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Abstract 

Molecular Exercise Physiology and Omics approaches represent an important step toward synthesis and integration, 
the original essence of Physiology. Despite the significant progress they have introduced in Exercise Physiology (EP), 
some of their theoretical and methodological assumptions are still limiting the understanding of the complexity 
of sport-related phenomena. Based on general principles of biological evolution and supported by complex net‑
work science, this paper aims to contrast theoretical and methodological aspects of molecular and network-based 
approaches to EP. After explaining the main EP challenges and why sport-related phenomena cannot be understood 
if reduced to the molecular level, the paper proposes some methodological research advances related to the type of 
studied variables and measures, the data acquisition techniques, the type of data analysis and the assumed relations 
among physiological levels. Inspired by Network Physiology, Network Physiology of Exercise provides a new paradigm 
and formalism to quantify cross-communication among diverse systems across levels and time scales to improve our 
understanding of exercise-related phenomena and opens new horizons for exercise testing in health and disease.
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Key Points

•	 The explanation of macroscopic sport-related phe-
nomena cannot be reduced to molecular levels. 

•	 Physiological states are products of nested dynam-
ics of vertical (among levels) and horizontal (among 
components of the same level) nonlinear interac-
tions. 

•	 Network Physiology of Exercise provides data analy-
sis techniques to investigate how systems coordinate 
and synchronize in an integrative way.

Introduction
The field of Exercise Physiology (EP) studies how the 
body adapts to acute and chronic exercise stimuli and has 
an enormous impact on both basic physiology and sports 
science. Interventions related to training and testing, 
physical fitness and conditioning, and sports medicine in 
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general are based on empirical and theoretical evidence 
derived from EP research. Despite the fundamental dis-
coveries, vast progress, and achievements in EP for over a 
century, the reductionist framework that has traditionally 
dominated research in the field has imposed limitations 
to the exploration and understanding of the regulatory 
mechanisms underlying complex physiological responses 
to exercise. The investigation of exercise-induced fatigue 
is a clear example of such limitations. Focusing the atten-
tion on molecular processes with few exceptions [1, 2], 
the explorations in the field have failed to detect a single 
component or process responsible for exercise-induced 
fatigue. Thus, it has been hypothesized that multiple pro-
cesses, systems, and subsystems may play a distributed 
role in the evolution of fatigue. However, some relevant 
questions are underexplored: which is the role of cross-
communications among systems during the fatigue pro-
cess, how fatigue manifests at different time scales, how 
non-proportional events occur during fatigue (e.g., the 
spontaneous task disengagement), and which are the 
basic principles of integration and adaptation of the phe-
nomenon? [3–5].

Recent Molecular Exercise Physiology and Omics 
investigations have extended their scope beyond the 
study of single tissues or molecular targets to overcome 
such limitations. Omics focuses on analyzing large pools 
of biological molecules of certain kinds, such as pro-
teins, metabolites, genes, etc., in a cell, organ, or organ-
ism. With technological and computational advances, 
such approaches seek to map molecular/omics networks 
of systemic adaptations to exercise in a holistic, unbi-
ased, and integrated manner [6]. Their main objective is 
to uncover the deeper biological mechanisms underly-
ing human adaptation to exercise, understand better its 
health benefits, and develop personalized intervention 
strategies [6–11]. However, the different omics branches 
such as genomics, transcriptomics, proteomics, metabo-
lomics, etc., refer to the same level of analysis: molecular 
networks.

There is a tremendous potential for network approaches 
to better understand the complexity and interconnected-
ness of molecular processes through genomic and prot-
eomic interactions to (a) assess and quantify biological 
adaptations to exercise and (b) fill critical gaps in the cur-
rent understanding of the underlying molecular mecha-
nisms of exercise. However, complex network approaches 
based on graphs theory are limited to the static represen-
tation of genomic and proteomic associations [12, 13]. 
Molecular Exercise Physiology, in turn, is still dominantly 
based on the traditional non-dynamic bottom-up group-
pooled statistical inference modes of inquiry that have 
characterized EP research for a century. This research 
framework does not fully reflect empirical observations 

that: (i) molecular processes are dynamic and context-
dependent, (ii) physiological relations do not operate 
only bottom-up but also top-down from the entire organ-
ism to the molecular level as well as horizontally among 
systems and processes at a given time scale and level, and 
(iii) the causal changes may drastically vary among indi-
viduals and these differences are not fully detectable from 
group-pooled statistics.

The challenge of coping with the complexity of sport-
related phenomena, emerging from coupling and net-
work interactions among physiological systems and 
subsystems across spatiotemporal scales, cannot be 
solved only by focusing on a collective characteriza-
tion and quantification of pools of biological molecules. 
Cross-disciplinary collaboration and advancements in 
both technology and data analytics methods can also be 
insufficient if reductionist theoretical and methodologi-
cal research assumptions of EP are kept.

This opinion paper outlines the main challenges in 
EP and the future directions of research to improve our 
understanding of the complex mechanisms underlying 
exercise-related phenomena:

(a)	 Find general principles of physiological processes 
to explain every new context or exercise condition 
adequately,

(b)	 Use general explanatory concepts and principles 
valid in biology/physiology and other dimensions 
(e.g., psychology, biomechanics) and levels of mat-
ter organization (e.g., social),

(c)	 Focus on the physiological processes’ dynamics (i.e., 
changes in time) instead of associations between 
static measures,

(d)	 Investigate multilevel vertical (among molecular, 
cellular, tissue, organ, etc.) and horizontal interac-
tions among physiological systems to explore mul-
tilayer network-based mechanisms underlying the 
emergence of exercise-related phenomena rather 
than reducing them to static measures performed at 
the molecular level.

The reader can find the rationale for these challenges 
and the directions for future research of EP based in 
network science in a previous publication [14]. Within 
the broader framework of the emerging field of Net-
work Physiology [15, 16], Network Physiology of Exer-
cise addresses the fundamental question of how diverse 
physiological and organ systems across levels continu-
ously coordinate, synchronize and integrate as a network 
during exercise [17]. This paper will specifically focus on 
contrasting theoretical and methodological aspects of 
molecular and network-based approaches to EP.
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Sport‑Related Phenomena cannot be Understood 
if Reduced to a Molecular Level
Life is a property emerging from the interaction of cell 
components and cannot be explained either by any sin-
gle component or by their simple aggregation because 
in biology, “more is different” [18], and relations are as 
important as entities [19]. Similarly, macroscopic physi-
ological states and functions emerge from the interac-
tion among diverse structures and processes operating 
at different spatiotemporal scales (from the subcellular 
level to the entire organism). To understand the mecha-
nisms underlying such integrated states and functions, 
it is necessary to study the laws of interactions and prin-
ciples of coordination and integration among physi-
ological systems and subsystems [20, 21] that lead to 
continuous adaptation to intrinsic and external perturba-
tions [22–27].

New properties that cannot be directly deduced from 
those of the level below emerge at each physiological 
level (molecular, cellular, tissue, organ, etc.). Then, mac-
roscopically defined sport-related phenomena (fatigue, 
injuries, sports performance, etc.) cannot be inferred 
from simple extrapolation of the properties of elementary 
molecular components. For instance, one cannot explain 
exercise-induced fatigue through metabolic substrates 
or end products [4]. In other words, acute fatigue cor-
relates with biochemical alterations, but such alterations 
cannot explain the complex disabling symptom limiting 

performance [1]. Similarly, although decision-making in 
sports entails electrochemical cell processes, such pro-
cesses cannot explain how a player decides to shoot or 
pass a ball.

Understanding the biological behavior at each level 
requires specific research that is as fundamental in its 
nature as any other. Paraphrasing Anderson [18], the abil-
ity to reduce the organism to microscopic constituents 
and processes does not imply the possibility of starting 
from those constituents and reconstructing the organ-
ism. This is due to difficulties of scale and complexity. 
The closer we get to the elementary components, the less 
relevant they seem to be to the emerging macroscopic 
phenomena (i.e., manifested at the organism level) of rel-
evance in EP.

Hence, future research in EP has to address several fun-
damental questions like (a) how hierarchical integration 
among physiological systems is produced across levels, 
that is, how to re-compose the previously decomposed 
(through reductionism) physiological mechanisms, (b) 
how the entire ensembles capture key emergent proper-
ties, and (c) how to provide an integrated and synthetic 
explanation of sport-related phenomena [28]. Physi-
ological processes operating at different levels, which 
are hierarchically self-organized, interact dynamically 
through circular causality (see Fig. 1 right, vertical axis) 
[29]. Bottom-up, cell properties emerge from molecules 
and organelles interactions, tissue properties from cells 

Fig. 1  Contrast between Molecular Exercise Physiology (left), focused on non-dynamical bottom-up statistical inference techniques, and Network 
Physiology of Exercise (right), focused on the nested dynamics of the vertical and horizontal physiological network interactions
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interactions, and organs and systems (cardiovascular, 
pulmonary, hormonal, etc.) properties from tissue inter-
actions. Top-down, and due to circular causality, such 
organs and systems constrain the behavior of the levels 
below [30]. For example, tissue stress factors (tissue level) 
constrain intercellular communication and individual cell 
mechanics and signaling (cellular level), which further 
constrain gene expression (molecular level) [31]. That is, 
physiological interactions function horizontally (among 
components of each level) and vertically (among different 
levels) and in two directions, not only bottom-up [20]. In 
turn, it is the whole organism, not just the cellular and 
molecular levels, which interacts with the environment 
(e.g., adapting to the exercise workload requirements).

The nature of this organizational hierarchy of physi-
ological processes has not been a research subject in 
sports science, and its description is usually simply ana-
tomic. It is worth  noting that Fig.  1 (right) represents 
vertically the organizational levels and the causal inter-
actions across levels. Certainly, it is not a strict require-
ment that one level can interact only with its own closest 
neighbor (both vertically and horizontally). For instance, 
molecules do not interact only within their original cells; 
through the bloodstream they may interact with mol-
ecules of other organs. However, those interactions are 
still at the molecular level.

Although correlated, the operating timescale of each 
physiological level is different. For instance, cellular 
metabolic adaptations occur faster (e.g., enzymes need a 
few weeks) than adaptations at the organ level (e.g., heart 
volumes need several weeks) and organismic level (e.g., 
cardiovascular fitness needs a few months). Although it 
is often assumed that molecular and cellular changes are 
the most relevant in physiology, social and psychological 
constraints, changing more slowly in time, have a more 
permanent effect [32]. For instance, acute fatigue is per-
manently constrained by the socially induced habits of 
athletes (e.g., nutrition, sleep, working hours, etc.).

Instead of focusing on a microscopic molecular level, 
Bizzarri et  al. [19] propose a mesoscopic approach, 
increasingly popular in the epistemology of biology [33, 
34], for conceptualizing, investigating and explaining co-
emergence in physiology. Mesoscopic variables properly 
capture some physiological function and simultaneously 
constrain the behavior of microscopic level variables, yet 
allowing a wide variety of configurations (see the above 
example of tissue stress factors). Operating at a suffi-
ciently higher level of organization than the microscopic 
processes, mesoscopic variables are largely insensitive to 
the microscopic level fluctuations. In other words, the 
same value of the mesoscopic variable can be attained 
by an ever-changing variety of microlevel component 
configurations (see below the explanation of concepts of 

biological degeneracy and pleiotropy). Bizzari et al. 2019 
(p.3) [19] provide the following analogy: “A useful archi-
tectural analog of the mesoscopic level are the arches 
of a gothic cathedral: the arch occupies the intermedi-
ate layer between the stone and the entire building and 
represents the optimal level where to study the forces 
responsible for the stability of the cathedral as a whole”. 
The arch network of push–pull momenta is the relevant 
level to explain a cathedral’s stability. Moreover, the vec-
tors of mesoscopic forces constrain the mechanical stress 
of bricks and their substructures. Hence, to understand 
the stress state of bricks (microlevel) and the stability 
state of the cathedral (macrolevel), one has to consult the 
structure and dynamics of arch networks (mesoscopic 
level). Thus, explanations and predictive possibilities may 
be maximal at the mesoscopic level of physiological func-
tion rather than at the microscopic level of organization. 
For instance, the cardiac rhythm, a system property aris-
ing from the coordinated activity of the cardiac muscle, 
does not pertain to any single myocardial cell or single 
molecule, but may inform about a change of physiologi-
cal state induced by exercise (e.g., athlete’s bradycardia). 
This mesoscopic way of thinking is also popular in ecol-
ogy [35] and in biological network-based approaches 
[36], for example, in networks with time-evolving inter-
actions [37].

The Dynamic Systems Theory (DST) conceptual frame-
work (e.g., stability, instability, phase transition) [22, 
38–42] can be adopted to explain the dynamic functional 
integration of the physiological networks during exercise, 
including its multilevel patterns. The components and 
the subsystems may lose their properties when the whole 
system is destabilized through exercise. For instance, as 
a consequence of accumulated effort, a fatigue-induced 
spontaneous task disengagement occurs [5, 43]. Thus, 
to better understand sport-related phenomena, it is rec-
ommended to assume a multilevel network physiology 
perspective [20, 21], which considers the hierarchical 
organization of structures and processes information 
flows through the levels instead of focusing only on the 
molecular level.

The progressive integration of the DST framework 
within Molecular and Cell Biology, Genomics and all 
Omics approaches [13, 44–48] at the forefront of science 
in recent decades represents an important step forward 
in the direction of synthesis and integration in Physiol-
ogy. However, the relational ontology of biological sys-
tems goes beyond graph representation of static genomic 
and proteomic associations at the microscopic level [19, 
20].

Complex systems science, born with integrative scien-
tific purposes, and searching common principles among 
substance organization levels, provides concepts able to 
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re-compose the decomposed through reductionism, and 
physiological mechanisms and integrate the fragmented 
information [49]. Recognized properties of complex 
adaptive systems (CAS) like synergies, self-organization, 
circular causality, nonlinear dynamic interactions and 
criticality, scale invariance and universality [50], gener-
ally ignored in EP, should be introduced to improve the 
understanding of exercise-related phenomena.

Biological Intelligence and General Principles 
of Complex Adaptive Systems as a Theoretical 
Approach in EP
In CAS, the adaptation properties are based on biologi-
cal intelligence, defined as the capacity to evade or escape 
states of reduced functional solutions [51]. Many biologi-
cal mechanisms attain this capacity by generating flex-
ible behaviors at the edge of instability [26, 41, 50–55]. 
Such solutions involve multiple levels and scales: from 
the subcellular (biophysical, biochemical) to the inte-
grated organism level (physiological subsystems, sys-
tems, organs) and global sociological behaviors (groups 
of individuals).

In EP, the emergence of adaptation properties has been 
described as a tendency to prevent states of reduced fit-
ness, that is, states of reduced functional diversity poten-
tial [14, 51]. This refers to the richness of functional 
synergies [56, 57] and fast recovery time after a pertur-
bation. Intelligent behavior may be expressed at diverse 
levels and timescales. Hristovski and Balagué [51] offer 
the following example: At short timescales, the bouts of 
intense exercise produce acute fatigue that decreases the 
diversity potential of the organism. At a long-term scale, 
however, systems across all levels—from the molecular 
to the entire organism—react by temporarily increasing 
their diversity potential in anticipation of possible incom-
ing perturbations. These biological behaviors have been 
modeled as strong anticipation phenomena [58, 59].

These exercise effects can mainly compensate for the 
tendency of aging and disease to reduce the diversity 
potential of individual physiological systems and the 
entire organism [60, 61]. The growth of biological intel-
ligence in the context of CAS requires diverse time-var-
ying and adaptive coupling forms among physiological 
systems [16, 22, 23, 25, 62], as well as adaptive responses 
to challenging and stimulating environments to evade 
temporary stagnation, which may, on a longer time scale, 
turn into decreasing functional diversity potential and 
spontaneous collapse [51]. This underlines the enormous 
potential of exercise for developing functional diversity.

The function of biological intelligence is to allow physi-
ological systems and organisms to escape states with 
reduced diversity potential, such as aging, fatigue, inju-
ries or other unexpected perturbations. This is done 

by creating new synergies among systems, which may 
include new dimensions, not only those related to exer-
cise modalities [51]. Exercise is not the only interven-
tion that may increase the functional diversity potential 
and/or evade states of reduced fitness [63]. For instance, 
internal regulatory mechanisms (e.g., sleep) play an 
essential role in restorative functions at systems (e.g., car-
diac, respiratory, locomotor) and organism levels through 
increased physiologic variability and temporal organiza-
tion across scales [36, 42, 64].

Biological intelligence is linked to properties of CAS, 
which are commonly not considered in the theoretical 
framework of Molecular Exercise Physiology research as:

Spontaneous formation of synergies:  flexible patterns 
of coordination arising from local or global interactions 
between parts [65], which form emergent structures 
and functions that compensate each other to satisfy the 
physiological demands of exercise. They act at all levels 
governing, in turn, the systems’ behavior [33, 66]. While 
computer scientists build programs that tell circuits what 
to do, nature creates synergies [67, 68]. In EP, it is com-
mon to propose conceptual models where the primary 
regulators and programmers are the Central Nervous 
System (CNS) (see, e.g., [9, 69]) or the DNA. However, 
CAS does not need any internal or external programmer 
to regulate its functions [50, 70]. Properties of such func-
tions (i.e., stability, instability, variability, switches among 
states, criticality etc.) are parametrically regulated in 
both the CNS and the DNA [71]. This means that physi-
ological conditions emerge from the interaction among 
multilevel system components (the CNS being another 
component) through a self-organized process. The search 
for the ultimate high-level regulator would end in infi-
nite regress (what regulates the regulator of the regulator, 
etc.), and such an approach cannot lead to understanding 
the basic principles of network integration and control of 
underlying exercise-related physiological phenomena.

Self-organized dynamics may play a crucial role in 
phenotypic traits. Molenaar [72] discusses a third possi-
ble source of phenotypic variation besides the two well-
known ones: the genotype and the environment [48]. The 
developmental dynamics itself may be the third source. 
The initial differences in twin embryos may be enhanced 
during pre and postnatal development to bring about sig-
nificant phenotypical differences in monozygotic twins 
[73].

Pleiotropy:  The same components and processes 
may be assembled to produce multiple functions. For 
instance, the skeletal muscle, with genuine/primordial 
contractile functions, may also exert immunological and 
endocrine functions [74, 75].

Degeneracy:  Different components produce the same 
function, and different synergies may be activated to 
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attain the same task goal [76, 77]. For instance, motor 
units cooperate and reciprocally compensate for their 
activation over several timescales to perform a functional 
motor action over time during a running competition. 
Pleiotropy and degeneracy enable CAS to switch between 
diverse coordinative states [78].

Nonlinear dynamics: The interactions among parts are 
such that non-proportional effects to perturbations may 
arise [50, 79]. For instance, a slight change in neurotrans-
mitters may produce a significant change in the pattern 
of neuronal activity [80].

Readers can contrast further theoretical research pos-
tulates of the current EP paradigm from the framework 
of Networks Science [14, 81, 82].

Contrasting Methodological Approaches 
of Molecular Exercise Physiology and Omics 
with Network Physiology of Exercise
Molecular Exercise Physiology and Omics approaches 
focus on data collection to catalogue exercise-regu-
lated pathways [6, 7, 11]. As shown in Fig. 1 (left), these 
approaches study interactions at the molecular level and 
establish non-dynamical bottom-up group-pooled statis-
tical inferences about the entire person (e.g., performance 
level or health status). In contrast, Network Physiology of 
Exercise integrates bottom-up and top-down (circular 
causality) vertical and horizontal network levels (Fig.  1, 
right). It avoids the gap between micro and macro struc-
tures and functions, considering synergies between com-
ponents of the same level and synergies between levels of 
the physiological network.

Network Physiology of Exercise emerged as a new 
area of research inspired by the multi-disciplinary field 
of Network Physiology [15, 16, 20–22, 83, 84] to trans-
form EP’s theoretical and methodological assumptions, 
the research program, and the practical issues derived 
from the evidence-based research. Network Physiology 
addresses how physiological systems and subsystems 
coordinate, synchronize, and integrate their dynamics 
to optimize functions at the organism level and maintain 
health. It aims at uncovering the biological mechanisms 
regulating the dynamics of individual systems and their 
network interactions [15, 23–25, 84]. It satisfies both (i) 
the mechanistic requirement of structure and localiza-
tion (e.g., nodes and edges/links in dynamic networks 
representing localized integrated organ systems, subsys-
tems, components or processes, and interactions among 
them across various levels in the human organism), and 
(ii) the requirement of dynamical invariance and gener-
ality that is enabled by dynamical systems approach [28, 
85].

Identifying and quantifying functional forms of cou-
pling, studying network interactions among diverse 

physiological systems and processes, and finding the 
mechanisms of causality and network control are signifi-
cant challenges due to the complex dynamics of organ 
systems [64, 86–89]. Such complexity arises from intrin-
sic interactions of multi-component cellular and neu-
ronal subsystems that build and regulate each organ in 
the human body, leading to intermittent, scale-invariant, 
and nonlinear output signals. This is further compounded 
by various coupling and feedback interactions between 
organ systems that continuously vary in time [90], the 
nature of which is not understood. It was recently discov-
ered that two organ systems could communicate through 
several forms of coupling that simultaneously coexist [22, 
91]. This poses a challenge to understand how organs 
integrate their functions to generate emergent behav-
ior of the human body as a single entity able to adapt to 
internal and external perturbations and maintain homeo-
stasis [92].

In contrast to traditional complex network theory, 
where edges/links are constant and represent static 
graphs of association, novel approaches in Network Phys-
iology take into consideration (i) the complex dynamics 
of individual systems (network nodes), (ii) dynamical 
aspects of network links representing organ communica-
tions in real time, (iii) the evolution of organ interactions 
with time, and (iv) the emergence of collective network 
behavior in response to changes in physiologic states and 
conditions.

Table  1 contrasts the current methodological traits of 
Molecular Exercise Physiology and Omics with those 
that characterize Network Physiology of Exercise.

The methodological steps followed by Molecular Exer-
cise Physiology and Omics approaches are similar to 
those followed by EP. For instance, in correlational stud-
ies: (a) measuring N physiological variables on K num-
ber of subjects, (b) calculating the group-pooled Pearson 
correlations matrices, and (c) performing some form of 
data reduction technique. This group-pooled data analy-
sis ignores the critical caveat that results obtained at the 
group level cannot be unconditionally interpreted as rela-
tions or effects that exist at the individual level [72].

In contrast, genuine network analysis research fol-
lows the following steps: (a) analysis of a set of time 
series at the individual level and formulation of individ-
ual networks, (b) check for general features of networks 
among individuals, and (c) determine the degree of gen-
eralization of certain network features at a population 
level. It also detects and discusses individual-specific 
characteristics.

Instead of using only molecular data to establish bot-
tom-up statistical timeless inferences from micro to 
macroscopic phenomena (e.g., relating molecular maps 
to fatigue states or performance), Network Physiology 
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of Exercise proposes the study of the time-variability 
properties of mesoscopic or macroscopic behavioral vari-
ables extracted at action level (e.g., see [5]). The study of 
the dynamics of such variables may inform during exer-
cise about the vicinity of qualitative non-proportional 
changes in the system like transitions from stable to 
unstable states, critical behavior (critical slowing down, 
flickering, enhancement of fluctuations), and phase 
transitions/bifurcations (as occur in the fatigue-induced 
spontaneous task disengagement) [37, 43]. It is worth 
mentioning that physiological states do not correspond 
to fixed quantitative values of parameters or set points 
but can emerge from diverse constellations of quantita-
tive values [3, 5, 81, 93]. Several interaction-based meas-
ures like connectivity, entropy, phase coherence, Hurst 
exponent, Lyapunov exponent, etc. can be used to detect 
such behavior [15, 23, 25, 62, 94, 95–101].

Another crucial methodological difference refers to the 
analysis of the acquired physiological data. Most of the 
research on Molecular Exercise Physiology and Omics 
approaches infer intra-individual phenomena from the 
study of inter-individual variations obtained through 
group-pooled data. This approach has some fundamental 
methodological issues that should be discussed in detail. 
The main aim of EP research, performed at any level of 
analysis, is to find the regulatory mechanisms that occur 
at the intra-individual (i.e., organism) level as an effect of 
exercise. The intra-organismic processes, not the popu-
lation, are the explanatory target. It is important to note 
here that intra-individual variability and co-variability 
unfold in time and must be measured through time series 
analytical tools.

While the problem of sample to population generali-
zation has been much discussed, investigated, and used 
in inferential statistics, much less attention has been 
focused on the justification of sample or population to 
individual generalization. A tacit assumption has been 
that the results obtained at the sample and generalized 
to the population level are representative of the changes 
of a ‘typical’ [i.e., average) individual [72, 102]. In other 

words, the group-pooled data would merely enhance the 
typical phenomenon in each individual.

Pooling-over group subjects is the predominant 
research practice in EP, particularly in exercise and 
health-related research. Even the state-of-the-art soft-
ware packages for time series analysis [103] are based 
on pooling-over-subjects approaches. However, the gen-
eralization of results from population to individual (or 
between clusters of individuals) is not necessarily valid 
for CAS [72]. The causal changes may drastically vary 
from individual to individual. For instance, the network 
structure of certain methylation properties obtained at 
the group-pooled level may not exist at the individual 
level, but be just a group-pooled statistical artifact. In 
other words, the group-pooled, inter-individual co-varia-
bility may substantially differ from the real intra-individ-
ual co-variability [104, 105]. These fundamental research 
problems require a complete change in traditional 
experimental designs and a transition to multivariate 
time series analysis of individuals. This change will open 
up the path to bridging the nomothetic and idiographic 
approaches in EP [106] and will help in the detection of 
the conditions in which group-pooled effects may meet 
the true intra-individual effects. In this sense, the tradi-
tional Molecular Exercise Physiology and Network Physi-
ology of Exercise can be seen as complementary research 
approaches.

Conclusions
In recent years, research in EP has made significant 
strides toward Molecular Exercise Physiology and the 
implementation of novel Omics technologies to investi-
gate exercise-related phenomena. While molecular and 
Omics approaches to EP have led to substantial new 
insights, exploring the effects of exercise at the macro-
scopic organism level cannot be reduced to the molecular 
levels only. Group-pooled data analysis, characteristic of 
EP research, can produce statistical population artifacts 
of cause–effect relations that may not exist at the indi-
vidual level. Thus, such group-pooled results cannot be 

Table 1   Contrasts between methodological traits of molecular exercise physiology and omics with those that characterize network 
physiology of exercise

Methodological traits Molecular Exercise Physiology and Omics Network Physiology of Exercise

Variables Molecular mechanisms and networks Networked meso- or macroscopic collective variables

Data acquisition Group-pooled data Intra-individual multiple time series

Measures Means and max values of variables Connectivity/Transfer entropy/Mutual information/Phase coherence/Cou‑
pling functions/Phase synchronization/Time-delay stability

Analysis Population to individual generalization Individual to population generalization

Relations Bottom-up (from micro to macro levels) static 
group-pooled statistical inferences

Bottom-up and top-down (circular causality) multilevel dynamic interactions
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directly generalized to the macroscopic organism level 
without knowing the causal processes and network inter-
actions at the intra-individual mesoscopic scales.

In addition to focusing on microlevel molecular and 
Omics processes, recent developments in Network 
Physiology have utilized novel empirical and modeling 
approaches based on adaptive networks of dynamical 
systems to open new horizons. These involve explora-
tion of coupling forms and network dynamics of physi-
ologic interactions and investigation of the mechanisms 
of integration at the meso- and macroscopic levels, where 
the emergence of order is of physiological relevance for 
exercise-related phenomena.

Such dynamic network approaches to EP at the meso- 
and macroscopic levels are essential to (i) uncover laws of 
cross-communication and causality among systems, (ii) 
establish principles of adaptation and hierarchical inte-
gration, and (iii) build a new mechanistic picture of the 
control processes underlying the emergence of exercise-
related physiological states and functions, and (iv) facili-
tate the classification and prediction of behaviors at the 
organism level in response to exercise, based on dynamic 
maps of network interactions among physiological and 
organ systems.

The future challenges of EP to go beyond molecular 
and Omics approaches are the following: (i) focus on gen-
eral principles of physiological processes to understand 
adequately every new exercise context, (ii) use general 
concepts and principles derived from DST and networks 
of dynamical systems, valid for all levels of substance 
organization, to conceptualize, investigate and explain 
exercise-related phenomena, (iii) focus on nonlinear 
dynamic interactions instead of static associations, and 
(iv) provide multilayer network-based phenomenological 
explanations of exercise-related phenomena as products 
of nested dynamics of nonlinear interactions within ver-
tical (among levels) and horizontal (among components 
at the same level) integration.

Network Physiology of Exercise, a new branch of Net-
work Physiology, has emerged to explain physiological 
states and functions as products of such nested network 
dynamics. Novel data analysis techniques have been 
developed and successfully utilized to investigate how 
physiological processes and systems coordinate and syn-
chronize as a network. Such approaches can lead to a 
new class of evaluation tools to assess the effects of exer-
cise. Specifically, building the theoretical formalism for 
Network Physiology of Exercise will facilitate the devel-
opment of network-based biomarkers, able to track how 
physiological states evolve under exercise settings and 
improve our knowledge about the mechanisms underly-
ing diverse exercise-related phenomena.
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