

of invasive therapies and the associated need for multiple hospital
visits.

Here we describe the small molecule pan-LOX inhibitors, PXS-
4787 and PXS-6302, that fulfill all the criteria of mechanism-based
inhibitors and belong to a novel chemical class. They combine the
fluoroallylamine portion of known amine oxidase inhibitors16,25 with a
phenylsulfone group to achieve selectivity and specificity. Both
compounds irreversibly inhibit all lysyl oxidases and, subsequently,
collagen crosslinking and deposition. The effect of both compounds
is very specific, with no apparent off-target activity. This differ-
entiates them from the typically used pan-LOX inhibitor ΒAPN which
is a substrate for other amine oxidases, resulting in the production
of reactive oxygen species in different tissues, including the
vasculature.

Fig. 8 | Topical treatment with PXS-6302 inhibits LOX, reduces crosslinking
and improves scar appearance in porcine models of excisional and burn
injury. LOX activity is significantly inhibited in porcine scar 24 h after final daily
PXS-6302 application (total duration of application once daily for 10 weeks
(a (p =0.0292))). b Independently scored scars on a scale of 1–10 (poor to good
scar) by plastic surgeons blinded to treatment show significantly higher scores for
the 3% PXS-6302 treated scars in excision injury model (p =0.0028, 0.0334 3%
treatment vs control and0.5% treatment respectively). Images of vehicle (c) and 3%
PXS-6302 (d) treated scar after excision (e) Scars after burn injury were also

significantly improved compared to placebo-treated control when scored inde-
pendently by plastic surgeons blinded to the treatment group. (f (p =0.008))
Stress–strain curves of treated (green) and control (red) scars were similar, with a
reduction in Young’s modulus in 5/6 treated scars compared to matched controls
(g,h) and nodifference in tensile strength between the two groups (n = 10 excision
wounds each treatment group, n = 12 burn injuries in treated and control groups).
Statistical analysis was performed with paired Mann–Whitney test or repeated
measures ANOVAwith Tukey’smethod formultiple comparisons, *p <0.05. Source
data are provided as a Source Data file.

Fig. 7 | Topical treatment with PXS-6302 reduces collagen deposition and
crosslinking in a murine model of excision injury. Hydroxyproline is sig-
nificantly reduced in 1.5% PXS-6302 treated scar tissue (a (p =0.0073)). Reduced
immature crosslinks in treated groups, with a trend for (b) decreased DHLNL and
(c) significantly reduced HLNL links (p =0.0284, 0.0016 control vs 0.5% and 1.5%,
respectively). Mature crosslinks are significantly reduced in the treated scar tissue

with both (d) PYD (p =0.0081, p =0.0006 c vs 0.5% and 1.5%, respectively) and (e)
DPD links reduced (p =0.0168 (n = 7–14 per group)). Statistical analysis was per-
formed with one-way ANOVA with Tukey’s method for multiple comparisons,
*p <0.05, **p <0.01, ***p <0.001, ****p <0.0001. Source data are provided as a
Source Data file.
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The in vitro and in vivo effects of these inhibitors have been well
characterized. In vitro, a change in the ratio of soluble to insoluble
collagen occurs26. In fibroblast cell culture, moderate inhibition medi-
ated by PXS-4787 did not affect the total collagen concentration but
significantly reduced the concentration of immature and mature
crosslinks. This reduction in crosslinks may reduce collagen fibril
strength27 and tissue stiffness28, suggesting that in vivo this approach
may lead to reducedmechanical stress that in turnwill positively impact
on fibroblast phenotype to sustain reduced collagen synthesis29.

In vivo, topical once-a-day application of lysyl oxidase inhibitors
[both first (PXS-4787) and second (PXS-6302) generation)] improved
the appearance of scar in relevant in vivomodels, indicative of a target-
driven, as opposed to compound-specific, effect. PXS-6302 is ideally
suited for topical application and therefore represents a pharmacolo-
gical treatment that may be used either as an alternative or adjunct to
current approaches, including steroid injections, laser therapy, mas-
sage, intense pulsed light and the use of compression garments30. We
have investigated the impact of timingof thedrug application in thepig
excision model (using PXS-4787), with results suggesting that inter-
vention late (3 weeks) after injury was similarly if not more effective
than earlier administration. This provides a wide therapeutic window,
in contrast to many approaches targeting growth factors or other sti-
muli critical in the acute phase of repair. This is likely to be particularly
important in the treatment of larger wounds, providing an opportunity
for acute intervention and re-epithelialisation prior to treatment to
ameliorate scarring. In both pig (excisional and burn injury) studies we
consistently found a significantly improved scar appearance upon drug
administration for 3 months. Blinded scoring of wounds is an excellent
method as it can be applied in pre-clinical and clinical studies with a
very good translation from one to the other, suggesting these findings
have a high likelihood of being reproduced in clinical trials31. Impor-
tantly, tensile strength of scar tissue did not appear to be impacted
by the application of PXS-6302, whilst pliability trended towards
improvement. Appearance and pliability of scar are themost important
factors for patients after significant injury, and the potential to improve
both with the use of a topical cream will provide extensive benefits for
both patients and health service delivery for scar revision.

Whilst these studies suggest strong clinical potential for PXS-
6302 to ameliorate scarring, it is prudent to consider the potential
limitations. Animal models of scarring generally heal better than
humans, and the injuries were left to heal without current best
practice clinical interventions (that may reduce the impact of this
compound in human trials). In addition, whilst the rodent model of
fibrosis demonstrated positive results, the limitations of these
models are well-known, meaning the potential impact of pan-LOX
inhibition on progressive fibrosis remains unclear. We have also not
measured the impact on elastin and elastin crosslinks, which may
contribute significantly to changes in scar tissue. A phase I clinical
single dose-escalation and repeated fixed dose trial has been com-
pleted demonstrating strong target engagement and long-lasting
inhibition (ACTRN1262100322831). SOLARIA2, a Phase 1c, 3-month
study in patients with established scars is currently ongoing
(ACTRN12621001545853). This trial will be critical to establish the
safety of PXS-6302 in humans and has the potential to show signs of
efficacy. On successful clinical development thepromise of PXS-6302
is to provide a new paradigm in the treatment of scars, based on the
critical importance of lysyl oxidases to excessive ECM formation and
maintenance, the ability to self-administer treatment and the efficacy
when applied long after injury.

Methods
Fluorometric enzymatic activity assays
The measurement of the enzymatic activity of all lysyl oxidase family
members was based on the detection of hydrogen peroxide with an
Amplex-Red oxidation assay, as previously described32;miniaturized in

384 well formats, with the appropriate combination of substrate and
assay buffer for each individual enzyme. After a 30min pre-incubation
of the enzyme at 37 °C with the test compound (or with different
incubation times for the time-dependency assay), one volume of
reaction mixture containing 120μM Amplex Red (AR) (Life Technolo-
gies), 1.5U/mL horseradish peroxidase (HRP) (Sigma-Aldrich) and the
specific substrate was added to each sample. The relative fluorescence
units (RFU) were then measured every 2.5min for 30min at 37 °C,
excitation 565 nm and emission 590, on a BMG Clariostar
Microplate Reader. All the substrates were used at concentrations
corresponding to their Km towards the corresponding enzyme, orwith
a range of different concentrations for the substrate competition
experiments.

Lysyl oxidases assay buffer contained 1.2M urea, 50mM sodium
borate buffer, pH 8.2 and 100 µM β-aminoproprionitrile (BAPN, Sigma-
Aldrich) was used for low control.

Recombinant human LOXL1 was expressed and purified from
cDNA (GeneArt) and 10mM putrescine was used as substrate.
Recombinant human and mouse LOXL2 (R&D Systems) were chal-
lenged with 5mMputrescine (Sigma-Aldrich) as the substrate. Rat and
dog recombinant LOXL2 were amplified and purified in house from
HEK-293 clones kindly provided by Dr. Fernando Rodríguez Pascual,
Madrid University, and used in the same conditions as for the human
form. 2mM putrescine was used as the substrate for recombinant
human LOXL3 (R&D Systems) and LOXL4 (Dr. Fernando Rodríguez
Pascual, university of Madrid, Spain) assays.

Jump dilution assays
Themeasurement of the residence time was based on the detection of
hydrogen peroxide with an Amplex-Red oxidation assay, as previously
described33 in a 96 well format. The target was incubated with the test
compound at 30 × IC50 for 40min at 37 °C in snapstrip PCR vials. After
the incubation, a 100-fold dilution is carried out in lysyl oxidase assay
buffer into the vials. The diluted enzyme-inhibitor complex is added to
a 96-well plate followed by the addition of the reaction mixture
(20mM putrescine for LOXL1, 10mM putrescine for LOXL2). The tar-
get percentage activity is measured as a function of time after the
dilution event.

Compound oxidation assay
This assay determines the substrate propensity of a compound relative
to background (dimethyl sulfoxide only). Compound oxidation by
rhSSAO was measured by fluorometric assay34. Briefly, rhSSAO was
incubated for 2 h at 37 °C in HEPES buffer before the addition of
an equal volume of Amplex Red (20mM), horseradish peroxidase
(4U/ml), and test compound in the same buffer. The kinetics of the
formation of resorufin was measured immediately using Optima
reader (BMG Labtech GmbH, Ortenburg, Germany), at 37 °C.

Tissue immunohistochemistry for LOX
Formalin fixed paraffin embedded (FFPE) skin tissue sectioned were
cut to 4μm sections using a Leica RM2235 microtome. Sections were
placed on a Superfrost plus slide and allowed to incubate for 2 h at
60 °C. Sections were dewaxed and heat-induced antigen retrieval
conducted. Slides were stained using the Bond Dewax solution kit
(Leica AR9222) with Rabbit anti-human LOX antibody (Abcam,
AB31238) diluted 1:2000 with Bond Primary Antibody Diluent (Leica
AR9352). Sections were then processed using the Leica BOND polymer
refine detection kit (DS9800) After immunohistochemistry protocol
was complete slides were counterstained with Haematoxylin and
cover-slipped.

Gene expression using qPCR
Comparison of LOX, LOXL1, LOXL2, LOXL3, LOXL4 in scar and normal
skin fibroblasts used cells isolated from matched patients (n = 15) and
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seeded at a density of 250,000 cells/ well in a 6-well plate and incu-
bated for 16 h. After 16 h media was changed and cells incubated for
48 h. RNA was extracted using RNeasy mini kit according to the man-
ufacturer’s protocol (qiagen GMbH) and concentrationmeasured on a
nanodrop. The cDNA was synthesized using quantitect reverse tran-
scriptase kit from qiagen. 100 ng of cDNA was analyzed using Quan-
titect sybr green (from Qiagen) using LOX (Cat no. QT 00017311),
LOXL1 (Cat no00011830, Qiagen), LOXL2 (Cat no. QT 00019425, Qia-
gen), LOXL3 (Cat no. QT 00066556, Qiagen), LOXL4 (Cat no. QT
00046466, Qiagen) quantitect primer. Two housekeeping genes
b-actin and GAPDH were used to normalize collagen 1 and LOX family
gene expression using GAPDH quantitect primers (Cat no. QT
00079247, Qiagen) and β-actin quantitect primers (Cat no. QT
01680476, Qiagen). The data were analyzed using the Rotor geneQ
software and the relative gene expression was calculated using the
2 − (ΔΔc (t)) method35. Three biological samples were used for each
condition.

Changes in COL1A1 and LOX gene expression in PXS-4787 treated
cells were done using primary human dermal fibroblasts (50,000)
seeded in a 6-well plate under Scar-in-a-jar media. The cells were
incubated with 0 µM, 1 µM, and 10 µM PXS-4787 treatment for 48h.
mRNA was extracted using RNeasy mini kit® according to the manu-
facturer’s protocol (Qiagen Gmbh). The total concentration and purity
of RNAwere determined using a NAnodrop 2000C (ThermoScientific,
USA). For reverse transcription, mRNA was converted to cDNA using
QuantiTect Reverse Transcription kit (Qiagen; Catalog no. 205311)
according to the manufacturer’s protocol. Quantitative real-time RT-
PCRwas conducted using SYBRGreenMasterMix (Qiagen; Catalogno.
204143) and Rotor gene Q thermocycler (Qiagen). The reactions were
carried out in triplicate in 20 µl total volume containing 1 µl cDNA and
2 µl primers. The QuantiTect Primer assay for COL1A1 (Catalog no.
QT00037793), LOX (Catalog no. QT00017311) were used. GAPDH
(Catalog no. QT00079247) and PGK1 (Catalog no. 249900) were used
as a housekeeping gene. The data were analyzed using Rotor geneQ
software and the relative gene expression was calculated using the
2−(ΔΔc (t)) method35. Three biological samples were used for each
condition.

Cell culture
Human primary dermal fibroblasts derived from human skin were
cultured in Dulbecco’s Modified Eagle’s Medium (DMEM-Gluta-
max™; Invitrogen Gibco) supplemented with 10% fetal bovine serum
(FBS; Invitrogen Gibco) and 1% Penicillin/Streptomycin (Invitrogen
Gibco). The cell culturemaintained in a humidified chamber at 37 °C
and 5% CO2. All primary cells were obtained from discarded skin
after elective surgery with informed consent. Collection was
approved by South Metropolitan Health Service Ethics committee
(RGS00000099).

Cell viability assay
Cell proliferation was measured using a standard 3-(4,5-dimethyl-
thiazol-2-yl)-5-(3-carboxymethoxypheny1)-2-(4-sulfophenyl)-2H-tet-
razolium, inner salt (MTS) assay (Cell Titer 96® AqueousOne Solution
Cell Proliferation Assay, Promega, Australia) as per the manu-
facturer’s protocol. Briefly, 2500 primary scar fibroblasts below
passage eight were seeded in each well of 96-well plates. The cells
then exposed to 0, 1, 2.5, 5, 10, 25, 50, and 100 µM concentrations of
PXS-4787 in cell culture media (DMEM-Glutamax™ supplemented
with 10% Fetal Bovine Serum and 1% Penicillin/ Streptomycin, Life
technologies, USA) for 24, 48 and 72 h. MTS solution (20 µL) was
added in each well and incubated for 3.5 h in a humidified chamber at
37 °C and 5% CO2. The absorbance recorded on a UV–visible spec-
trophotometer (Enspire Multimode plate reader, PerkinElmer®) at
490 nanometers.

Scar-in-a-jar
An experimental ‘Scar-in-a-jar’ protocol developed by Chen and
Raghunath36 was followed for quantitation of collagen per cell and to
measure the orientation of collagen under fibrotic conditions
in vitro. Primary scar fibroblasts below passage eight were seeded on
four-well chamber slides (Nunc™ Lab-Tek® Thermofisher Scientific,
USA) with seeding density 5 × 104 cells per well and cultured in nor-
mal media (DMEM-Glutamax™; Invitrogen Gibco supplemented with
10% FBS and 1% penicillin/streptomycin). The cultured cells were
allowed to incubate in a humidified chamber at 37 °C and 5% CO2 for
16 h, after which the media was changed to a stimulating media
mixture, containing crowding molecules: 375mg/mL Ficoll 70 and
(25mg/mL) Ficoll 400 (Sigma Aldrich, USA), 5 ηg/mL TGF-β1 (R & D
Systems, USA), 0.5% FBS, 100mM L-ascorbic acid-2-phosphate
(Sigma Aldrich, USA) in DMEM-Glutamax™ supplemented with 0.5%
FBS and 1% Penicillin/ Streptomycin (Life Technologies, USA) and 1
and 10 µM concentrations of PXS-4787 for 6 days. After 6 days, cells
were blocked with 3% bovine serum albumin in Fluorobrite® DMEM.
Primary antibody solution Collagen 1 (1:1000 in 3% BSA in Fluoro-
brite®,mousemonoclonal IgG1, Cat. No. C-2456, Sigma-Aldrich, USA)
was added and incubated at 37 °C and 5% CO2 in a humidified
chamber for 90min followed by washing three times with Fluoro-
brite®. The cells were fixed with 4% paraformaldehyde solution for
10min at room temperature followed by three washes with Fluoro-
brite®. The secondary antibody (goat-anti mouse Alexa-fluor 488
(1:500 dilution), Cat. No. A-11001, Life Technologies, USA) Hoechst®
staining solution (Cat. No. H3570, Life Technologies) were incubated
for 30min and cells were washed with Fluorobrite. The coverslips
were finally mounted on the slides using Prolong® Gold anti-fade
mounting solution (Life Technologies, USA). The slides were imaged
on the confocalmicroscope (NikonA1Si ConfocalMicroscope,40xoil
immersion objective, 1.3 aperture, laser 2). Three separate 3D images
were collected from each slide at 488 nm laser wavelength using
0.05 µm interval with a resolution of 1024 ×1024 pixels and then
condensed into a single image using the maximum projection func-
tion. The images then further analyzed for collagen coherency
measurements using ‘Fiji is just image j’s’ (FIJI) orientation J applica-
tion as previously reported18,37. For quantitation of collagen per cell,
an image of whole chamber slide was captured using fluorescence
microscope (Nikon inverted microscope). The 488 nm green and
Hoechst stained blue images were collected, and analyzed using NIS-
Elements software (Nikon, Japan). The six ROIs were selected from
each image and the binary thresholds were recorded for each cor-
responding image. The threshold of the collagen fibers (green image)
was divided by the threshold of the cell nuclei (blue image) to cal-
culate the amount of collagen per cell.

Procollagen measurements
Fluorescence Resonance Energy Transfer (FRET) assay was con-
ducted using a Human Pro-Collagen Type 1 Kit (Cisbio Bioassays,
Codolet, France; Cat. No.63ADK014PEH) and following the manu-
facturers’ protocol (n = 7). The primary dermal fibroblasts were set
up for the Scar-in-a-jar assay as described above and maintained in
the culture for 11 days. The supernatant (50 µL) was collected every
day. Each sample was then diluted at a 1:5 ratio in DMEMmedia, 16 μL
of the sample was added to 2 μL of Anti-Human procollagen acceptor
antibody and 2 μL of Anti-Human procollagen donor antibody, fol-
lowed by incubation for 3 h at room temperature. The plate was read
on a BMG Clariostar plate reader at the wavelengths of 620 nm and
665 nm. The ratio of acceptor and donor emission signals, the per-
centage coefficient of variation (%CV) and the delta F (%) were all
calculated as per kit manufacturer’s instructions. A standard curve
was generated and the experimental values were calculated from the
standard curve.
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Collagen crosslinking in vitro
Primary scar fibroblasts were seeded in a complete media at density
75 × 104 cells per well in a T-25 tissue culture flask at 37 °C and 5% CO2.
After 16 h the complete media was replaced by the stimulated media
(375mg/mL Ficoll 70 and (25mg/mL) Ficoll 400, 5 ng/mLTGF-β1, 0.5%
FBS, 100mM L-ascorbic acid-2-phosphate) in DMEM-Glutamax™ sup-
plemented with 0.5% FBS and 1% Penicillin/ Streptomycin and 1 and
10 µM concentrations of PXS-4787 for 11 days to allow time for suffi-
cient crosslinkingof extracellular collagen. After 11 days, themediawas
aspirated and cells were trypsinized for 30min and reduced with
12mg/mL Sodium Borohydride in 20mM Sodium Hydroxide solution
followed and incubated for 30min at room temperature. ThepHof the
solution was made acidic using 50 µL of neat acetic acid. The solution
was centrifuged at 20,000g for 15min at 4 °C followedby threewashes
with MilliQ water and samples processed for crosslinking analysis.

Collagen crosslinking analysis for in vitro and in vivo tissue
samples
Cell pellets or isolated tissue samples were completely hydrolyzed in
1.5mL 6M hydrochloric acid for 24 h at 105 °C. After complete
hydrolysis, samples were dried using a vacuum dryer and recon-
stituted using 200 µL MilliQ water. The sample clean-up was per-
formed using solid-phase extraction method which uses C18 and SCX
solid-phase extraction cartridges for sample purification. The samples
were run on UPLC-MS-MS (Mass Spectrometer: Thermo Scientific TSQ
Endura Triple quadrupole, UPLC: Thermo Scientific Dionex UltiMate
3000) using Agilent RRHD SB-C18,2.1x50mm,1.8um analytical column
and solventA: 10mMammonium formate, 0.1% formic acid, 0.1%HFBA
in H2O and solvent B: 10mM ammonium formate, 0.1% formic acid,
0.1% HFBA in MeOH and analyzed as previously described38. Limits of
detection are listed in Supplementary Table S4.

Transcriptome analysis
Normal skin samples from consenting patients undergoing elective
plastic surgery were previously collected from the South Metropo-
litan Health Services (ethics approval number: RGS000000099). Six
different normal skin patient samples were used. To allow for tran-
scriptome analysis in samples of normal skin fibroblasts and kerati-
nocytes samples (n = 7), RNA extraction was conducted using the
RNeasy Mini kit (cat. no. 74104; Qiagen, Netherlands). Fibroblasts
and keratinocytes of lowpassage (p2-5) were cultured onto T25 flasks
until ~70% confluence was reached. One flask of each fibroblasts cell
line was treated with 10 µM PXS-4787 and another with complete
fibroblast growth media for 48 h at 37 °C. One flask of each kerati-
nocyte cell line was treated with 10 µM PXS-4787 and another with
basal keratinocyte medium supplemented with 1.2mM calcium
chloride (Sigma; c7902) for 48 h at 37°. Cells were then collected
using 0.05% trypsin and washed in Phosphate Buffered Saline (PBS),
before RNA was extracted. RNA was extracted using the RNeasy Mini
kit protocol and stored at -80 °C for further analysis. A NanoDrop™
1000 Spectrophotometer (Thermo Fisher Scientific, USA) was used
to examine the quality and quantity of the extracted RNA. Quality
control tests of the samples were also conducted using the Agilent
Bioanalyser and LabChip GX software (v4.2.1745.0) at Harry Perkins.
Samples were then sent to the Australian Genome Research Facility
(AGRF), where 1μg of RNA was submitted for next-generation
sequencing. Illumina NovaSeq Control Software (NCS) (v1.6.0) for
image analysis and Real Time Analysis (RTA) (v3.4.4) for real-time
base calling was used, producing a 100 bp single end run. The Illu-
mina bcl2fastq 2.20.0.422 pipeline was used to generate the primary
sequence data. Once returned, FastQC (v0.11.3)wasused to check the
quality of the RNA sequencing rawdata and reads of poor quality (the
first 15 bp) were trimmed using the fastp software39. The RNA
sequencing raw reads were then aligned using the STAR read aligner
(v2.7)40 to the Ensembl release 98 Human GRCh38.p13 reference

genome (http://asia.ensembl.org/Homo_sapiens/Info/Index)41. SAM-
tools (v1.9)42 was used to generate BAM files. Exploratory analysis
(sample-to-sample distribution and prinPCA) used rlog transformed
values. Differential gene expression analysis was run using DESeq2
package (v1.24.0)43 on R (v3.6.1) with p.adj <0.01 cut-off to determine
significantly differentially expressed genes.

Lysyl oxidase activity inhibition assay
Human skin samples were maintained in DMEM Glutamax™ supple-
mented with 10% FBS and 1% Penicillin/Streptomycin and amphoter-
icin/kanamycin until treatment. Two 5mm2 pieces of skin tissue
were treated with vehicle or vehicle plus drug for 4 h at 37 °C and the
measurement of the enzymatic activity performed as previously
described44. Briefly, after freezing in liquid nitrogen, the skin was sliced
using a cryostat (Leica CM3050) to sections of 100 µm thickness and
incubated at room temperature in PBS containing protease inhibitors
(Protease inhibitor cocktail I, 539131, Merck) for 2 h. For the assay,
100μL of 1.2Murea sodiumborate buffer was transferred into 24wells
of a 96-well plate. Slices were transferred into wells containing 100 μL
of 1.2Murea sodiumborate buffer and the platewas incubated at 37 °C
for 15min. For each assay well, 100μL of the reaction mixture con-
taining 120 µM Amplex red, 1.5 U/mL Horseradish Peroxidase and
20mM Putrescine. Next, 4μL 100μMPXS-4787 and 100μMBAPN was
added into the respective wells. The relative fluorescence value was
measured on a microplate reader every 2.5min for 30min at 37 °C,
excitation 565 nmand emission 590nmanddata expressed as the ratio
of signal in the absence of BAPN and signal in the presence of BAPN.

Franz Cell skin permeability assay
Drug diffusion studies were performed using tailor-made Franz™ dif-
fusion cells (JR and SR Davis, Australia). Briefly, human skin obtained
from elective plastic surgery procedures (ethics approval by South
Metropolitan Health Service RGS00000099) was washed in PBS and
any subcutaneous fat removed using a scalpel. Pieces of full-thickness
skin weremounted between the donor and receptor compartments of
the Franz cell with the epidermal layer facing the donor chamber and
the dermis immersed in PBS in the reservoir (receptor chamber). After
fifteen minutes pre-incubation at 30°C in an air incubator sufficient
cream (vehicle) containing 3% PXS-6302 (or PXS-4787) to cover the
entire surface area (approx. 1cm2, volume of cream applied approx.
500μl) was applied to the epidermal surface in the donor chamber.
200μl sample volumes were removed from the receiver chamber at
specific intervals and the 200ml volume replaced with PBS. Samples
were then filtered through0.22 µmfilters and analyzedusing LCMSMS.
The concentration of PXS-6302 was determined by LC-MS/MS using a
Waters Xselect CSH column, (50mm×4.6mm, 2.5 µm) using Isocratic
HPLC with 0.1% formic acid solution in water:0.1% formic acid in
acetonitrile (95:5), 0.8ml/min flow rate with Atmospheric pressure
ionization (API) mass Spectrometry.

Pharmacodynamic rat assay
PXS-6302 was formulated as an oil in water cream of different con-
centrations (0, 0.3, 1, 10%) and applied to a shaved area on the back of
an adult rat (500mg cream applied to 16 cm2 skin surface area). After
24 h animals were euthanased. For the detection of lysyl oxidase
activity in the skin, epidermal and dermal layers of the skin were dis-
sected, pre-cooled with liquid nitrogen and pulverized. Samples were
washed by homogenization with ice-cold wash buffer (0.15M NaCl,
50mM sodium borate, pH 8.0 with 0.25mMPMSF and 1 µL/mL bovine
aprotinin as protease inhibitors) at 100 µL/mg, centrifuged at 10,000 ×
g for 10min at 4 °C and supernatant discarded. After the final washing
step, the pellet was resuspended in extraction buffer (6Murea, 50mM
sodium borate, pH 8.2 with 0.25mM PMSF and 1 µL/mL aprotinin as
protease inhibitors) with ratio of buffer volume to tissue weight at 4:1.
After a 3 h incubation at 4 °C, the mixture was diluted 1:2 with assay
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buffer containing 50mM sodium borate (pH 8.2), centrifuged at
20,000 × g for 20min at 4 °C. The collected supernatant was spiked
with pargyline hydrochloride and mofegiline hydrochloride at final
concentrations of 0.5mM and 1 µM, respectively, to inhibit amine
oxidases. Lysyl oxidase activity was measured as previously
described44. The concentration of PXS-6302 in the skin was also mea-
sured in the same samples using LCMSMS as described for Franz cell
diffusion assay.

Bleomycin-induced skin fibrosis in mice
8–10-week old C57BL/6 mice (n = 10 each group) were used to induce
skin fibrosis. Bleomycin (Bleomycin sulfate from Streptomyces verti-
cillicus, Euroasia) dry powder 1.5 IU/mg was reconstituted in saline at
2 IU/ml concentration. Starting on day 0 and continuing on alternate
days thereafter, animals received subcutaneous injection of Bleomycin
(0.1 IU in 50 µL volume) and/or saline on the right flank. For each ani-
mal, each dose was injected at a single site. The injections were con-
tinued for 20 days throughout the study. Starting from day three,
vehicle creamor vehicle plus drug creamwere applied topically once a
daily treatment to a 2 cm × 2 cm area on the right dorsal flank of the
animal for 20 days. OnDay 21, all animals were euthanized and the skin
tissue was collected for further histopathological analysis. The skin
tissue was fixed in 4% PFA and sectioned skin was stained with Mas-
son’s Trichrome, Collagen I and LOX and used to assess dermal
fibrosis. Masson’s Trichrome was used to assess fibrotic index. Col-
lagen Stain was subjectively scored for intensity as compared to con-
trol tissue. LOX Stain was subjectively scored as stain accumulation
compared to control tissue. All images were assessed by assessors
blinded to the treatment group. Composite skin/immunohistochem-
istry scoring tables used are in the Supplementary Information (Sup-
plementary Tables S5, S6).

Murine excision injury model
Adult C57BL6/J femalemiceweremaintained in standard housing with
food andwater provided ad libitum. All experimentswere approvedby
institutional ethics committees (UWA ethics number: R/3/100/1478)
and performed as per the National Health and Medical Research
Council (NHMRC) Australian Code of Practice for the Care and Use of
Animals for Scientific Purposes.

Nine-week-old C57BL6/J female mice (n = 8 per group) received a
full-thickness excision injury of 1.1 cm2 on dorsal area using a circular
12-mm biopsy punch (Acu-Punch, Badand Medical, P1250) (approxi-
mately 2% body surface area) under anesthesia. All animals received
intramuscular injection of buprenorphine (0.1mg/kg) as an analgesia.
Paracetamol (1mg/ml) was provided for 5 days post-injury in drinking
water. Animals were allowed to recover for 24 h post-injury. Animals in
the treatment group received twice a day application of 3% PXS-4787
cream for 28 days. For PXS-6302, once per day application of 1.5%
concentration cream was used. At the end of the experiment, all
animals were euthanised using an intraperitoneal injection of pento-
barbitone (160mg Kg-1) under Isoflurane anesthesia, and scar tissues
were removed. The scar skin was fixed in 4% paraformaldehyde over-
night at 4 °C. After fixation, tissues were washed in sterile PBS at room
temperature. Samples were processed in Leica ASP300S Tissue Pro-
cessor followed by embedding in paraffin blocks using tissue pro-
cessor (Leica EG1150 modular tissue embedding center). The paraffin
blocks were sectioned at 5 µm thickness using a wax microtome (fully
automated Leica RM2255). For standard histology, the skin sections
were stained with hematoxylin and eosin stain and Masson’s Tri-
chrome stain. The stained sections were used to determine the col-
lagen fiber orientation in the control and treatment specimens. All
stained skin tissue sections were processed for whole slide imaging
using a ScanScopeXT (Aperio Technologies, USA) at 20-x magnifica-
tion. Thedigital imageswerecollected and analyzedusing ImageScope
software (Aperio Techologies, Inc, USA). A piece of excisedmouse scar

tissue was processed for the collagen crosslinks extraction. The scar
skin was weighed and homogenized in 900 µL PBS (FastPrep-
24TM5G(MP) homogenizer). The tissue homogenate equivalent to
10mg tissue was transferred to heat/acid resistant screw cap tube
(VWR 16466-060) and the total volume of 870 µL was adjusted with
PBS. The tissue homogenate was reduced with a Sodium borohydride
buffer and processed for cross-link extraction protocol as mentioned
in previous section.

Porcine excision injury model
Female Juvenilepigs of 18–20 kgwere housed in standardhousingwith
food andwater provided ad libitum. All experimentswere approvedby
institutional ethics committees (UWA ethics number: R/3/100/1538)
and performed in accordance with the National Health and Medical
Research Council (NHMRC) Australian Code of Practice for the Care
and Use of Animals for Scientific Purposes. To evaluate the effect of
PXS-4787 in pigs, a surgical full-thickness excision injury model was
used. All pigs (n = 5) from the experiment received eight full-thickness
10 cm2 area excision injuries (80 cm2 total body surface area, 5 × 2 cm2

dimensions for each injury site). Excisions were created in one
operation by a plastic surgeon whilst animals were under isoflurane
anesthesia. The entire epidermal and dermal layers of skin were
removed leaving excisions approximately 5–8mm in depth. Four
wounds were created along each flank creating eight injury sites per
animal. Wounds were dressed and jackets provided to cover wounds
(anti-anxiety jackets (Thunder shirt, RSPCA). Analgesia was given
(buprenorphine injection and fentanyl patch (50 µg/hr) for 10 days
post-surgery) and animals were allowed to recover. The dressingswere
changed at regular intervals to protect the wounds to prevent infec-
tion. In the first study, all animals received 3% PXS-4787 treatment
starting 1, 2 and 3 weeks post-injury. Control wounds received the
treatment from 1-week post-surgery. The treatment was continued for
total 12-week period. In a second study, all animals were treated with
0.5, 1.5 and 3% concentrations of PXS-6302 cream for 12 weeks. All
animals were monitored for the wound healing and scar formation
throughout the study. At the end of experiment, animals were put
under anesthesia and photographs were taken using a camera. All scar
tissueswere processed further for analysis. All photos of pig scars were
shown to a minimum of 6 plastic surgeons for scoring. The surgeons
ranked scars in each set of 4 (for example, a control and all three
treatment groups from an individual pig and site (anterior or poster-
ior)were compared) frombest toworst (0–3with 0 best and 3worst in
a set of 4 matched scars). The surgeons were blinded to the
treatment group.

The effect of PXS-4787 topical treatment on in vivo LOX activity
inhibition was measured using the method as described above. The
skin sections were fixed in 4% paraformaldehyde and embedded in
paraffin blocks. The 5 µm sections were stained with Masson’s tri-
chrome stain for collagen and images were collected by whole slide
imaging using a ScanScopeXT (Aperio Technologies, USA) at 20-x
magnification. The digital images were analyzed using the ImageScope
software (Aperio Techologies, Inc, USA).

Scanning electron microscopy
Samples of pig skin scar tissue of approximately 3 × 3mm size, which
were previously frozen in liquid nitrogen, were thawed and fixed in
4% paraformaldehyde followed by dehydration in alcohol and abso-
lute acetone. The skin samples were further dried in a critical point
dryer in liquid carbon dioxide. The specimens were then Platinum-
metallized with a sputtering device. The images of the skin archi-
tecture were captured using a scanning electron microscope (Zeiss
1555 VP-FESEM, Germany). Images of collagen fibers were acquired at
a 500x and 10,000x magnification. The thickness of collagen
fibers was measured using ImageJ® software using the ruler and
measure tool.
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Porcine burn injury model
All experiments were approved by institutional ethics committees
(UWA ethics number: R/3/100/1724) and performed in accordance
with the National Health and Medical Research Council (NHMRC)
Australian Code of Practice for the Care and Use of Animals for Sci-
entific Purposes. Four deep-dermal contact burn wounds of approxi-
mately 50 cm2 area were created on the back of a female 20–25 kg pig
(n = 3 pigs, n = 12 wounds total). Burn was induced whilst under anes-
thesia using a brass rod of 8 cm diameter heated in a water bath for a
minimum of 10min and maintained at 100 °C. The brass rod was
applied by the surgeon for 10 s durationwith no additional pressureon
contact. After the burn injury the wounds were dressed and pigs
allowed to recover with fentanyl analgesic patches applied to a non-
injured area of the skin. On Day 3 post-injury, wounds were debrided
by a burn surgeon and dressings replaced. Either placebo or 3% PXS-
6302 cream was applied to the wound once daily from the time of re-
epithelialisation (approximately 2 weeks post-injury) until 24 h prior to
euthanasia (2 months post-injury).

Tensile strength testing
The mechanical properties of the samples were tested using a Shi-
madzu tensile tester (EZ-L, Shimadzu, Japan). The samples were
subjected to a tensile test with a constant rate of 5mm/min. Young’s
moduluswas calculated from the slope of the initial part of the stress/
strain curve, where the relationship between stress and strain is
linear.

Statistical analysis
All data were analyzed using Graphpad Prism software for windows.
Data were presented as mean ± Standard error mean (SEM). Unpaired
Student’s t test followed by Mann–Whitney post analysis was per-
formed for analysis of two independent groups. Paired Students t-test
followed by Wilcoxon test was used for analysis of groups with mat-
ched data. One-way ANOVA was used for comparison between more
than two groups followed by Tukey’s multiple comparison. Two-way
ANOVA was used for comparison of more than one factors between
more than two groups followed by either Sidak or Tukey’s multiple
comparison test. p <0.05 is considered significant.

Data availability
The data supporting the findings from this study are available within
the manuscript and its supplementary information. RNASeq data is
available at GSE163309. Source data file is provided with this
manuscript.
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