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SUMMARY

Hydroxynonenal is involved in the pathogenesis of nonal-
coholic steatohepatitis by activating m-calpain via G-protein
coupled receptor 120 and disrupting the lysosome, leading
to hepatocyte death. Administration of Alda-1 reduces liver
fibrosis by inhibiting hydroxynonenal-induced hepatocyte
death and liver inflammation.

BACKGROUND & AIMS: The lipid oxidation is a key factor for
damaging hepatocytes and causing cell death. However, the
mechanisms underlying hepatocyte death and the role of the
most popular lipid peroxidation product 4-hydroxy-2-nonenal
(HNE) in nonalcoholic steatohepatitis (NASH) remains unclear.

METHODS: We demonstrated using hepatoma cell lines, a
NASH mouse model, HNE-treated monkeys, and biopsy speci-
mens from patients with NASH that HNE induced hepatocyte
death by disintegrating the lysosomal limiting membrane.

RESULTS: The degree of HNE deposition in human NASH he-
patocytes was more severe in cases with high lobular inflam-
mation, ballooning, and fibrosis scores, and was associated with
enlargement of the staining of lysosomes in hepatocytes. In
in vitro experiments, HNE activated m-calpain via G-protein
coupled receptor (GPR) 120. The resultant rupture/per-
meabilization of the lysosomal limiting membrane induced the
leakage of cathepsins from lysosomes and hepatocyte death. The
blockade of G-protein coupled receptor 120 (GPR120) or m-cal-
pain expression suppressed lysosomal membrane damage and
hepatocyte death by HNE. Alda-1, which activates aldehyde de-
hydrogenase 2 to degrade HNE, prevented HNE-induced hepa-
tocyte death. Intravenous administration of HNE to monkeys for
6months resulted in hepatocyte death by amechanism similar to
that of cultured cells. In addition, intraperitoneal administration
of Alda-1 to choline-deficient, amino-acid defined treated mice
for 8 weeks inhibited HNE deposition, decreased liver inflam-
mation, and disrupted lysosomal membranes in hepatocytes,
resulting in improvement of liver fibrosis.

CONCLUSIONS: These results provide novel insights into the
mechanism of hepatocyte death in NASH and will contribute to
the development of new therapeutic strategies for NASH. (Cell
Mol Gastroenterol Hepatol 2022;14:925–944; https://doi.org/
10.1016/j.jcmgh.2022.06.008)

Keywords: Alda-1; Cell Death; 4-hydroxy-2-nonenal; Lysosomal
Membrane Rupture.
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Nonalcoholic steatohepatitis (NASH), one stage of
nonalcoholic fatty liver disease (NAFLD), is char-

acterized by excess adiposity, inflammation, and fibrosis of

the liver and progresses to cirrhosis and hepatocellular
carcinoma.1 The onset of NAFLD is associated with obesity,
insulin resistance, and dyslipidemia, and its incidence is
markedly increasing in developed countries.2 Because the
incidence of NASH-related hepatocellular carcinoma is also
increasing, it is emerging as an important public health
issue.

3

Multiple factors have been implicated in the patho-
physiology of NAFLD. Oxidative stress is a crucial factor that
damages the liver and contributes to the development of
NASH. However, the mechanisms underlying hepatocyte
degeneration/death that facilitate progression from simple
fatty liver to NASH remain unclear. Therefore, the devel-
opment of drugs that specifically target these pathways has
been limited.

4-Hydroxy-2-nonenal (HNE) is one of the most cytotoxic
aldehydes derived from u-6 polyunsaturated fatty acids, such
*Authors share co-first authorship; §Authors share co-corresponding
authorship.

Abbreviations used in this paper: ALDH2, aldehyde dehydrogenase 2;
ALT, alanine aminotransferase; BSA, bovine serum albumin; CDAA,
choline-deficient, amino-acid defined; CTSB, cathepsin B; EPI, Epi-
rubicin; GPR, G-protein-coupled receptor; HNE, 4-Hydroxy-2-nonenal;
Hsp70.1, heat shock protein 70.1; IgG, immunoglobulin G; IL, inter-
leukin; LAMP2, lysosome-associated membrane protein 2; NAFLD,
nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis;
PBS, phosphate buffered saline; siRNA, small interfering ribonucleic
acid.
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as linoleic and arachidonic acids. It directly induces functional
damage to the proteins involved in cell death, the inhibition of
enzymatic activities, and other biological processes.4 Protein
modifications by HNE have been associated with many dis-
eases, including atherosclerosis,5 ischemia-reperfusion
injury,6,7 Parkinson’s disease,8 and Alzheimer’s disease.9,10

In addition, HNE inhibits deoxyribonucleic acid repair ca-
pacity through its direct interaction with repair proteins,11

causing genomic instability associated with carcinogenesis.12

HNE is also produced by overheating vegetable oil rich in
linoleic acid,13 which is taken into our bodies orally. The
recent increase in vegetable oil consumption14 suggests that
HNE is deeply involved in our lives. In addition, HNE is
pathologically detected in the hepatocytes of patients with
NAFLD as an oxidative stress marker.15 Therefore, HNE may
play an important role in pathogenesis of NAFLD. However,
limited information is currently available on the effects of
HNE on hepatocytes and the development of NASH.

We herein used an in vitro model with hepatoma cell
lines and an in vivo HNE-treated Japanese macaque monkey
model to demonstrate that HNE induces hepatocyte death
by damaging cellular organelles, specifically the lysosomal
membrane. We confirmed that the same mechanism led to
HNE-induced cytotoxicity in the liver tissues of patients
with NASH. Furthermore, we showed that intraperitoneal
administration of Alda-1, which activates aldehyde dehy-
drogenase 2 (ALDH2) for HNE degradation,16,17 suppressed
liver inflammation and fibrosis in the NASH mouse model.
Collectively, the present results implicate HNE in hepatocyte
degeneration/death and the resulting liver fibrosis; there-
fore, its inhibitors may block hepatocyte death and prevent
progression from simple steatosis to NASH.

Results
Deposition of HNE in NAFLD Livers

To investigate the relationship between HNE deposition
in liver tissue and the NAFLD pathology, an immunohisto-
chemical analysis was performed to detect HNE deposits in
the livers of patients with nonfatty liver (n ¼ 13) and
NAFLD (n ¼ 90) (Table 1). We semi-quantitatively classified
the degree of HNE deposition into 3 levels (Figure 1, A).
HNE deposits were not observed in nonfatty livers but were
present in the cytoplasm of hepatocytes in most patients
with NAFLD (Figure 1, B–C). The degree of HNE staining,
scored using a 3-scale system (Figure 1, A), was significantly
higher in the NAFLD group than in the nonfatty liver group
(Figure 1, C). In the NAFLD group, lobular inflammation, the
ballooning of hepatocytes, and fibrosis were noted in livers
with extensive HNE staining. Livers with large HNE deposits
had a high NAFLD activity score, reflecting disease activity
in patients with NAFLD, and a high Matteoni’s classification
score, indicating disease progression. However, no correla-
tion was observed between the degree of HNE deposition
and extent of fat accumulation (Figure 1, D).
HNE-induced Hepatocyte Death
To assess the effects of HNE on hepatocytes, the HepG2

and Huh-7 hepatoma cell lines were exposed to HNE in vitro.
Epirubicin (EPI) was used to induce apoptosis as a con-
trol.18 Time-lapse imaging revealed that the addition of EPI
to the HepG2 culture induced cell death with the cell
shrinkage and formation of blebbing. However, the addition
of HNE induced “bursting” cell death without cell shrinkage
or blebbing (Figure 2, A; Supplementary Movie 1). In ana-
lyses at the same cell density, cell viability decreased in
time- and HNE concentration-dependent manners (Figure 2,
B–D). However, as cell density increased, cell viability could
be maintained at high levels even at seemingly high con-
centrations of HNE (100 mM). It should be noted that the
HNE concentrations required to induce cell death were
different (25–100 mM) because the cell densities varied with
each assay, in the in vitro experiments in this study
(Figure 2, E). The number of Annexin V- and ethidium
homodimer III-positive dead cells in flow cytometry
increased after the HNE treatment (Figure 2, F–G). Fluo-
rescence time-lapse imaging showed that caspase-3 was
activated by the addition of EPI or HNE (Figure 2, A;
Supplementary Movie 2). Alda-1, which activates ALDH2 for
HNE degradation,16,17 prevented HNE-induced reductions in
cell viability of HepG2 (Figure 2, H). Similar results were
obtained for Huh-7 cells after the addition of HNE (Figure 2,
I–P).
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Table 1.Patient Profiles

Variable Nonfatty liver (n ¼ 13) NAFLD (n ¼ 90) P-value

Sex (male/female) 7/6 53/37 NS

Age, y 53.0 ± 4.9 46.5 ± 1.7 NS

Height, cm 165.5 ± 1.7 163.2 ± 1.1 NS

Weight, kg 56.9 ± 3.3 73.6 ± 2.1 < .0001

BMI, kg/m2 20.1 ± 1.2 28.7 ± 0.6 < .0001

AST, IU/L 17.0 ± 1.6 37.5 ± 5.6 < .0001

ALT, IU/L 14.0 ± 2.4 49.0 ± 9.1 < .0001

Platelet count, �104/mm3 22.5 ± 1.7 22.2 ± 0.7 NS

Total protein, g/dL 7.0 ± 0.2 7.1 ± 0.1 NS

Albumin, g/dL 4.3 ± 0.1 4.4 ± 0.0 NS

PT, % 102.0 ± 3.0 98.0 ± 1.6 NS

HbA1c, % 5.3 ± 0.1 6.7 ± 0.2 .0002

HOMA-IR ND 3.5 ± 0.6 ND

Total cholesterol, mg/dL 203.0 ± 9.7 200.0 ± 4.2 NS

Triglyceride, mg/dL 80.0 ± 13.6 136.0 ± 8.9 .004

HDL cholesterol, mg/dL 57.0 ± 6.7 44.0 ± 1.3 < .0001

LDL cholesterol, mg/dL 117.0 ± 8.1 122.0 ± 3.9 NS

Histopathological findings
Fibrosis (0/1/2/3/4) ND 7/52/16/8/7 ND
Steatosis (0/1/2/3) ND 2/28/37/23 ND
Lobular inflammation (0/1/2/3) ND 6/37/42/5 ND
Hepatocellular ballooning (0/1/2) ND 31/36/23 ND
NAS score (0/1/2/3/4/5/6/7/8) ND 0/4/13/9/15/25/21/3/0 ND

Note: Data are expressed as number or median ± standard error of the median.
AST, Aspartate aminotransferase; ALT, alanine aminotransferase; HbA1c, hemoglobin A1c; HDL, high-density lipoprotein;
HOMA-IR, homeostasis model assessment of insulin resistance [fasting serum insulin (mU/mL) � fasting plasma glucose (mg/
dL)/405]; LDL, low-density lipoprotein; NAFLD, nonalcoholic fatty liver disease; NAS, NAFLD activity score; ND, not deter-
mined; NS, not significant; PT, prothrombin time.
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We then examined the mechanisms underlying hepato-
cyte death by HNE. HNE or EPI were added to the HepG2
culture, and the morphology of lysosomes was examined
using time-lapse imaging by staining lysosomes with Lyso-
Tracker, which is a highly soluble small molecule that is
retained in acidic intracellular compartments. The addition
of HNE resulted in the gradual reduction and loss of lyso-
somes prior to cell death. However, lysosomes remained
almost intact until the death of EPI-treated cells (Figure 3, A;
Supplementary Movie 3). Electron microscopic observations
revealed that HNE disrupted the lysosomal limiting mem-
brane, resulting in the leakage of its content. In contrast, the
ultrastructure of the lysosomal limiting membrane
remained intact in HepG2 cells not exposed to HNE
(Figure 3, B).

The morphology of lysosomes and translocalization of
cathepsin, which is physiologically enclosed within lyso-
somes, were evaluated by immunofluorescence staining.
Although the size of individual lysosomes transiently
increased and then decreased, the granular area stained by
cathepsin B (CTSB) increased after the HNE treatment
(Figure 3, C– D). The CTSB-positive granular area was also
co-stained by lysosome-associated membrane protein 2
(LAMP2), which is an abundant component of the lysosomal
membrane, and the area of the merged color in the
cytoplasm increased over time (Figure 3, E). A similar
analysis was performed on Huh-7 cells (Figure 3, F–I) with
the same results. Collectively, these results suggest that HNE
disrupts the lysosomal limiting membrane to induce cell
death by the leakage of cathepsins.
Mechanisms of Lysosomal Membrane Rupture
We next asked the mechanisms underlying HNE-induced

lysosomal membrane rupture. HNE has been reported to
activate the free fatty acid receptors, G-protein coupled re-
ceptor (GPR) 40 or GPR109A in neurons or pancreatic b-
cells, and induces calpain activation, which is associated
with disruptions in the stability of the lysosomal membrane,
by increasing the intracellular Ca2þ concentration.13 We
herein examined the expression of 3 GPRs; GPR40,
GPR109A, and GPR120 (Figure 4, A). The expression of
GPR120 was clearly expressed in HepG2, Huh-7 cells, and
human and monkey liver tissues compared with the
expression of GPR40 and GPR109A. Activation of GPR120
has been reported to rise the intracellular Ca2þ concentra-
tion,19,20 and may be involved in lysosomal membrane dis-
ruptions via activation of m-calpain.

GPR120 expression was suppressed by small interfering
ribonucleic acid (siRNA) (Figure 4, B), and cell viability and



Figure 1. HNE is involved in the progression of disease in NASH. A, Semi-quantitative assessment of HNE immunore-
activity in the liver tissue of patients with NAFLD. The density of HNE immunoreactivity was scored into 3 grades as follows: no
staining (Grade 0), weak and uniform staining of the entire tissue specimen (Grade 1), and intense spots (arrows) with uniform
staining (Grade 2). The rectangle is magnified. B, HNE immunostaining in human liver tissue. The rectangle in the middle and its
magnified image in the right, show focal HNE immunorecativity in the liver of a patient with NAFLD. C, The degree of HNE
deposition was compared between patients with nonfatty liver (n ¼ 13) and patients with NAFLD (n ¼ 90). D, Relationships
between pathological scores and HNE staining grades 0 (n ¼ 6), 1 (n ¼ 47), and 2 (n ¼ 37) in patients with NAFLD. Lobular inf,
lobular inflammation; Mattenoni, Matteoni’s classification; NAS, NAFLD activity score.
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changes in lysosomes were examined after the addition of
HNE to HepG2 cells. When the expression of GPR120 was
suppressed, cell viability improved after the addition of HNE
(Figure 4, C). Based on LysoTracker immunofluorescence
staining, the suppression of GPR120 did not significantly
increase the size of lysosomes after the addition of HNE and
resulted in protection of lysosomal disruptions (Figure 4,
D–F). These results indicate that HNE primarily functions
via GPR120 in HepG2 cells and is associated with lysosomal
disruption and cell death.

Addition of HNE to HepG2 cells activates m-calpain
(Figure 4, G–H). Activated calpain was previously shown to
disrupt the stability of the lysosomal membrane.13,21-26

Therefore, the morphology of lysosomes and cell viability
after the addition of HNE under the suppression of m-calpain
expression by siRNA (Figure 4, I) was examined. In the
negative control with active m-calpain expression, the
number of lysosomes decreased after the HNE treatment
(Figure 4, J). In contrast, it was maintained when the
expression of m-calpain was suppressed by siRNA (Figure 4,
J), and cell viability improved (Figure 4, K). In addition, the
addition of HNE to HepG2, in which GPR120 expression was
suppressed (#1 and #3), did not activate m-calpain
(Figure 4, L–M). Three siRNAs (#1-#3) were used for
GPR120 suppression, but #2 siRNA did not function well in
suppressing GPR120 expression (data not shown). Inhibi-
tion of GPR120 with #2 siRNA did not result in lysosome
disruption or suppression of cell viability (data not shown),
which was considered to be attributed to insufficient calpain
inhibition (Figure 4, L). These results suggest that the effects
of HNE on lysosomal membrane rupture are regulated by
activated m-calpain via GPR120.
Lysosomal Membrane Rupture in Patients With
NASH

Liver tissues from patients with NASH were used to
investigate the relationship between the presence of lyso-
somal disintegrity and HNE deposition. The double staining
of CTSB and LAMP2 in control (nonfatty) livers showed that
LAMP2 co-localized with small foci of CTSB in the cytoplasm
of hepatocytes (Figure 5, A). On the other hand, in NASH
livers, the merged color of CTSB and LAMP2 immunoreac-
tivity expanded as coarse granules in the cytoplasm of he-
patocytes. Increases in the stained area of LAMP2 indicated
the collapse of the lysosomal limiting membrane, whereas



Figure 2. HNE induces hepatocyte death. A, The activation of caspase 3 was detected using NucView 488 Caspase-3
Substrate (green square) and cell death of HepG2 cells was visualized using propidium iodide (red square). Blue, nucleus;
green, activated caspase 3, red, dead cell; yellow, merge. B, HepG2 cells viability was assayed 0, 2, 6, 12, and 24 hours after the
addition of 6.25, 12.5, 25, 50, and 100 mM HNE. C, Statistical analysis of HepG2 cells viability 24 hours after the addition of 0,
6.25, 12.5, 25, 50, and 100 mM HNE is shown. D, Statistical analysis of HepG2 cells viability 2, 6, 12, and 24 hours after the
addition of 100 mM HNE is shown. E, 3000, 6000, 12000, and 24000 HepG2 cells viability was assayed 24 hours after addition of
100 mM HNE. F, Cell death of HepG2 was assessed by staining cells with Annexin V and ethidium homodimer III (EthD-III), and
analyzed by the flow cytometry. The analyses were done 6 hours after the addition of 25, 50, or 100 mMHNE.G, The difference in
the frequency of double staining HepG2 cells with Annexin V and EthD-III 6 hours after the addition of 0, 25, 50, or 100 mMHNE is
shown. H, Effect of Alda-1 on the viability of 40 mM HNE-treated HepG2 cells is shown. I, The activation of caspase 3 was
detected using NucView 488 Caspase-3 Substrate (green square) and cell death of Huh-7 cells was visualized using propidium
iodide (red square). Blue, nucleus; green, activated caspase 3; red, dead cell; yellow, merge. J, Huh-7 cells viability was assayed
0, 2, 6, 12, and 24 hours after the addition of 6.25, 12.5, 25, 50, and 100 mMHNE. K, Statistical analysis of Huh-7 cells viability 24
hours after the addition of 0, 6.25, 12.5, 25, 50, and 100 mM HNE is shown. L, Statistics analysis of Huh-7 cell viability 2, 6, 12,
and 24 hours after the addition of 100 mM HNE is shown. M, 3000, 6000, 12000, and 24000 Huh-7 cells viability was assayed 24
hours after addition of 100 mM HNE. N, Cell death of Huh-7 was assessed by staining cells with Annexin V and EthD-III and
analyzed by flow cytometry. The analyses were done 6 hours after the addition of 25, 50, or 100 mMHNE.O, The difference in the
frequency of double staining Huh-7 cells with Annexin V and EthD-III 6 hours after the addition of 0, 25, 50, or 100 mM HNE is
shown. P, Effect of Alda-1 on the viability of 40 mM HNE-treated Huh-7 cells is shown. C–E, H, K–M, P, The experiment was
repeated 3 times, and blue, red, and green indicate the first, second, and third data, respectively.
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those in the stained area of CTSB reflected its leakage from
the lysosome into the cytoplasm; both were considered to
indicate the permeabilization/disruption of the lysosomal
limiting membrane. To investigate the relationship between
HNE deposition and lysosomal disintegrity, the size of
granules being stained by the LAMP2 antibody and the HNE
staining score were both examined in 26 liver samples
randomly selected from 90 patients with NAFLD (Table 2).
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In comparisons with liver tissue showing negligible HNE
deposition, the areas stained by LAMP2 were larger in livers
with significant HNE deposition (Figure 5, B).

Lysosomes were observed in nonfatty and NASH livers
by electron microscopy, and the disruption of the lysosomal
limiting membrane was confirmed in the hepatocytes of
NASH, but not nonfatty livers, which contained membrane-
bound lysosomes (Figure 5, C). In addition, the expression
of activated m-calpain was significantly elevated in NASH
livers compared with patients with nonfatty liver (Figure 5,
D–E).

Lysosomal Membrane Damage in vivo by HNE
Based on similarities in GPR expression with humans,

the non-human primate model (Japanese macaque monkey)
was used to assess the degree of HNE-induced lysosomal
disintegrity and resultant hepatocyte death in vivo. After
intravenous injections of 5 mg of synthetic HNE once a week
for 24 weeks, liver tissue was collected. In comparisons with
control monkeys without HNE injections, macroscopic ob-
servations revealed a marked color change on the liver
surface in monkeys treated with HNE (Figure 6, A). The
marked degeneration of hepatocytes with the disruption of
the cytoplasm was detected (Figure 6, B). HNE immunore-
activity also increased in HNE-injected monkeys (Figure 6,
B). A Western blotting analysis showed that HNE adducts in
liver tissue were significantly increased in HNE-treated
monkeys over control monkeys (Figure 6, C–D). A blood
analysis showed that the administration of HNE significantly
increased alanine aminotransferase (ALT) levels (Figure 6,
E). Immunofluorescence double staining of CTSB and
LAMP2 revealed that the area of the merged color in lyso-
somes, which indicated the leakage of lysosomal contents,
was larger in HNE monkeys than in the control (Figure 6, F).
The staining area of LAMP2 was significantly increased in
HNE-treated monkeys compared with control monkeys,
suggesting lysosomal disruption (Figure 6, G–H). Electron
microscopic observations confirmed that the lysosomal
limiting membrane was disrupted with a loss of vivid ly-
sosomes in the HNE group but remained intact in the con-
trol group (Figure 6, I). This was consistent with the results
obtained from cultured cells (Figure 3, B) and patients with
NASH (Figure 5, C). A Western blotting analysis showed that
m-calpain activation was significantly stronger in livers after
Figure 3. (See previous page). Induction of lysosomal mem
A, Changes in lysosomes of HepG2 cells after the addition o
LysoTracker. Blue, Hoechst; red, LysoTracker. Square on the to
on bright field imaging. B, Electron microscopy images of HepG
bound lysosomes in the control (Cont) and disruption of the lyso
respectively. L, lysosome. C, HepG2 cells were treated with 25 m
CTSB; red, LysoTracker; yellow, merge. D, Area occupied by Ly
image. The analysis was performed with 10 images in each grou
and LAMP2 before (0) and 6 hours after the treatment of 25 mM
Electron microscopy images of Huh-7. Black squares show ma
(Cont) and disruption of the lysosomal limiting membrane in HNE
7 cells were treated with 25 mM HNE, and imaged 0, 2, and 6 ho
merge. H, Area occupied by LysoTracker and CTSB for each p
immunoreactivity of Huh-7 cells for CTSB and LAMP2 before (0
green, CTSB; red, LAMP2; yellow, merge.
HNE injections than in the control group (Figure 6, J–K).
These results indicate that HNE leads to lysosome disrup-
tion in vivo, which may involve the activation of m-calpain.
Alda-1 Improved Liver Inflammation and Fibrosis
in Choline-deficient, Amino-acid Defined (CDAA)
mice Model

Finally, we assessed whether detoxification of HNE, the
beginning of a series of cascades, would inhibit liver
inflammation or fibrosis resulting from hepatocyte death.
Here we used Alda-1, which resulted in inhibition of hepa-
tocyte death by HNE in vitro (Figure 2, H and P). CDAA mice
models were treated with 20 mg/kg Alda-1 intraperitone-
ally 3 times a week, and the histological images of the liver
were compared after 8 weeks; HNE deposition was
observed in CDAA mice but was reduced in Alda-1-treated
CDAA mice (Figure 7, A). A Western blotting analysis
showed that liver HNE protein adducts were significantly
reduced in CDAA mice with Alda-1 treatment compared
with CDAA mice (Figure 7, B–C). Lobular inflammation after
4 or 8 weeks of CDAA mice and liver fibrosis formed after 8
weeks of CDAA mice was ameliorated by intraperitoneal
administration of Alda-1 (Figure 7, D–F). Using real-time
polymerase chain reaction in mice liver tissue, the
inflammation-related cytokines interleukin (IL)-6, tumor
necrosis factor, and IL-1b were measured, and IL-6 was
significantly lower in Alda-1-treated 4 or 8 weeks CDAA
mice (Figure 7, G). There was no difference in toll-like re-
ceptor-4 expression (Figure 7, G).

In comparisons with the control group, hepatocytes in 8-
week CDAA mice livers were characterized by enlarged ly-
sosomes, and disruption of the lysosomal membrane
resulted in the leakage of CTSB and scattering of LAMP2
into the cytoplasm (Figure 7, H). Disruption of the lysosomal
limiting membrane in the hepatocytes of CDAA mice was
also confirmed by electron microscopy (Figure 7, I).
Immunofluorescence staining showed that the area of
LAMP2 was decreased by Alda-1 treatment (Figure 7, J). The
staining area of LAMP2 was calculated and the number
whose area was greater than 10 mm2 was compared. At 4
weeks, there was no difference in the number of LAMP2
staining areas greater than 10 mm2 in CDAA mice and Alda-
1-treated CDAA mice (Figure 7, K–L). However, at 8 weeks,
brane permeabilization/rupture in hepatocytes by HNE.
f EPI and HNE were observed by time-lapse imaging using
p right indicates morphological changes that were observed
2 cells. Black squares show magnified images of membrane-
somal limiting membrane in HNE-treated HepG2 cells (HNE),
M HNE, and imaged 0, 2, and 6 hours later. Blue, DAPI; green,
soTracker and CTSB for each particle in HepG2 cells at a 20�
p. E, Images show immunoreactivity of HepG2 cells for CTSB
HNE. Blue, DAPI; green, CTSB; red, LAMP2; yellow, merge. F,
gnified images of membrane-bound lysosomes in the control
-treated Huh7 cells (HNE), respectively. L, lysosome. G, Huh-
urs later. Blue, DAPI; green, CTSB; red, LysoTracker; yellow,
article in Huh7 cells at a 20� image of Huh7. I, Images show
) and 6 hours after the treatment of 25 mM HNE. Blue, DAPI;



Figure 4. Mechanism of lysosomal disintegrity of cultured cells by HNE. A, The expression of GPR40, GPR109A, and
GPR120 in Huh-7 cells, HepG2 cells, the human liver, monkey liver, and monkey pancreas was evaluated by a Western blotting
analysis. B, The relative fold expressions by real-time PCR indicates that GPR120 in HepG2 cell is suppressed by siRNA (#1
and #3). C, Viability of HNE-treated HepG2 cells with (#1 and #3) and without (NC) the down-regulation of GPR120 by siRNA.
D, Lysosomes of HepG2 cell, with 25 mMHNE treatment, in which GPR120 was suppressed by siRNA (#1 and #3) were stained
with LysoTracker. Red, LysoTracker; blue, DAPI. E, GPR120 in HepG2 cells was down-regulated by siRNA (#1 and #3), and
cells were treated with 100 mM HNE. Lysosomes were stained with LysoTracker 6 hours after the addition of HNE. Flow
cytometry was used in the analysis, and results are shown in the histogram. NC means HNE-treated HepG2 cells without the
down-regulation of GPR120. F, Flow cytometry was used in the analysis, and results are shown in the mean fluorescence
intensity (MFI) of LysoTracker. G, A Western blotting analysis of activated m-calpain in HepG2 cells is shown. H, Bands of panel
G are quantified and shown as relative fold ratios. I, The relative fold expressions by real-time PCR indicates that m-calpain in
HepG2 cell is suppressed by siRNA (#4 and #5). J, m-calpain in HepG2 cells was down-regulated by siRNA (#4 and #5) and
cells were treated with 100 mM HNE. Lysosomes were stained with LysoTracker, and changes in the cell, and lysosomes were
observed using time-lapse imaging. Blue, Hoechst; red, LysoTracker. Bright field images are shown in the square on the
bottom right corner of each image. In the negative control without m-calpain down-regulation (NC), lysosomes were no longer
present, and HepG2 cells died 5 hours after the HNE treatment. In contrast, lysosomes were retained in cells in which m-
calpain was down-regulated by siRNA (#4 and #5), and many cells survived even after the HNE treatment. K, Viability of HNE-
treated HepG2 cells with (#4 and #5) and without (NC) the down-regulation of m-calpain by siRNA. The graph shows results of
cell viability obtained 12 hours after the treatment with 40 mM HNE. L, A Western blotting analysis of activated m-calpain in
HepG2 cells with (#1-#3) and without (NC) the down-regulation of GPR120 by siRNA is shown. M, Bands of panel L are
quantified and shown as relative fold ratios. NC, HNE-treated HepG2 cells without the down-regulation of m-calpain.
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Figure 5. Lysosomal membrane permeabilization/rupture in hepatocytes of patients with NASH. A, Immunofluorescence
staining of liver tissue from patients with nonfatty liver disease and NASH. Blue, DAPI; green, CTSB; red, LAMP2. The area
highlighted in the yellow square is a magnified image of the nonfatty liver, whereas the red square is a magnified image of the
NASH liver. B, Relationship between the HNE staining score (patient numbers; grade 0, n ¼ 5; grade 1, n ¼ 9; grade 2, n ¼ 12)
and granule sizes for LAMP2. The area of particles stained with LAMP2 in 20� image was calculated, respectively. C, Electron
microscopy images of the non-fatty liver and NASH liver. Lysosomes with clear limiting membrane structures were observed in
the nonfatty liver (white arrowheads). In contrast, lysosomes in the NASH liver showed disintegrity (yellow arrowheads).
Furthermore, in some lysosomes, the lysosomal membrane was disrupted, and contents leaked out (yellow arrow). D, A
Western blotting analysis of m-calpain in the livers of 5 patients with nonfatty liver (normal) and 5 patients with NASH is shown.
P, protein marker. E, Bands of panel D are quantified and shown as relative fold ratios.
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the number of LAMP2 stained areas that were greater than
10 mm2, which increases in CDAA mice, was significantly
suppressed by treatment with Alda-1 (Figure 7,M–N). These
results suggested that Alda-1 treatment reduced per-
meabilization/disruption of the lysosomal limiting
membrane.
Discussion
Lipid accumulation and oxidative stress due to dysre-

gulated lipid metabolism have been implicated in the
pathogenesis of NASH. The composition of fatty acids is
altered in NASH livers, with an increase in the accumulation
of fatty acids such as linoleic acid.27,28 HNE is an a, b-un-
saturated aldehyde that is generated from highly
unsaturated fatty acids, such as linoleic acid, and is one of
the most cytotoxic of all aldehydes.4,9,29 HNE exerts dose-
dependent effects on cellular homeostasis: low concentra-
tions increase the susceptibility of proteins to proteolysis
and removal by the proteasomal system. Under normal
conditions, this system removes the majority of oxidatively
damaged and modified proteins. However, under severe
oxidative stress, the accumulation of damaged/modified
proteins by high concentrations of HNE induces protein
cross-linking, malfunctions in the proteolytic machinery,
and failed autophagy.30-36

It is difficult to measure the reliable concentration of
HNE in vivo, because of rapid metabolism, its efflux and its
steady-state concentration in specific tissues.37,38 But its
concentration is considered to increase substantially in the



Table 2.Profiles of Patients Analyzed Showing a Relationship Between HNE Deposition and Lysosomal Disruption

Variable HNE0 (n ¼ 5) HNE1 (n ¼ 9) HNE2 (n ¼ 12)

Sex (M/F) 0/5 5/4 4/8

Age, y 53.0 ± 5.8 46.0 ± 5.5 46.0 ± 4.4

Height, cm 157.0 ± 2.6 162.4 ± 2.8 155.0 ± 3.3

Weight, kg 61.0 ± 5.5 69.9 ± 8.6 71.4 ± 7.3

BMI, kg/m2 25.7 ± 1.8 26.9 ± 2.6 31.5 ± 2.2

AST, IU/L 21.0 ± 4.6 24.0 ± 2.7 49.0 ± 7.1a,b

ALT, IU/L 23.0 ± 12.8 37.0 ± 8.5 77.0 ± 14.0

Platelet count, �104/mm3 18.0 ± 0.8 24.2 ± 2.2a 22.3 ± 1.8

Total protein, g/dL 7.2 ± 0.2 6.8 ± 0.2 7.3 ± 0.1

Albumin, g/dL 4.4 ± 0.1 4.3 ± 0.2 4.4 ± 0.2

PT, % 96.0 ± 8.3 116.0 ± 4.9 92.0 ± 3.7

HbA1c, % 6.9 ± 0.7 5.9 ± 0.6 7.1 ± 0.7

HOMA-IR 2.1 ± 0.2 2.6 ± 1.4 6.9 ± 1.6

Total cholesterol, mg/dL 228.0 ± 7.9 192.0 ± 13.8 209.5 ± 9.6

Triglyceride, mg/dL 90.0 ± 14.2 156.0 ± 24.6 130.5 ± 36.3

HDL cholesterol, mg/dL 56.0 ± 1.2 41.0 ± 2.9 38.0 ± 5.5

LDL cholesterol, mg/dL 155.0 ± 7.9 111.2 ± 10.5a 115.0 ± 7.7

Histopathological findings
Fibrosis (0/1/2/3/4) 1/3/0/1/0 3/5/1/0/0 0/3/4/3/2b

Steatosis (0/1/2/3) 0/3/1/1 0/4/3/2 0/2/3/7
Lobular inflammation (0/1/2/3) 1/2/2/0 1/6/2/0 0/1/8/3b

Hepatocellular ballooning (0/1/2) 3/2/0 9/0/0 0/5/7a,b

NAS score (0/1/2/3/4/5/6/7/8) 0/1/2/0/0/1/1/0/0 0/1/2/3/3/0/0/0/0 0/0/0/0/0/1/8/3/0a,b

Note: Data are expressed as number or median ± standard error of the median.
AST, Aspartate aminotransferase; ALT, alanine aminotransferase; PT, prothrombin time; HbA1c, hemoglobin A1c; HDL, high-
density lipoprotein; HNE, 4-Hydroxy-2-nonenal; HOMA-IR, homeostasis model assessment of insulin resistance [fasting
serum insulin (mU/mL) � fasting plasma glucose (mg/dL)/405]; LDL, low-density lipoprotein; NAFLD, nonalcoholic fatty liver
disease; NAS, NAFLD activity score.
aP < .05 vs the HNE0 group.
bP < .05 vs the HNE1 group.
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“local environment” under pathological conditions to over
100 mM,38 and hepatocytes are no exception, being mark-
edly increased “locally” under oxidative stress.39 Cell death,
whether apoptotic40 or non-apoptotic,41 is reported to occur
sporadically in the liver of NAFLD. In the context of diseases
associated with chronic hepatitis, such as NAFLD, we
consider that various factors increase HNE “locally” in he-
patocytes, leading to different cellular disorders including
cell death. As shown in Table 3, the HNE concentrations
used in previous articles ranged from 5 to 100 mM,42-49 with
varying cell concentration and incubation times, and did not
clearly differ from the HNE concentrations we used (25–100
mM). These facts support that the HNE concentrations used
in our in vitro experiments are within the appropriate
concentration range.

Lysosomes are membrane-bound organelles that
mediate the degradation and recycling of damaged/aged/
misfolded proteins. Maintaining lysosomal membrane
integrity is crucial for the cell homeostasis and survival.50,51

The present study using in vitro and in vivo experimental
paradigms and the liver tissue of patients with NASH
demonstrated that HNE induced calpain activation via
GPR120, resulting in lysosomal membrane permeabiliza-
tion/rupture and cell death.
It is well-known that GPR120 generally reacts with fatty
acids with 14�16 carbons. However, this receptor protein is
also known to react with ligands of various chemical
structures,52 especially conjugated linoleic acid, even if the
number of carbons is small (C9 or C10).53 Therefore, it is
quite possible that HNE with 9 carbons may affect hepato-
cytes via GPR120. In this study, we showed that suppression
of GPR120 by siRNA suppressed HNE-induced m-calpain
activation, lysosomal damage, and cell death. Furthermore,
calpain activation has been reported to lead to the cleavage
of heat shock protein 70.1 (Hsp70.1),13,21-23 LAMP2,24,25

and v-ATPase subunit b2,26 which are associated with
lysosomal limiting membrane integrity under physiological
conditions. Thus, we hypothesized that the GPR120-
mediated activation of calpain may contribute to the gen-
eration of lysosomal membrane rupture/permeabilization
by cleaving proteins involved in stabilizing the lysosomal
membrane.

We previously reported that Hsp70.1, particularly after
HNE-induced oxidation (carbonylation), was susceptible to
calpain-mediated cleavage, which disrupted the stability of
the lysosomal limiting membrane of neurons. This induced
the leakage of cathepsins, which damage cell constitutive
proteins, membranes, and organelles, resulting in neuronal



Figure 6. HNE induces lysosomal disintegrity by activating m-calpain in hepatocytes of Japanese macaque monkeys. A,
Macroscopic findings of livers in the control (Cont) and in monkeys treated with HNE (HNE). Black arrows show regional
discoloration. B, Hematoxylin and eosin staining and HNE immunostaining of liver tissue from the control group (Cont) and
HNE-treated group (HNE). HNE immunoreactivity was observed in hepatocytes. C, The expression of liver HNE protein ad-
ducts in the control (Cont) and in monkeys treated with HNE (HNE) was evaluated by a Western blotting analysis. In the
Western blotting analysis, HNE is depicted as HNE protein adducts of various molecular weights. P, protein marker. D, Bands
of panel C are quantified and shown as relative fold ratios. E, Alterations in ALT levels before the HNE treatment and increases
after the HNE treatment are shown. F, Comparison of immunofluorescence staining in the control group (Cont) and HNE-
treated group (HNE). Blue, DAPI; green, CTSB; red, LAMP2; yellow, merge. The yellow square shows a magnified image of
the liver in the control group, whereas the red square shows a magnified image of the liver in the HNE-treated group. G, The
area of particles stained with LAMP2 is shown in 20� image for each monkey. H, The number of stained areas that were 10
mm2 or larger in panel G is shown. I, Electron microscopy images of livers in the control (Cont) and HNE-treated groups (HNE).
Black squares show magnified images of membrane-bound lysosomes in the control (Cont) and disruption of the lysosomal
limiting membrane in the HNE-treated group (HNE). L, lysosome. J, A Western blotting analysis showing the expression of
activated m-calpain in the livers of the control (Cont) and HNE-treated groups (HNE). P, protein marker. K, Bands of panel J are
quantified and shown as relative fold ratios.
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death.13,21-23 This is reasonable based on the similar inter-
action between this cascade and lysosomal rupture was
confirmed using Caenorhabditis elegans neurodegeneration
models, in which the loss of function of the proteases CLP-1
and TRA-3 (equivalent to calpains in C. elegans) as well as
ASP-3 and ASP-4 (equivalent to cathepsins) was



Table 3.Concentrations of HNE Used in Previous Articles for HepG2 Cells

Plate Cell concentration HNE concentration Incubation time Reference

25-cm2 plate 2�105 cells/cm2 2–50 mM 24 hours Muzio et al.42

96-well – 5–20 mM 1, 2, 4, 8, 24 hours Gallagher et al.43

6-well 5 � 106 cells/well 20–100 mM 15, 30, 60 minutes Stewart et al.44

– 1 � 107 cells/well 100 mM 1 hour Shearn et al.45

– 1 � 106–1 � 107 cells/well 100 mM 1 hour Shearn et al.46

12-well 5 � 105 cells/well 12.5–100 mM 16 hours Shearn et al.47

– – 40 mM 24 hours Chaudhary et al.48

96-well 2 � 103 cells/well 70 mM 24 hours Zhang et al.49

HNE, 4-Hydroxy-2-nonenal.
Dash indicates that it was not described.
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neuroprotective.54 The calpain-mediated cleavage of
Hsp70.1 from low-species animals to primates is physio-
logically indispensable for the turnover of a chaperone
protein itself, but is detrimental to cell survival when
excessive.13,21-23

Several mechanisms of lysosomal membrane destabili-
zation in NAFLD hepatocytes are known. Free fatty acids
transfer cytoplasmic Bax, which induces channel forma-
tion,55 to lysosomes, which may increase the permeability of
lysosomal membranes.56 In addition, the activity of acidic
sphingomyelinase, which is involved in lysosomal meta-
bolism, regulation of membrane structure, and signal
transduction,57 leads to lysosomal membrane instability.58

Lysosomal destabilization based on the “calpain-cathepsin
hypothesis”13,22 involving calpain activation by HNE
demonstrated in this study adds new insights into the un-
derstanding of the pathophysiology of NAFLD.

The toxicity of HNE suggests that its detoxification may
be a new target for therapeutic intervention in NAFLD. En-
zymes involved in the degradation of HNE are glutathione-S-
transferase,59 alcohol dehydrogenase, and ALDH.60 ALDH2
has been reported to be the most effective in detoxifying HNE
compared with other ALDH isoforms.61 In addition, inactive
ALDH2*2 allele may potentially be a risk factor for NAFLD.62
Figure 7. (See previous page). Administration of Alda-1 in CD
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tivity.17 In vitro experiments showed that Alda-1 suppressed
HNE-induced cell death, and in vivo experiments showed that
intraperitoneal administration of Alda-1 to CDAA-mice sup-
pressed liver inflammation and fibrosis. These results are
further supported by the other liver injury models shown
below. Increasing the activity of ALDH-2 by Alda-1 in hepatic
ischemia/reperfusion injury, which increases the production
of HNE in hepatocytes, eliminated the accumulation of HNE
and suppressed cell death.63 In addition, in alcohol intoxi-
cated mice where HNE is deposited in hepatocytes, treat-
ment of Alda-1 reduced hepatic HNE levels, restored
steatosis, and suppressed cell death.64

In obesity and NAFLD, autophagy in hepatocyte is re-
ported to be suppressed65 due to excess triglycerides66 and
free fatty acids.67 One of the mechanism of the dysfunction
of autophagy, which plays an important role in liver meta-
bolism,68 may be the reduction of autophagy clearance.69

Since lysosomes are important factors in autophagy flux,
the disruption of lysosomes in hepatocytes by HNE shown in
this study may be a phenomenon that explains not only cell
death due to CTSB leakage, but also an unknown mechanism
of autophagic impairment in NAFLD.
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There are several limitations to this study. First, we were
unable to clarify whether the main source of HNE produc-
tion involved in the pathogenesis of NASH is intracellular
(eg, oxidative stress) or extracellular (eg, diet). Second, the
mechanisms underlining hepatocyte death in NASH by HNE
remain unclear. A variety of cell deaths have been reported
to be involved in the pathogenesis of NASH, including
apoptosis,40 necrosis,70 necroptosis,71 pyroptosis,72 and
ferroptosis.41 In this study, we found that HNE leads to cell
death that is morphologically distinct from apoptosis,
although it results in activation of caspase-3. We surmise
that both the rupture of lysosomes resulting from HNE-
induced calpain activation and the subsequent leakage of
cathepsin result in cell death. Lysosomal rupture and
cathepsin release are involved in the activation of effectors,
such as ROS, Bax, and iron, causing various types of cell
death, including apoptosis, pyroptosis, ferroptosis, and ne-
crosis.73 Elucidating the detailed mechanisms of HNE-
induced hepatocyte death is an important topic for further
investigation. Third, we were unable to clarify what the
actual concentration of HNE in cells is sufficient to cause cell
death. This is because there is no technology to measure the
concentration of HNE in individual cells.

We herein demonstrated for the first time that HNE-
induced hepatocyte death due to lysosomal membrane
permeabilization/rupture via the calpain activation. The
present results provide novel insights into the mechanisms
responsible for hepatocyte death in NASH and will
contribute to the development of new therapeutic strategies
for NASH.
Materials and Methods
Human Samples

Liver tissue samples were collected by ultrasound-
guided subcutaneous biopsy from 103 patients, including
13 patients with nonfatty liver and 90 patients with NAFLD
(Table 1). Forty-nine of the 90 patients with NAFLD met the
criteria for NASH defined by a NAFLD activity score of 5 or
more. None of the study participants tested positive for the
hepatitis B surface antigen or hepatitis C virus antibody or
had any other chronic liver diseases. All participants had a
daily alcohol intake of less than 20 g and no long-term
history of steatogenic medication. Pathological examina-
tions were performed independently by 2 pathologists who
scored tissue samples based on Matteoni’s classification,74

the NAFLD activity score (steatosis, lobular inflammation,
and hepatocellular ballooning),75 and fibrosis score. Written
informed consent was obtained from all participants ac-
cording to the Declaration of Helsinki, and the study was
approved by the regional Ethics Committee (Medical Ethics
Committee of Kanazawa University, No. 2418).

Fasting blood tests were performed prior to liver biopsy.
Tissues collected by biopsy were submerged in OCT com-
pound and stored at �80 �C. Some of the tissues were fixed
in 10% neutral buffered formalin, embedded in paraffin, and
stored at room temperature.

The reasons for performing liver biopsy in 13 patients
with nonfatty liver were a liver transplant donor
preoperative examination (n ¼ 6), an examination for
elevated gamma-glutamyl transferase (n ¼ 2), a background
liver evaluation at liver tumor biopsy (n ¼ 4), and an ex-
amination for slightly elevated ALT (n ¼ 1).

Mouse Model
Male wild-type C57BL/6 mice were purchased from

Jackson Laboratories (Bar Harbor, ME). CDAA-diet mice
were prepared according to a previously published proto-
col.76 After weaning at 8 weeks, mice were randomly
assigned to be in the control or CDAA-diet group and were
kept 8 weeks. Control mice were fed a commercial stan-
dard diet for 8 weeks, whereas CDAA-diet mice were fed a
choline-deficient, L-amino acid-defined, high-fat diet with
0.1% methionine (CDAHFD; A0671302, Research Diets,
New Brunswick, NJ) for 8 weeks. For Alda-1 administra-
tion, another random assignment was made. For the
administration of Alda-1, the mice were randomly divided
into 3 groups and kept 8 weeks: control, CDAA-diet, or
CDAA-diet with Alda-1, for 8 weeks. The control group and
the CDAA-diet group were injected intraperitoneally with a
solvent solution of Alda-1, and the CDAA-diet with Alda-1
group was injected intraperitoneally with Alda-1 3 times
a week.

Monkey Model
After the referee of animal experimentation about the

ethical or animal welfare, nine young (4–5 years: compa-
rable with human teenagers) female Japanese macaque
monkeys (Macaca fuscata) were supplied by the National
Bio-Resource Project “Japanese monkey.” Because females
were previously reported to be more resistant to NASH than
males because estrogen is protective in mice,77 we inten-
tionally only used female monkeys. Japanese macaque
monkeys are characterized by an average life span of 25 to
35 years and gene sequence homology of approximately
94% with humans.

Monkeys were reared in a wide cage with autofeeding
and autodrainage machines as well as appropriate toys to
play with for at least for 1 year to facilitate acclimation.
Room temperature was maintained at 22 �C to 24 �C with a
humidity of 40% to 50%. They were fed approximately 100
g � 2/day of a non-purified diet (CLEA Old World Monkey
Diet CMK-2 containing 344.7 kcal/100 g, but only 4.05%
crude fat, CLEA Japan, Inc, Tokyo, Japan) for 1 year to
facilitate acclimation. Apples, pumpkins, or sweet potatoes
were given twice every week. In the morning and afternoon,
animal care staff and the first 2 authors monitored the
health and well-being of the animals to check the con-
sumption of foods, the pupilar reflex to the light, and the
conditions of standing and jumping.

At 5 to 6 years of age, monkeys were randomly divided
into sham-operated controls (n ¼ 4) and those undergoing
HNE injections (n ¼ 5). In 5 monkeys, 5 mg/week of syn-
thetic hydroxynonenal (Cayman Chemical, Ann Arbor, MI)
was intravenously injected every week for 24 weeks. In our
prior experiments, monkeys treated with intravenous in-
jections of 1 or 2 mg of HNE once a week for 6 months
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showed no significant differences from controls in bloods
tests and histological evaluations of multiple organs. By
contrast, monkeys treated with intravenous injections of 5
mg of HNE once a week for 6 months showed similar pa-
thology to cultured cells and mouse and human samples.
When 5 mg of HNE is intravenously administered to a
monkey, the serum HNE concentration is 60 mM, as calcu-
lated from the blood volume converted from the monkey’s
body weight. On the basis of a report that the human serum
concentration of HNE in a certain disease is 20 mM13,78 and
the fact that HNE is rapidly metabolized, we can assume that
the concentration of HNE in monkey serum in our experi-
mental system was not too far from the pathological state in
humans. In each monkey, venous blood was collected every
month for 6 months from the lower leg vein and ALT levels
were measured. All experimental procedures were strictly
in accordance with the guidelines for the Care and Use of
Laboratory Animals of the National Institutes of Health,
which met the ‘International Guiding Principles for
Biomedical Research Involving Animals,’ as issued by the
council for the International Organizations of Medical Sci-
ences. The protocol was approved by the Committee on the
Ethics of Animal Experiments of the Kanazawa University
Graduate School of Medical Sciences (Protocol Number: AP-
153613). The samples available for this experiment were 5
of HNE-treated monkeys for blood analysis, 3 of controls,
and 4 of HNE-treated monkeys for Western blotting anal-
ysis, and 3 of controls and HNE-treated monkeys for fluo-
rescent staining.
Cell Culture
Human hepatoma cell lines (HepG2 and Huh-7) were

maintained in Dulbecco’s Modified Eagle Medium (Nacalai
Tesque, Kyoto, Japan) containing 10% fetal bovine serum,
1% penicillin/streptomycin, and 1% L-glutamine at 37 �C in
a humidified 5% CO2 incubator. We seeded 2 � 105 cells/2
mL of medium in each well of a 6-well plate, 2 � 103 cells/
100 mL of medium in each well of a 96-well plate, and 1 �
104 cells/500 mL of medium in each well of a 4- or 8-
chamber slide. Cells were seeded and incubated overnight
before performing each assay.

Cell Viability Assay
Cell viability was assayed using the Cell Counting Kit-8

kit (CK04; Dojindo Co, Ltd, Kumamoto, Kumamoto, Japan).
Briefly, cells (2 � 104/mL) were seeded on 96-well plates at
100 mL/well. After the HNE treatment, 10 mL of Cell
Counting Kit-8 reagent was added to each well and a blank
control well was established. After an incubation at 37 �C in
a humidified 5% CO2 incubator for 2 hours, absorbance at
450 nm was measured and that at 620 nm was used as the
reference. The absorbance of each well was defined as the
difference in absorbance between 450 and 650 nm.
Regarding data normalization, the absorbance of control
wells without HNE was set to ‘100’ and other wells were
normalized to control wells. Measurements were taken from
5 wells for the control and test groups, and the experiment
was repeated at least 3 times.
HNE Treatment
HNE was stored in 99% ethanol. Prior to use, the

required amount of HNE was prepared by evaporating
ethanol under a gradual nitrogen flow and subsequently
dissolved in phosphate buffered saline (PBS) before its
addition to the cell culture medium.
Alda-1 Treatment
Alda-1 (SML0462-5MG, Sigma-Aldrich, St Louis, MO) was

dissolved in dimethyl sulfoxide. Assays on culture cells were
performed such that the final concentration of Alda-1 did
not exceed 25 mM. Cells were incubated with Alda-1 for 1
hour prior to experiments. For CDAA-diet mice, Alda-1 was
dissolved in olive oil and administered intraperitoneally at
20 mg/g 3 times a week for 8 weeks.
Flow Cytometry Analysis
Dead cells were stained with Annexin V and ethidium

homodimer III contained in the Apoptotic/Necrotic/Healthy
Cells Detection Kit (PK-CA707-30018, PromoCell GmbH,
Heidelberg, Germany). Cells were seeded on 6-well plates
and treated with HNE. After cells were collected by trypsi-
nization, they were centrifuged at 1000 rpm for 10 minutes
and then dissolved in 100 mL of the buffer and 5 mL of each
antibody. Cells were incubated for 15 minutes in the dark,
and flow cytometry was performed with BD FACSCalibur
(BD Biosciences, Franklin Lakes, NJ) using the FL1 channel
for Annexin V and FL4 channel for ethidium homodimer III
to measure mean fluorescence intensity.

The dynamics of lysosomes were analyzed by staining
lysosomes with LysoTracker Red DND-99 (L7528, Thermo
Fisher Scientific, Waltham, MA). Cells were treated with
HNE and incubated with LysoTracker at 37�C for 1 hour in
the dark. Cells were subsequently trypsinized in the dark
and analyzed using the FL2 channel on BD FACSCalibur (BD
Biosciences, Franklin Lakes, NJ) to measure mean fluores-
cence intensity.
Time-lapse Imaging
Cells were seeded on 8-chamber slides, stained, and

subsequently treated with either 3 mM EPI or 100 mM
HNE. Time-lapse imaging was performed using a confocal
quantitative image cytometer and a live cell imaging mi-
croscope. Dead cells were stained with propidium iodide
(PI) (P4864-10ML, Sigma-Aldrich, St. Louis, MO), lyso-
somes were stained with LysoTracker, cell nuclei were
stained with Hoechst 33342 (H3570, Thermo Fisher Sci-
entific, Waltham, MA), and activated caspase 3 was stained
with Nuc ViewTM 488 Caspase-3 Substrate (10403; Bio-
tium, Inc, Fremont, CA). Cells stained with propidium io-
dide and LysoTracker were imaged every 5 minutes, and
cells stained with Nuc ViewTM 488 Caspase-3 Substrate
were imaged every 7 minutes. Cells were incubated with
LysoTracker at 37�C for 1 hour and with Hoechst and Nuc
ViewTM 488 Caspase-3 Substrate for 30 minutes for
staining.
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SiRNA Transfection
siRNA was used to knockdown the following genes: G-

protein-coupled receptor (GPR)120 (#1; FFAR4HSS139006,
sequence UCACAUUUGCUAAUUCAGCCCUAAA, #2;
FFAR4HSS139007, sequence UGACUUGUCGAUUAUUU-
CUGGCUAA, #3; FFAR4HSS139008, sequence
GGAAAUUUCGAUUUGCACACUGAUU) and m-calpain (#4;
CAPN1HSS101345, sequence CCGUACACUUGAAGCGUGA-
CUUCUU, #5; CAPN1HSS188701, sequence CAGAGUGGAA-
CAACGUGGACCCAUA, #6; CAPN1HSS188702, sequence
GCGGUCGACUUUGAUAAUUUCGUUU). Stealth RNAiTM siRNA
Negative Control Lo GC (12935200; Thermo Fisher Scien-
tific, Waltham, MA) was used as a control.

All materials were purchased from Thermo Fisher Sci-
entific. Cells were seeded on 6-well plates, and siRNA was
transfected using LipofectamineTM RNAiMAX Transfection
Reagent (2167741; Thermo Fisher Scientific, Waltham, MA)
and GlicoTMOpti-MEMTM I Reduced Serum Medium
(31985070; Thermo Fisher Scientific, Waltham, MA) such
that the final concentration of siRNA reached 100 nM. Cell
viability assays were performed by seeding cells onto 96-
well plates 24 hours after the transfection of siRNA, and
immunostaining was performed after seeding cells on 4-
chamber slides. Each assay was performed 48 hours after
the transfection of siRNA.

Real-time Quantitative Reverse-Transcription
PCR Analysis

The expression of GPR120, m-calpain, IL-1b, IL-6, tumor
necrosis factor, and too-like receptor-4 was analyzed by using
quantitative real-time PCR, which was performed on a CFX384
machine (Bio-Rad, Hercules, CA) using SYBR Green Master Mix
(Applied Biosystems). Total RNA was extracted from cultured
cells using High Pure RNA Isolation Kit (Roche Diagnostics
K.K., Tokyo, Japan) according to the manufacturer’s protocol.
cDNA was synthesized using a High-Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, Carlsbad, CA). Each
sample was determined in triplicate and normalized relative to
b-actin expression. The following probes were used: GPR120
(Hs00699184_m1), m-calpain (Hs00559804_m1), IL-1b
(Mm01336189_ml), IL-6 (Mm00446190_ml), tumor necrosis
factor (Mm00443258_ml), and toll-like receptor-4
(Mm00445273).

Immunohistochemistry
Liver tissues that were fixed in formalin and embedded

in paraffin were sliced into 2 mm-thick sections. Antigen
activation was performed in an autoclave (121 �C, 10 mi-
nutes) using 0.01 M citric acid buffer at pH 6.0. Endogenous
peroxidase was blocked using Dako REAL Peroxidase-
Blocking Solution. Tissue sections were incubated with
Dako Protein Block Serum-Free for 10 minutes to prevent
non-specific staining. Tissue sections were subsequently
stained with the primary antibody for 90 minutes and with
the secondary antibody for 30 minutes. The mouse mono-
clonal antibody against human HNE (JaICA) was used as the
primary antibody at a dilution of 250. Tissue sections were
incubated with the secondary antibody against mouse
immunoglobulin G (IgG) conjugated to a peroxidase-labeled
polymer (Histofine Simple Stain MAX PO(M)) for 30 mi-
nutes. Color was developed with the DAB substrate kit.
Tissues were then counterstained with hematoxylin.

Sirius red staining was performed according to the
following procedure; liver tissue sections after initial
deparaffinization and hydration were incubated in picro-
sirius red for 60 minutes and subsequently washed with
acetic acid. Tissue sections were then counterstained with
hematoxylin for 5 minutes.

Assessment of HNE Deposition
Stained slides were observed under the All-in-One

Fluorescence Microscope BZ-X800 (KEYENCE, Osaka,
Japan). The extent of HNE staining was evaluated using a
scoring system (0: no staining, 1: mild, and 2: strong)
(Figure 1, A)

Immunofluorescence Staining
Frozen sections (3 mm thick) were incubated in 4%

paraformaldehyde for 15 minutes, followed by 1% bovine
serum albumin (BSA)/PBS for 1 hour to prevent nonspecific
staining. Tissues were stained with primary antibodies at 4
�C overnight. After washing with PBS, tissue sections were
incubated with secondary antibodies at room temperature
for 30 minutes. Tissue sections were then stained with DAPI
and incubated with the Autofluorescence Quenching Kit
(Vector Laboratories, Burlingame, CA) at room temperature
for 5 minutes to suppress autofluorescence. The following
primary antibodies were used: a mouse monoclonal anti-
body against African green monkey LAMP2 (ab25631,
Abcam, Cambridge, UK) at a dilution of 250, a rabbit
monoclonal antibody against human cathepsin B (CTSB)
(D1C7Y, Cell Signaling, Danvers, MA) at a dilution of 800, a
rat monoclonal antibody against mouse LAMP2 (6A430,
Santa Cruz Biotechnology, Dallas, TX) at a dilution of 500,
and a rabbit monoclonal antibody against mouse CTSB
(D1C7Y, Cell Signaling, Danvers, MA) at a dilution of 1000.
The following secondary antibodies were used: mouse IgG
conjugated to Alexa Fluor®594 and rabbit IgG conjugated to
Alexa Fluor 488 diluted 500� in 1% BSA/PBS.

Regarding the immunofluorescence staining of cultured
cells, HepG2 and Huh-7 cells were seeded on 4-chamber
slides and treated with 25 mM HNE. Cells were subse-
quently washed with PBS and incubated with 4% para-
formaldehyde for 15 minutes. Cells were washed with
0.05% PBST (PBS containing 0.05% Tween 20) and incu-
bated with a protein block for 5 minutes. Cells were then
incubated with the primary antibody at 37 �C for 1 hour,
washed 3 times with 0.05% PBST, and incubated with the
secondary antibody at 37 �C for 30 minutes. Chambers were
removed from slides, cells were stained with DAPI, and then
observed after the placement of a cover glass.

The following primary antibodies for LAMP2, CTSB, m-
calpain, and were used: a mouse monoclonal antibody
against African green monkey LAMP2 (ab25631, Abcam,
Cambridge, UK), a rabbit monoclonal antibody against hu-
man CTSB (D1C7Y, Cell Signaling, Danvers, MA), a rabbit
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antiserum anti-human activated m-calpain antibody (order
made by PEPTIDE Institute, Ibaraki, Osaka, Japan) that binds
with the activated (76 kDa), not inactivated (80 kDa) form
of m-calpain. Mouse IgG conjugated to Alexa Fluor 594
(Thermo Fisher Scientific, Waltham, MA) and rabbit IgG
conjugated to Alexa Fluor 488 (Thermo Fisher Scientific,
Waltham, MA) were used as secondary antibodies. In
staining with LysoTracker, LysoTracker was added 1 hour
prior to staining with primary antibodies, and cells were
stained at 37 �C for 1 hour and fixed with 4% para-
formaldehyde. For the lysosomal membrane destabilization
by immunofluorescence staining, stained tissue sections
were observed using a confocal microscope at 400�
magnification. Three regions of interest were randomly
selected to image LAMP2 staining and images were pro-
cessed on ImageJ to measure each red area of staining for
LAMP2. The lower and upper limits of the area of staining
were set to 4 and 400 mm2, respectively.

Western Blotting
Total protein was extracted using a protease inhibitor

cocktail (Sigma-Aldrich, St Louis, MO) and PhosSTOP phos-
phatase inhibitor cocktail tablets (Roche, Germany). Twenty
micrograms of liver proteins were separated by SDS-PAGE
on a SuperSep (TM) Ace 5-20% gel (Wako, Japan) at 40
mA for 1 hour. Proteins were transferred to a PVDF mem-
brane (Millipore, Burlington, MA). Transferred proteins
were detected using Ponceau S solution (Sigma-Aldrich, St
Louis, MO). Membranes were blocked with 1% BSA for 1
hour and then incubated with a rabbit anti-human activated
m-calpain antibody (order made by PEPTIDE Institute,
Japan) diluted 1:250, or a mouse monoclonal antibody hu-
man HNE antibody (JaICA) diluted 1:500 overnight. b-actin
was utilized as an internal control (Sigma-Aldrich, St Louis,
MO). Membranes were subsequently incubated for 1 hour
with anti-mouse (Santa Cruz, Dallas, TX) or anti-rabbit IgG
(Sigma-Aldrich, St Louis, MO) diluted 1:10000. An enhanced
chemiluminescence HRP substrate detection kit (Millipore,
Burlington, MA) was used to visualize reactive protein
bands. The bands were quantified using ImageJ and
compared by relative fold ratio.

Electron Microscopy
Samples of cultured cells and hepatocytes collected from

mice, monkeys, and humans were fixed in 2.5% glutaral-
dehyde for 24 hours, washed with 0.1 M PBS (pH 7.4), and
fixed with 1% osmium tetroxide. Samples were dehydrated
with graded alcohol, immersed in propylene oxide, and
embedded in epoxy resin. Thin sections were stained with
toluidine blue for trimming to make ultrathin sections. Ul-
trathin sections were then stained with 2% uranyl acetate
followed by 1% lead citrate. Stained sections were observed
under a transmission electron microscope (H-7650, Hitachi,
Tokyo, Japan).

Statistical Analysis
Data are expressed as the mean ± standard standard

error of the median. Statistical analyses were performed
with GraphPad Prism 8 (GraphPad Software, San Diego, CA).
The Mann-Whitney U test was used to compare the HNE
staining score between the NAFLD and control groups and
to compare in vitro cell culture assay results between the 2
groups. The Kruskal-Wallis test was used to assess whether
the HNE staining score was associated with liver pathology
and lysosomal disintegrity. P < .05 was considered to be
significant.
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