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Abstract: Detection of regions of interest (ROIs) in whole slide images (WSIs) in a clinical setting is a
highly subjective and a labor-intensive task. In this work, recent developments in machine learning
and computer vision algorithms are presented to assess their possible usage and performance
to enhance and accelerate clinical pathology procedures, such as ROI detection in WSIs. In this
context, a state-of-the-art deep learning framework (Detectron2) was trained on two cases linked to
the TUPAC16 dataset for object detection and on the JPATHOL dataset for instance segmentation.
The predictions were evaluated against competing models and further possible improvements
are discussed.

Keywords: machine learning; computer vision; digital pathology; object detection; instance
segmentation; breast cancer

1. Introduction

The large amounts of raw data gathered in the medical field have allowed experts
to access such data on individual patients, but the sheer amounts are simply impossible
for humans to process, use or understand at a large scale. As a response to that challenge,
statistical (SL), machine (ML) and deep (DL) Learning techniques are used in combination
with big data frameworks to detect patterns and trends in that raw data and yield insights
that are useful to experts.

Tasks to which ML is applied are numerous and wide-ranging; identifying poten-
tial drug combinations, assisting the health practitioner’s diagnosis using the available
symptom data, or classifying medical images to the correct disease classes are some of the
challenges ML is tasked to overcome. While specialized software and algorithms have been
around for some time across most of the medical fields, the differences are substantial. Until
recently, feature extraction was a rigid process, and the decision criteria were usually based
on external research that could not be representative of actual use cases, as environment
and populations could differ. On the other hand, ML algorithms can be dynamically up-
dated with newer data provided by the expert consulting the software, providing increased
accuracy of the produced diagnosis.

In the last decade, the development of information systems for the automated di-
agnosis of medical images constitutes a field of ever-growing scientific research. Digital
medical images are present in most diagnostic labs, providing easy manipulation through
various information systems. The digital processing of medical images by multiple feature
extraction techniques can lead to the accumulation of numerous features in a reliable and
reproducible way. The analysis of biomedical images through extracted features is a process
that can be carried out by ML algorithms and ultimately augments the decision-making
processes of medical experts by providing automated diagnosis insights. The information
gain of such systems is significant, as it enhances the timely and reliable identification of
important patient cases. Systems such as these can be incorporated into local information
systems at diagnostic centers but can also be a part of a telehealth information system.
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The motivation for this paper is the need for further developments in ML (machine
learning) and CV (computer vision) algorithms in the medical field, and the transfer of those
into production to assist with the processing of the large amount of available data. With the
great advances in computational power achieved during the last decade, DL algorithms
could be used to harness this power in specific medical tasks, thereby achieving better-
than-human performance and significant time and cost savings. In this report, we decided
to explore the detection of ROIs in WSIs, as it is a highly subjective and labor-intensive
task, making use of the openly available TUPAC16 and JPATHOL datasets on breast
cancer. Training and evaluation are based on a state-of-the-art deep learning framework
(Detectron2), which tackles a variety of important CV tasks (e.g., object detection, instance
segmentation) and iterates quickly through different architectures and parameters. Finally,
the predictions are evaluated against competing approaches developed around the same
datasets, and further possible improvements are discussed for use in production.

This paper opens with a brief introduction on deep learning in digital pathology
in Section 2. The methodology and the two datasets used for model training are pre-
sented in Section 3. Section 4 presents the findings, and Section 5 presents the results and
possible improvements.

2. Related Work and Background Information
2.1. The Concept of Digital Pathology (DP)

Over the last decade, the nature of diagnostic healthcare has changed rapidly, owing
to an explosion in the availability of patient data for disease diagnosis [1]. Traditional
methods of analysis of cancer samples were limited to a few variables and the measurement
of a few clinical markers; the pathologist was trained to synthesize this information into
a diagnosis that would help the clinician determine the best course of therapy. With the
advent of cost-effective whole slide digital scanners, tissue histopathology slides are now
stored in digital image form. The availability and analysis of much larger sets of variables,
combined with sophisticated imaging and analysis techniques, are replacing the traditional
paradigm of a pathologist and a microscope with a digital pathologist and a screen panel,
where he or she can view and analyze digitized tissue sections.

Some paradigm-shifting developments in the field of DP are examined below.
Diagnosis: Dramatic increases in computational power and improvement in image

analysis algorithms have allowed the development of powerful computer-assisted an-
alytical and ML approaches to biomedical data, assisting in more accurate diagnoses.
Pathologists can now spend more time and resources analyzing patient edge cases where
nonstandard features may be present. Consequently, several researchers have begun to
develop computer-aided diagnosis methods by applying image processing and computer
vision techniques to try and identify spatial extent and location of diseases on digitized
tissue sections.

Prognosis: Another task of DP is to identify prognostic markers and predict disease
outcome and survival. For instance, breast cancer grade is known to be highly correlated to
patient outcome and long-term survival.

Theragnosis: Some diseases, e.g., cancer, are complex and not yet fully understood.
The same treatment applied to two patients with apparently similar diseases may have
significantly different outcomes. This may be patient-specific, but a part is also due to
our limited understanding of the relationship between disease progression and clinical
presentation. There is a consensus among clinicians and researchers that a more detailed
approach, using computerized imaging techniques to better understand tumor morphology,
combined with the classification of diseases into more meaningful molecular subtypes, will
lead to better patient care and more effective therapeutics. The variables that can be used
in such an analysis are the tumor molecular features, results from the imaging of the tumor
cellular architecture and microenvironment, the tumor 3D tissue architecture and vascu-
larization and its metabolic features. While DP offers very interesting, highly dense data,
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one of the exciting challenges in the future will be in multimodal data fusion for making
therapy recommendations (theragnosis), especially with regard to personalized medicine.

Outlook: Predictive, preventive, and personalized medicine will transform medicine
by decreasing morbidity in cancer. This transformation will be driven by the integration
of multiscale heterogeneous data. The goal of many scientists is a future where disease
diagnostics will involve the quantitative integration of multiple sources of diagnostic data,
including genomic, imaging, proteomic and metabolic data that can distinguish between
individuals or between subtle variations in the same disease to guide therapy. Quantitative
cross-modal data integration will also allow disease prognostics, enabling physicians to
predict susceptibility to a specific disease, as well as disease outcome and survival. Finally,
the analysis will provide the ability to predict how an individual will react to various
treatments; such a theragnostic profile would be a synthesis of various biomarkers and
imaging tests from different levels in the biological hierarchy. A collection of these profiles,
followed up over time, would provide insights into the disease process and be useful for
improvements in developing future treatment options.

Role of the pathologist: The primary purpose of the ML tools mentioned previously is
to complement the role of the pathologist. Most histopathology image analysis researchers
are computer vision researchers and, as such, it is important to maintain a constant col-
laboration with clinical and research pathologists throughout the research process. There
are unique challenges to the analysis of histopathology imagery, particularly in the perfor-
mances required for eventual use of the technique in a clinical setting. It is the pathologist
who can best provide feedback on the system’s performance, as well as suggest new av-
enues of research that would provide beneficial information to the pathologist community.
Additionally, it is the pathologist who is best equipped to interpret the analysis results
by considering the underlying biological mechanisms, which, in turn, may lead to new
research ideas.

In this paper, the use of a specific deep learning platform is explored with the imple-
mentation of object detection and image segmentation tasks in the field of digital pathology.
The datasets, tools and techniques used are focused on breast cancer—which is the leading
type of cancer in women—but they can be extended to various other types of cancer that
involve the same tissue histopathological data.

Breast cancer accounts for 25% of all cancer cases in women worldwide. In 2018, it
resulted in 2 million new cases and 627,000 deaths [2]. It is more common in developed
countries and is more than one-hundred times more common in women than in men. The
five-year survival rates in the United Kingdom and the United States are between 80 and
90%. The diagnosis of breast cancer is confirmed by taking a biopsy of the concerning
tissue, and, once the diagnosis is made, further tests are carried out to determine if the
cancer has spread beyond the breast and which treatments are most likely to be effective.

The following section presents the prominent computer-based methodologies and
tools that may assist a digital pathologist in analyzing and diagnosing cancer cases with
greater accuracy and speed.

2.2. State-of-the-Art Computer-Based Methodologies and Tools for Digital Pathology
2.2.1. Computer Vision

Computer vision (CV) is a research field that studies how computers can gain high-
level understanding from digital images or videos [3,4], and how to automate tasks that
the human visual system can do, such as extraction, analysis, and understanding of useful
information from images. It involves the development of a theoretical and algorithmic
basis to achieve automatic visual understanding [5]. The image data can take many forms,
such as sequences, multi-views, or multi-dimensional data from medical machines.

CV feature-based methods are used in conjunction with ML/DL techniques and com-
plex optimization frameworks [6]. The accuracy of DL algorithms on several benchmark
data sets has allowed significant progress in tasks including, but not limited to, image clas-
sification, object localization, instance segmentation and keypoint detection. The principles
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of CV are similar to ML tasks. First, a suitable representation of the content of a digital
image is pursued so that features can be extracted. Second, a model is trained on those
features and produces a prediction on the new unseen content. Common techniques for
feature extraction are eigenfaces and histograms of oriented gradients (HOG).

2.2.2. Machine Learning

ML is a research branch of artificial intelligence that allows for the extraction of
meaningful patterns from examples, just as human intelligence allows [7]. However, unlike
humans, a computer can cover a variety of use cases, as it will perform a given repetitive
task consistently and efficiently. In the last few decades, computers have demonstrated
the ability to learn and even have become proficient in tasks that were thought to be too
complex for machines, showing that ML algorithms can be critical components in decision
support systems. Moreover, in some cases, computers have been found to discern patterns
imperceivable to humans [8]. Naturally, this has led to heightened enthusiasm in the field
of ML, especially along with the latest substantial increases in computational performance
and available data.

ML algorithms generally fall into four broad categories, each of which has its own
applications. Supervised learning relates inter alia to optical character recognition, speech
recognition, image classification, language translation, sequence generation and object
detection. Dimensionality reduction and clustering are categories of unsupervised learning,
and self-supervised learning uses heuristic algorithms to generate synthetic labels for the
data. Reinforcement learning has applications in the field of self-driving cars, robotics,
resource management, education, etc. Even though some of those applications were
unattainable up until recently, state-of-the-art advances have made them feasible.

Another significant application of ML could be found in medical imaging. Using ML
algorithms to perform detection and diagnosis can help medical experts interpret medical
imaging findings and reduce analysis times [9,10]. Examples of medical tasks where such
algorithms have been used are pulmonary embolism segmentation with CT-angiography,
polyp detection with virtual colonoscopy, breast cancer detection with mammography,
brain tumor segmentation with magnetic resonance (MR) imaging, etc.

2.2.3. Feature Extraction and Selection

The primary process in ML is the retrieval of features that contain the information
on which insights will be based, usually performed by assigning quantitative values to
visual textures [11,12]. Even though visual feature learning is easy for humans, computing
and representing features is a complex task. Visual features must be robust enough to
overcome morphological variations including, but not limited to, rotations, noise, and
intensity differences.

It is possible to retrieve a great number of features from a given image, but too many
features can stunt the learning process. Feature selection avoids overfitting by selecting only
a subset of the features, often by looking for correlations among them; a large number of
correlated features may mean that some features can be omitted with minimal information
loss. The needed features that will allow a model to differentiate among the various classes
require a minimum number of samples, which depends mainly on the distinctness of
each class.

There is a variety of ML algorithms available for obtaining the optimum features, based
on differing data assumptions, and depending on feature adjustment methods. Some of
the most commonly used ML algorithms are k-nearest neighbors, support vector machines,
decision trees, naïve Bayes classifiers and neural networks.

By the current definition, deep learning (DL) is a branch of ML and concerns neural
networks with multiple layers between the input and output layers. Due to limitations in
computing power and difficulties in the backpropagation process, most primitive neural
networks had less than three layers [13]. These challenges have been mostly overcome
through leveraging the power of parallel computing GPUs and different neural network
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architectures, such as stacked auto encoders, recurring neural networks (RNNs) and convo-
lutional neural networks (CNNs), etc. Concerning the DNN’s architecture, there are no set
rules to define the correct number, type, size or ordering of layers for a given problem—it
is still a trial-and-error process.

2.2.4. Deep Learning in Computer Vision

Rapid progressions in the DL field and improvements in device capabilities have
improved the performance and cost-effectiveness of vision-based applications. Compared
to traditional CV techniques, DL methods achieve greater accuracy in tasks, such as image
classification, semantic segmentation, and object detection [14]. Since neural networks
used in DL are trained rather than programmed, applications using this approach often
require less expert analysis and fine-tuning and can exploit the tremendous amount of
data available today. DL also provides superior flexibility, because CNN models and
frameworks can be re-trained using a custom dataset for any use case.

The traditional approach in image analysis is the use of well-established CV techniques,
such as feature descriptors (SIFT, SURF, BRIEF, etc.) that extract features, small descriptive
image patches, through algorithms such as edge/detection or threshold segmentation.
The difficulty with this traditional approach is that it is necessary to manually select the
important features in each given image. DL introduced the concept of learning, where the
machine is presented with a dataset of images that have been annotated with a ground
truth and it automatically discovers the underlying patterns, and automatically works
out the most descriptive features, with respect to each specific class for each object. It has
been well-established that DNNs perform far better than traditional algorithms, albeit with
trade-offs regarding computing requirements and training time [15].

The development of convolutional neural networks (CNN) has had a tremendous
influence and is responsible for significant improvements in the field of CV and object
recognition. CNNs are mainly used in CV tasks, because they make the explicit assumption
that the inputs are images, encoding certain properties into the architecture. Unlike regular
NNs, the layers of a CNN have neurons arranged in three dimensions, width, height, depth.
The neurons in a layer will only be connected to a small region of the layer preceding
it, instead of all the neurons in a fully connected manner. Moreover, in the final output
layer, the full image will be reduced to a single vector of class scores arranged along the
depth dimension. The most common form of a CNN architecture is a linear list of layers
that stacks a few convolutional layers, follows them with pooling layers, and repeats this
pattern until the image has been merged spatially into a small size. At some point, it is
common to transition to a fully connected layer as an output layer.

CNN architectures, such as Google’s Inception and Microsoft’s ResNet, feature more
intricate and different connectivity structures. Further commonly used CNN architectures
are LeNet, AlexNet, ZF Net, GoogLeNet and VGGNet [16,17]. In most practical real-world
applications, instead of developing novel architectures for a problem, a pre-trained model
of whatever CNN architecture works best on datasets, such as ImageNet, can be used and
finetuned on the required data.

2.2.5. Existing Approaches vs. Deep Learning

Digital pathology is becoming increasingly common due to the growing availability of
whole slide digital scanners. The digitized slides allow the use of image analysis techniques
in detection, segmentation, and classification. Algorithmic approaches have proven to be
beneficial, as they have the capacity to significantly reduce the laborious and tedious nature
of providing accurate quantifications, as well as reduce inter-reader variability among
pathologists [18]. Several image analysis tasks in DP involve some sort of quantification
or tissue grading and invariably require identification of histologic primitives (e.g., nuclei,
mitosis, tubules, epithelium, etc.).

As a result, there is a strong need to develop efficient and robust algorithms for DP
image analysis. While there have been a few papers in computational image analysis for
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the purposes of object detection and quantification [19,20], there appear to be two main
drawbacks to the existing approaches. First, the development of task-specific approaches
tends to require long research and development cycles; an algorithmic scheme needs
to be developed that can account for as many of the variances as possible, while not
being too general to avoid the result of false positives or too narrow to avoid the result
of false negative errors. This process can become quite unwieldy as a priori, it is often
unfeasible to view all the outlier cases and, thus, an extensive iterative trial-and-error
approach needs to be undertaken. The second drawback is that the required, but also
limited, implicit knowledge of how to find or adjust optimal parameters is not intuitively
understood by external parties other than the developers. Together, these create a strong
hindrance for researchers to leverage or extend the available technology to investigate their
clinical hypothesis.

DL is an example of the ML paradigm of feature learning, wherein it iteratively
improves upon learned representations of the underlying data with the goal of maximizing
class separability. There are no preexisting assumptions that guide the creation of the
learned representation; this approach involves deriving a suitable feature space solely from
the data itself. This is a critical attribute of the DL family of methods, as learning from
training exemplars allows for the generalization of the learned model to other independent
test sets. Once the DL network has been trained with an adequately powered training set,
it is usually able to be effectively generalized to unseen situations, countering the need of
manually engineering features.

DL is suited to analyze big data repositories, where employing a feature engineering
approach would require several algorithmic iterations and substantial effort to capture a
similar range of diversity. Many manually engineered or feature-based approaches are not
implicitly poised to manipulate and distil large datasets into classifiers in an efficient way.
DL approaches, on the other hand, have the potential to become the unifying approach for
the many tasks in DP, having previously been shown to produce state-of-the-art results
across varied domains [7,18]. As such, the focus of this manuscript is to discuss the usage
of a single framework that can be tweaked to apply to a diverse set of unique use cases.

3. Material and Methods
3.1. Methodology and Implementation

The use cases examined in this project, such as object detection of mitotic figures
in TUPAC16 [2] and instance segmentation of histologic primitives (Nuclei, Epithelium,
Tubules) in JPATHOL [18], demonstrate how DL can be applied to a variety of the most
common image analysis tasks in DP. For this purpose, the open-source DL framework
Detectron2 [21] is leveraged, using the Mask R-CNN architecture pretrained on the COCO
dataset [22].

The ultimate objective is to investigate whether a single training and model-building
paradigm can be applied to each task, solely by determining and modifying its hyper-
parameters, but yet being able to generate results that are comparable to competing DL
solutions or better than handcrafted approaches. This convergence to a unified approach
not only allows for a low maintenance overhead, but also implies that image analysis
researchers or DP users face a minimal learning curve, as the overall learning paradigm
and hyperparameters remain constant across all tasks.

Deep Learning Framework Specifications

While searching for a single DL framework that could run both required tasks, Face-
book AI Research released Detectron2, a next-generation platform for object detection and
instance segmentation. It is a ground-up rewrite of Detectron, it is powered by PyTorch,
and trains faster than its originator Mask R-CNN-benchmark [23].

Instance segmentation combines localization and classification of individual objects in
an image (object detection) and classification of each pixel in an image (semantic segmenta-
tion). Mask R-CNN extends Faster R-CNN [24] by adding a parallel branch for predicting
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segmentation masks on each RoI, in parallel with the existing branch for classification
and bounding box regression. This backbone branch uses the ResNet family of CNNs.
It adds only a small computational overhead, but surpasses all previous state-of-the-art
single-model results on the COCO object detection and instance segmentation tasks.

The Detectron2 framework was set up on a system running Linux 18.04 and Python
3.6. The system running the setup is comprised of a 6-core 3.00 GHz CPU, 16 MB 3000 MHz
DDR4 RAM and an Nvidia RTX2070 8 GB GPU.

3.2. Use Cases Description
3.2.1. Object Detection on TUPAC16

Tumor proliferation is an important biomarker that is indicative of the prognosis of
breast cancer patients. Patients with high tumor proliferation have worse outcomes com-
pared to patients with low tumor proliferation [25]. The assessment of tumor proliferation
influences the clinical management of the patient; patients with aggressive tumors are
treated with more intrusive therapies, and patients with indolent tumors are given more
conservative treatments that are preferred because of fewer side effects [26].

Tumor proliferation in a clinical setting is traditionally assessed by pathologists. The
most common method is to count mitotic figures (dividing cell nuclei) on hematoxylin
and eosin (H&E) histological slides under a microscope. The pathologists will assign a
mitotic score of 1-2-3, with increasing tumor proliferation. Although mitosis counting is
routinely performed in most pathology practices, this highly subjective and labor-intensive
task suffers from reproducibility problems [2]. One solution is to develop automated
computational pathology systems to detect and count mitotic figures on histopathological
images efficiently, accurately and reliably.

The first challenge on the topic of mitosis detection was MITOS 2012, hosted at the
International Conference of Pattern Recognition (ICPR) [27]. In 2013, Veta et al. organized
AMIDA13 in conjunction with the International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI) [28]. Mitosis detection was also one of the
tasks of the MITOS-ATYPIA-14 challenge, organized as part of ICPR 2014, with the other
task being the scoring of nuclear atypia [27]. A limitation of the previous challenges was
that they focused solely on mitosis detection in predetermined tumor ROIs. However, in a
real-world scenario, automatic mitosis detection is performed in WSIs, and an automatic
method should ideally be able to produce a breast tumor proliferation score, with a WSI as
the input. To address the above problem, [2] the Tumor Proliferation Assessment Challenge
2016 was organized for the prediction of tumor proliferation scores from WSIs.

The challenge included the following three main tasks to predict tumor proliferation:
mitotic score prediction, gene expression-based PAM50 proliferation score prediction and
ROI and mitosis detection. The latter concerns the design of a WSI tumor proliferation
scoring system by identifying ROIs and counting mitoses, similar to how a pathologist
would assess a slide for tumor proliferation.

Mitosis detection is the task being examined, and its dataset consists of WSIs from
73 breast cancer cases from 3 pathology centers, with annotated mitotic figures by the
consensus of 3 observers. Of the 73 cases, 23 were previously released as part of the
AMIDA13 challenge [28]. These cases were collected from the Department of Pathology at
the University Medical Center in Utrecht, Netherlands. Each case was represented with
varying numbers of HPFS, extracted from WSIs acquired with the Aperio ScanScope XT
scanner at 40× magnification, with a spatial resolution of 0.25 µm/pixel. The remaining
50 cases previously used to assess the inter-observer agreement for mitosis counting were
from 2 other pathology centers in the Netherlands (Symbiant Pathology Expert Center,
Alkmaar and Symbiant Pathology Expert Center, Zaandam) [2]. Each case was represented
by one WSI region, with an area of 2 mm2. These WSIs were obtained using the Leica
SCN400 scanner (40× magnification and spatial resolution of 0.25 µm/pixel). In total, the
mitosis detection auxiliary dataset contained 1552 annotated mitotic figures. Of the 656 pro-
vided images, only 587 of those that contained the annotated mitotic figures mentioned



J. Pers. Med. 2022, 12, 1444 8 of 21

previously were used for training and validation; these images contained between 1 and
67 mitotic figures each.

The top scoring method for the mitosis detection task had an F-score of 0.652, which is
a slight improvement over the top scoring method of AMIDA13 challenge with an F-score
of 0.612.

3.2.2. Instance Segmentation on JPATHOL

The JPATHOL paper [18] presents seven use cases that represent the ensemble of
the components necessary for most of the current challenges at the DP image analysis
stage, each with its own corresponding datasets. This report’s focus shall be on the
segmentation tasks, where the delineation of accurate boundaries for histologic primitives
(nuclei, epithelium, tubules) is required to extract precise morphological features. The
training and tuning of a DL model shall be carried using all three datasets both separately
and simultaneously, as observed in Table 1.

Table 1. Digital pathology task descriptions.

Task Biological Motivation Dataset

Nuclei segmentation Pleomorphism is used in current clinical
grading schemes

141 × 2000 × 2000 @40× ROIs of ER+ BCa,
containing subset of 12,000 annotated nuclei

Epithelium segmentation
Epithelium regions contribute to

identification of tumor infiltrating
lymphocytes (TILs)

42 × 1000 × 1000 @20× ROIs from ER+ BCa,
containing 1735 regions

Tubule segmentation Area estimates in high power fields are
critical in BCa grading schemes

85 × 775 × 522 @40× ROIs from colorectal
cancer, containing 795 delineated tubules

The ground-truth annotations are usually performed by an expert who delineates the
object boundaries or annotates the pixels corresponding to a ROI. The level of annotation
precision is critical in the optimization of supervised classification systems, but generating
these annotations is often an arduous task due to the large amount of time and effort re-
quired. Pathologists are typically unavailable to perform the amounts of laborious manual
annotations at the high resolutions needed for training and evaluating supervised ML algo-
rithms. As a result, annotations are rarely pixel-level precise, and they are usually carried
out at a lower magnification and tend to contain numerous false positives and negatives.

The DL network used for each of the individual tasks outlined in JPATHOL was a stock
AlexNet architecture identical to the one Caffe provided. Its configuration is presented
in Table 2, and its hyperparameters shown in Table 3 were held constant for all tasks
to illustrate how parameter tweaking and tuning were not important in achieving good
quality results. Experiments using dropout showed no improvement in the results, and
lack of overfitting evidence dissuaded an approach using dropout.

Table 2. Alexnet configuration.

Layer Type Kernels Kernel Size Stride Activation

0 Input 3 32 × 32
1 Convolution 32 5 × 5 1
2 Max pool 3 × 3 2 ReLU
3 Convolution 32 5 × 5 1 ReLU
4 Mean pool 3 × 3 2
5 Convolution 64 5 × 5 1 ReLU
6 Mean pool 3 × 3 2
7 Fully connected 64 Dropout + ReLU
8 Fully connected 2 Dropout + ReLU
9 SoftMax
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Table 3. AlexNet hyperparameters.

Variable Setting

Batch size 128
Learning rate 0.001

Learning rate schedule Adagrad
Rotations 0, 90

Num. iterations 600,000
Weight decay 0.004

Random minor Enabled
Transformation Mean-centered

Nuceli segmentation is an important problem, because nuclei configuration is corre-
lated with outcome, and nuclear morphology is a key component in cancer grading schemes.
Manually annotating all the nuclei in a single hematoxylin and eosin (H&E)-stained es-
trogen receptor positive breast cancer image is laborious and cannot be generalized to
represent all the other variances present in other patients and their stain/protocol variances.
As a result, time is better invested annotating sub-sections of each image, although this
creates a challenging situation for generating training patches. Typically, one would use the
annotations as a binary mask created for the positive class, and the negation of that mask
as the negative class, randomly sampling from both to create a training set. In this case,
while one can randomly sample from the positive mask successfully, the random sampling
from the complement image may or may not return unmarked nuclei belonging to the posi-
tive class. To compensate, the standard approach is extended with intelligently sampled
challenging patches for the negative class training set. Using a basic color deconvolution
thresholding approach to select random negative patches, further segmented nuclei are
obtained, even though the network is unable to identify nuclear boundaries accurately.
To enhance these boundaries, an edge mask is produced by morphological dilation, and
negative training patches are selected, which are inherently difficult to learn due to their
similarity with the positive class. This patch selection technique results in clearly separated
nuclei with more accurate boundaries.

Epithelium identification is important, since regions of cancer are typically man-
ifested there. Work by [29] suggests that histologic patterns within the stroma might
be critical in predicting overall survival and outcome in breast cancer patients. Thus,
from the perspective of developing algorithms for predicting prognosis of disease, epithe-
lium/stroma separation becomes critical. This task is unique in that it is less definitive than
the more obvious tasks of mitosis detection and nuclei segmentation, where the expected
results are quite clear. Epithelium segmentation, especially the subcomponent of identi-
fying clinically relevant epithelium, is typically performed more abstractly by experts at
lower magnifications.

Given that the AlexNet approach [18] constrains input data to a 32 × 32 window, the
task is scaled to fit into this context. The principle is that a human expert should be able to
make an educated decision based solely on the context present in the patch supplied to the
DL network, which implies that a priori, an appropriate magnification must be selected
from which to extract the patches and perform the testing. Networks with larger patch
sizes could use higher magnifications at the cost of longer training times. Similar to nuclei
segmentation, the objective is to reduce the presence of uninteresting training examples in
the dataset, which can be carried out by applying a threshold to the grayscale image, thus
removing fat and background pixels from the patch selection pool. In addition, to enhance
the classifier’s ability to provide smooth boundaries, samples are taken from the outside
edges of the positive regions.

Tubule segmentation can automate the area estimation with decreasing inter-/intra-
reader variances and greater specificity, which can lead to better prognosis indication
stratifications. Tubules are complex structures that consist of numerous components (e.g.,
nuclei, epithelium, lumen), which also determine their boundaries. In benign cases, tubules
appear in a well-organized fashion with similar size and morphological properties, making
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their segmentation easier, while in cancerous cases, the organization structure breaks down
and accurately identifying the boundary becomes challenging. In addition, tubules as an
entity are much larger compared to the individual components. Thus, they require a greater
viewing area to provide sufficient context.

In this use case, Janowczyk in 2016 [18] introduces the concept of using low-cost
preprocessing to help identify challenging patches; per image, a random selection of pixels
belonging to both classes to act as training samples is made, and a limited set of texture
features (i.e., contrast, correlation, energy and homogeneity) is computed. Next, a naive
Bayesian classifier determines the posterior probabilities of class membership for all the
pixels in the image. In this manner, pixels that would potentially produce false positives
and negatives are identified, and the training set is improved by removing trivial samples,
without requiring any additional domain knowledge. Lastly, knowing that benign cases
are easier to segment than malignant cases, patches are disproportionally selected from
malignant cases to further help with generalizability.

Benign sections of tissue have stronger features and are more easily generalizable. On
the other hand, malignant tubules are far more abstract and tend to have the hallmarks of a
tubule, such as a clear epithelial ring around a lumen, which is less obvious, making them
harder to generalize. This is potentially one of the downfalls of ML techniques that make
inferences from training data; when insufficient examples are provided to cover all cases
expected in testing, the approaches begin to fail. In this case, these challenges, in particular,
could be addressed by providing a larger database of malignant images.

3.2.3. Data Processing and Consumption

For standard tasks, such as object detection or instance segmentation, the standard
representation for a dataset to be consumed by Detectron2 has a specification similar to
COCO’s JSON annotations, which is a JSON file with a list of dictionaries (one per image),
one for each subset of training, validation and testing data. Each image dictionary contains
fields corresponding to image file paths, dimensions, unique IDs and a list of annotations
for every instance featured in the image. Each annotation contains the bounding box
coordinates, the label, and the segmentation mask of the instance, either as a list of polygons
or as a per-pixel bitmap segmentation mask in COCO’s RLE format.

For TUPAC16, since the annotations are coordinate tuples instead of bounding boxes or
polygons required for the object detection task, bounding boxes were created around each
mitotic figure, with side dimensions set to 80 px. This initial value was set approximately
by viewing several images with their annotations overlaid and ensuring that the bounding
boxes contained a significant portion of the mitotic figures. At a later stage, the bounding
box dimension was tuned as a model hyperparameter for maximum accuracy.

Another preprocessing task was the splitting of large images into smaller parts. As the
input window for the model is 224 × 224 px, the initial image dimensions (2000 × 2000 px)
would cause every image fed into the model to be resized, leading to significant loss of
information and detail due to antialiasing. All images with dimensions greater than the
CNN window were contiguously split into 224 × 224 px subimages and saved separately
in the JPEG format, along with their corresponding annotations. After training/prediction,
the subimages may be rejoined to recreate the original image along with their annotations.
Any resulting subimages smaller than the CNN window were padded with black pixels to
conform with the dataset. Subimages with no annotations were removed from the dataset,
as they offered no significant knowledge, and the rest were split into training, validation,
and testing subsets with a 60:20:20 ratio.

For JPATHOL, the first preprocessing step is to ensure that all datasets have the same
magnification, so the epithelium images are zoomed in 2×, resulting in their new dimensions
at 2000 × 2000 px. In addition, since the images in the tubule dataset do not have the same
height and width, they are padded with black pixels in order to make them rectangular without
affecting their aspect ratio or magnification, changing from 775 × 522 px to 775 × 775 px. The
bitmap annotations undergo the same process in order to retain correct the ground-truth format.
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The second step, similar to TUPAC16, involves splitting the images into smaller
subimages that are analogous to the CNN window dimensions to avoid information
loss. In this case, 261 px is selected for resizing as the least common denominator of the
dimensions of the three data sets to reduce cases of subimages, consisting of mostly black
padding. The third step is the preparation of segmentation masks for each instance and
image. The ground truth for all three datasets is provided as 1- or 3-channel bitmap files,
which are transformed into 1-channel binary arrays and are encoded into the COCO RLE
format. Lastly, subimages with no annotations are discarded and the rest are randomly
split into training, validation, and testing subsets with a 60:20:20 ratio.

3.2.4. Parameterization and Training

After the images have been preprocessed and registered, they can be consumed by
Detectron2 to train and evaluate an instance segmentation model. This model is based on
Mask R-CNN with a ResNet R50-FPN backbone, pretrained on the COCO dataset (trained
on Train2017 and evaluated on Val2017). In order to train the model on these datasets
with the maximum possible accuracy, the model’s hyperparameters need to be tuned. The
hyperparameters tuned in this research are presented in Table 4, along with the range of
values on which they were tested, their initial/default values and their final values.

Table 4. Detectron2 hyperparameter values.

Hyperparameter Tuning Range Starting Value Optimum Value

Number of workers (2, 8) 2 8
Images per batch (2, 8) 2 4

Learning rate (0.00025, 0.1) 0.00025 0.025
Max iterations (300, 12,000) 300 9000

Batch size per image (128, 1024]) 128 512
Testing threshold (0.01, 0.7) 0.7 0.07

Bounding box dimension (40, 120) 80 80
Subimage split dimension (224, 1000) 1000 500

Finding the optimum values is a process that can be performed either manually or
automatically. With the automatic approach, a script is prepared that iteratively trains
models using all the consecutively or randomly chosen points in the hyperparameter grid,
whose limits are suggested values found in the documentation or which are arbitrarily set
within a reasonably expected scope. The downside of this approach is the time cost, as many
models with hyperparameters far from the optimum values are needlessly trained. With the
manual approach, models are iteratively trained, starting with random or suggested initial
hyperparameter values and following a fashion of gradient descent towards the optimum
values by changing one or two values per iteration. The downside of this approach is
the possibility of converging to a local minimum in the hyperparameter space. Another
approach is using Bayesian optimization approach, but this was not tested in this case,
where the manual search approach was selected instead.

During the hyperparameter tuning phase, the resulting models are evaluated with the
validation subset exclusively. For each hyperparameter value combination, the same model is
trained and evaluated multiple times so that more precise mean and standard deviation values of
each model’s accuracy can be calculated, mitigating the variance caused by the CNN’s stochastic
nature. The evaluation stage returns twelve performance metrics (AP/AP50/APs/AR/etc.), as
defined by COCO; the final decision process is based on the average precision for the whole
area (AP), traditionally called mean average precision (mAP).

For TUPAC16, a major hurdle in histopathology image analysis is the variability in
tissue appearance. The staining color and intensity can be significantly different between
WSIs due to variation in tissue preparation, staining and digitization processes. To address
this, for most similar tasks, staining normalization is performed as a preprocessing step.
The most common method is the one proposed by [30], where an unsupervised method
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heuristically estimates the absorbance coefficients for the H&E stains for every image
and the staining concentrations for every pixel. Afterwards, normalization is performed
by recomposing the RGB images from the staining concentration maps using common
absorbance coefficients.

This method was approximated by normalizing the RGB histograms of the images
jointly and separately, but the color balance and visual features were greatly distorted. The
resulting significantly lower accuracy compared to the initial unprocessed images led to
this method being rejected after some trial runs on the TUPAC16 dataset.

For JPATHOL, the Detectron2 hyperparameters for this task were taken directly from
the TUPAC16 task, as it offered a good baseline, and both datasets are similar in structure.
Normalization was not performed, as it was not found to offer any improvements in
accuracy. Dropout during training was also not performed as it showed no performance
improvements and requires a smaller optimal dataset [31].

The most important element of this dataset is the experimentation required concerning
patch generation. The generation of annotations for a dataset such as this is a cumbersome
process, due to the large amount of time and labor needed. For example, the nuclei
annotation dataset used in this task required over 40 hours to annotate its 12,000 nuclei,
and yet it represents only a small fraction of the total number of nuclei present in all images.
Unfortunately, this creates a challenging situation for generating training patches. Typically,
the annotations would be used as a binary mask created for the positive class, and the
negation of that mask as the negative class, then random sampling from both would be
used to create a training set. In this case, however, while one can successfully randomly
sample from the positive mask, the random sampling from the complement image may or
may not return unmarked nuclei belonging to the positive class.

Consequently, extended image patches need to be generated to represent the available
but unannotated ground truth more fully in the training and validation sets. This stage
requires modest domain knowledge to ensure good representation of diversity in the
training set. Selecting appropriate image patches for the specific task could have a dramatic
effect on the outcome. Especially in the domain of histopathology, substantial variance
can be present within a single target class, such as nuclei. This is especially pronounced
in breast cancer nuclei, where nuclear areas can vary upwards of 200% between nuclei.
Ensuring that a sufficiently rich set of exemplars is extracted from the images is perhaps
one of the most key aspects of leveraging and utilizing a DL approach effectively.

For each of the three classes of images in JPATHOL, a detailed description of ap-
proaches is suggested that allows for the tailoring of training sets towards improving the
specific detection tasks.

For nuclei segmentation, a standard approach involves selecting patches from the
positive class and using a threshold on the color-deconvolved image to determine ex-
amples of the negative class. This rationale is based on the fact that non-nuclei regions
tend to weakly absorb hemotoxin. The resulting network has very poor performance in
correctly delineating nuclei, since these edges are underrepresented in the training set.
This is compensated by extending it with intelligently sampled challenging patches for the
negative class training set. Through the identification of positive pixels and the basic color
deconvolution thresholding approach to select random negative patches, the segmented
nuclei are obtained. However, the network may be unable to identify nuclear boundaries
accurately, so an edge mask is produced by morphological dilation, where negative training
patches are selected. A small proportion of the stromal patches is still included to ensure
that these exemplars are well represented in the learning set. This patch selection technique
results in clearly separated nuclei with more accurate boundaries.

For epithelium segmentation, similar to the nuclei segmentation task, the presence of
uninteresting training examples in the dataset must be reduced, so that learning time can
be dedicated to more complex edge cases. Epithelium segmentation can have areas of fat,
or the stage of the microscope can be removed by applying a threshold to the grayscale
image, thus removing those pixels from the patch selection pool. In addition, to enhance
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the classifier’s ability to provide smooth boundaries, samples are taken from the outside
edges of the positive regions.

For tubule segmentation, a number of pixels per image belonging to both classes is
randomly selected to act as training samples and compute a limited set of texture features.
Next, a naive Bayesian classifier determines the posterior probabilities of class membership
for all the pixels in the image, and pixels are identified that would potentially produce
false positives and negatives and would benefit from additional representation in the
training set. These pixels are selected based on their magnitude of confidence, such that
false positives with greater posterior probabilities are more likely to be selected. This
approach further helps to bootstrap the training set by removing trivial samples without
requiring any additional domain knowledge. Lastly, knowing that benign cases are easier
to segment than malignant cases, patches are disproportionally selected from malignant
cases to further help with generalizability.

For experimental purposes, the problem was not treated as separate single-class
instance segmentation tasks, but as a combined multi-class instance segmentation task,
where the detector would need to both classify the input image to the correct class and
detect and segment their instances. Unfortunately, due to lack of field expertise, the above
processing suggestions could not be implemented on the subtasks. As this task is more
of a proof of concept, actual performance is not considered to be the highest priority at
this stage. Implementation of those suggestions, with or without the use of additional
knowledge, is expected to increase the performance of the model dramatically to a level
where it could raise interest for further research.

4. Experimental Results

The datasets and the performance results for the models trained for the two tasks
are presented below. All the results presented are average precision metrics run on the
validation subset (20% of initial dataset). The first experiments were run several times,
but as the AP improved, multiple runs were made (up to 12 runs) per hyperparameter
combination to achieve a more statistically precise value. For each of the final task models,
a separate testing subset (20% of initial dataset) was used to measure their performance on
previously unseen data.

4.1. TUPAC16

The TUPAC16 dataset contains 73 WSI images in PNG format, annotated by a list of
text files containing the coordinates of the central points of each mitosis figure present in
each of the images. In total, the dataset contains 1552 mitotic figures.

In Table 5, a few key hyperparameter value combinations are displayed, along with
the AP their model achieved on the validation set. The average training time spent for each
is also mentioned. In all, more than 40 hyperparameter combinations were used to train an
equal number of models, and more than 170 runs were performed to validate these models.

Table 5. Results for object detection task on TUPAC16.

Images/
Batch Learning Rate Max Iterations RoIHead

Batch Size
Split

Dimension
Train Time

(H:M:S)
AP
(%)

STDEV
(±%)

4 0.025 600 512 1000 × 1000 0:04:56 43.32 6.58
4 0.025 600 1024 1000 × 1000 0:05:23 40.11 8.65
8 0.025 600 1024 1000 × 1000 0:11:35 43.79 5.69
6 0.010 9000 1024 1000 × 1000 2:02:55 55.74 3.26
4 0.025 9000 512 1000 × 1000 1:13:18 58.11 2.96
4 0.025 9000 512 500 × 500 1:11:49 65.02 4.05

The optimum combination of hyperparameters that resulted in the model with the
highest average precision (65.02%) is shown in the last row of Table 5. For the testing subset,
the average precision is 65.14%, which shows that overfitting was avoided. The average
F-score for this model is F1 = 0.628.
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With regard to image predictions, a few random images from the test set are presented
in Figure 1, with the ground-truth bounding boxes (left), juxtaposed with the bounding
boxes predicted by the model (right).
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4.2. JPATHOL

The JPATHOL dataset is comprised of three separate medical datasets featured in
the work of Janowczyk [18], prepared for experimentation with nuclei, epithelium, and
tubule segmentation tasks. Each dataset is comprised of images of different count, format,
dimensions and magnification.

Table 6 presents the performance of the models trained on each of the nuclei/epithe
lium/tubule datasets separately, as well as the performance of the model trained on
all of them simultaneously. All models were trained on the optimum hyperparameters
found from the TUPAC16 task (Table 4), apart from max iterations, which had to be tuned
independently for each to avoid disappearing gradients. Since significant hyperparameter
tuning was not needed, around only twenty hyperparameter combinations were evaluated,
limited to less than a total of fifty runs. The metrics in Table 6 are based on the evaluation
of the model on the validation subsets. For the unseen testing subset, the metrics of the
model trained on the joint nuclei/epitheleum/tubule datasets are presented in Table 7.

Table 6. Results for instance segmentation task on JPATHOL on validation set.

Dataset AP (%) STDEV (±%)

Nuclei 19.53 1.68
Epithelium 5.15 3.21

Tubule 35.22 5.16
Nuc/Epi/Tub 8.03 2.09

Table 7. Segmentation results on test set.

AP AP50 AP75 Aps Apm Apl AP-Nuc AP-Epi AP-Tub

14.41 23.72 15.31 5.16 22.42 17.67 15.26 2.06 25.91

With regard to image predictions, a few randomly selected images of the test set
with the ground-truth segmentation masks (left), juxtaposed with the segmentation masks
predicted by the model (right), are presented in Figure 2 below.

4.3. Comparison with SOTA

For TUPAC16, compared to the challenge entries presented in [32], the performance of
this model is found to be satisfactory, giving it fourth place in the challenge standings. This
model’s performance stands out even more considering the technical limitations, the lack
of experience and unavailability of domain knowledge. Given that the entries with better
F-scores are close to ours, it is possible that an improved process and the improvements
outlined below could lead to a higher position in the challenge.

A further fact to be considered is that the other entries were evaluated with an external
unpublished testing subset, whereas the presented model was evaluated with a subset of
the published dataset, giving a ~20% smaller training subset. Furthermore, some entries
used external datasets to further augment their training subset and help with generalization,
while this research’s focus was on technical specifications and settings. Lastly, the presented
approach used an off-the-shelf, easily set and tuned DL framework instead of custom
architectures intertwined with complex non-DL CV procedures.

For JPATHOL, a functioning multi-class instance segmentation model for medical
images was prepared that could serve as a baseline for future model development. It
showcases how an off-the-shelf commercial product such as Detectron2 can be easily used
for niche problems, such as medical imaging, with limited requirements in user expertise
or available data. Significant performance gains can be expected by using fully annotated
data and exhaustive hyperparameter tuning. Similar problem statements and solutions
based on the JPATHOL have not been found in the bibliography.
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5. Discussion and Conclusions

For TUPAC16, all teams that performed mitosis detection as part of the Tumor Prolifer-
ation Assessment Challenge used CNNs [32]. Most teams trained a two-class classification
model, with patches centered on a mitotic figure and background patches. On the testing
dataset, the model evaluated every pixel location and produced a mitosis probability map
that could be further processed to identify mitotic figures and/or produce a mitotic score
for a ROI. The neural network architectures applied to this problem vary from relatively
shallow with only a few convolutional layers to deep ResNets.

Since mitoses are generally rare events, the mitosis detection problem is very unbal-
anced. Two main strategies were used to mitigate this, including data augmentation by
geometric transformations and hard negative mining. The mitosis detection problem is
invariant to rotations, flipping and small translation and scaling, so it can be exploited
to create new plausible training samples to enrich the training data. The other strategy
was hard negative mining [33], which is a boosting-like technique, where an initial mi-
tosis detection method is trained with random sampling for the background class and
then used to detect difficult negative instances that are used to train a second method. In
practice, models trained with random sampling for the background class result in many
false positives, since all hyperchromatic objects are detected as mitoses. The output of the
initial mitosis detection method can be used to sample such difficult background samples
and train a second mitosis detection method, which can lead to improvements in mitosis
detection accuracy.

The object detection model results can be considered a satisfactory baseline for further
fine-tuning and model improvements. The model’s F-score reached fifth place at 0.628,
with the best entry at 0.669. Training and inferring with this model are both fast, acceptable
models can be obtained within an hour and prediction results are near instantaneous.
Average accuracy is also satisfactory with limited data preprocessing and fine-tuning. Even
examining the prediction images shows that many false predictions can be interpreted as
human-like mistakes, especially acknowledging the fact that part of the ground-truth mi-
toses may not have been annotated at all, conceivably generating numerous false negatives.

For the three instance segmentation tasks described in JPATHOL, its authors provided
some initial processing methodologies to promote further research on their datasets. Further
research for the use of similar DL techniques on this dataset could not be found.

For nuclei segmentation, using the procedure outlined and an AlexNet network
structure, the authors developed a 5-fold cross-validation set of approximately 100 training
and 28 testing images. Qualitatively, the network returns smoother boundaries at 40×
magnification rather than at 20×. Quantitatively, the detection rate, i.e., the ability to find
nuclei in the image, is very high, with the network identifying 98% of all nuclei at the
40× magnification, and dropout appears to impact the metrics negatively, as presented in
Table 8.

Table 8. Nuclei segmentation results.

Method Detection F-Score

20× 0.95 0.80
20× + dropout 0.90 0.79

40× 0.98 0.83
Baseline model—40× 0.14 0.220

For epithelium segmentation, 5 folds of 34 training and 8 test images are preprocessed
and passed through the same AlexNet framework as in the previous task. The threshold is
used as a hyperparameter for each fold in search of the best possible F-score. Pathologists
often treat this task as a higher-level abstraction instead of a pixel level classification,
without removing white background pixels. The approach followed by Janowczyk in
2016 [18] can identify smaller regions ignored by pathologists, because they are considered
clinically irrelevant. After review of their results by a clinical collaborator, they were found
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to be suitable for use in conjunction with other classification algorithms, e.g., prognosis
prediction. This is one of the first attempts at direct segmentation and quantification of
epithelium tissue in breast tissue. The mean F-score for 5-fold cross-validation is 0.84.

For tubule segmentation, each of the 5-fold cross validation sets has about 21 training
images and 5 test images. The mean F-score using a threshold of 0.5 was 0.827 ± 0.05. When
optimized with a threshold on a per fold basis, this measure rose slightly to 0.836 ± 0.05.
Combining all the test sets together, the p-value equals 0.33, indicating that there was no
significant difference between the expected clinical grade associated with the presented
approach and the expert’s ground-truth annotation. Two other state-of-the-art approaches
claim 86% accuracy and a 0.845 object-level dice coefficient.

The instance segmentation model can be judged only as a first-stage proof of concept.
The data pipeline with preprocessing, training, and inferring is functioning, but the final
model performance metrics are mediocre for the three datasets, both jointly and separately.
The visual predictions corroborate the numerical performance metrics, demonstrating the
model’s difficulty in detecting the epithelium class in particular and any smaller instances
in general. Moreover, they present multiple overlapping bounding box predictions from
different classes, which should not be a possible outcome with these datasets. A possible
explanation for the difference in performance between the object detection and instance
segmentation tasks may be the differences in magnification and the texture of the objects,
which may affect the robustness of the features that the models are able to extract.

5.1. Future Work

A few improvements and suggestions to be considered for further research, concerning
both the TUPAC16 and JPATHOL datasets, are outlined below. A significant oversight—
due to wrongful assumptions—was the omission of a data augmentation process. As
these datasets are invariant to rotation, flipping and scaling, it would be beneficial to
incorporate this into the process and enlarge the training subsets. Instead of manually
searching in the hyperparameter grid, an automated, random search could help avoid local
minima during training, specify a tighter range of hyperparameter values to be tested more
thoroughly and possibly achieve better model performance. Furthermore, Detectron2 has
many different pretrained CNN models available for testing, so a few could be tested for
increased performance or accuracy. Additional exploration could focus on the robustness of
the features extracted by the model; data augmentation could assist the model in becoming
more generalizable among various similar medical tasks (e.g., mitoses vs. tubule detection)
and against variability in the appearance of the tissue to be examined (coloring, brightness,
noise, zoom, etc.).

Another problem faced was the variability in tissue appearance and lack of standard
staining processes; different staining normalization methods could be tested to diminish
these differences, which would help with working on data from different sources and
annotators. The annotations of this dataset do not cover all instances of mitosis, which
will weaken the model’s training ability and performance. Steps should be taken to extract
any other mitosis instances present in the dataset as accurately and thoroughly as possible.
This could be undertaken as an unsupervised learning problem with non-DL techniques,
e.g., SVM or boosting. A medical expert offering field knowledge would be invaluable in
inspecting the dataset and annotations and visually evaluating the annotation extraction
process and predictions.

Further suggestions would be to evaluate the training process more closely using
libraries such as Tensorboard and adding a feature that rejoins prediction subimages with
the rest of the related subimages to form the initial full-resolution image. Explainable AI is
also a rather interesting technique, promising to improve DL models by making its internal
processes explainable to humans, who can monitor whether the models are trained on
specific features correctly.

Concerning the TUPAC16 challenge, the final evaluation can be performed by submit-
ting the highest evaluated model to the organizers who will run it on a separate unseen
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test set. This is expected to improve the model’s performance, as the current testing subset
would be used as additional training data without the risk of overfitting.

In the JPATHOL challenge, we started development directly on all three datasets
simultaneously. It is possible that further improvements may be achieved if three separate
instance detection models are trained on each of the sub-datasets separately and then joined
into one multi-class model. In this manner, the necessary preprocessing for each dataset
could be determined more exactly, any deficiencies in the datasets could be rectified earlier
and any possible performance loss due to instance class or size could be examined more
systematically. Furthermore, for instances such as epithelium and tubule, which, as entities,
are much larger compared to individual components, a greater viewing area may be needed
to provide sufficient context to make an accurate assessment.

5.2. Conclusions

The main objective of this thesis was to gain valuable knowledge and experience in
the domain of deep learning, especially where it may be applied to the field of digital
pathology. Two separate medical image datasets were chosen for that objective, and two
different problems were formulated around them, including one for object detection and
one for instance segmentation.

Detectron2, an open source and easily customizable DL framework specialized in
computer vision tasks, was selected, which proved to be a solid choice. Its flexibility and
tunability allowed for quick training/evaluation cycles, which led to a very competent
model for the TUPAC16 challenge. Using that model as a starting point for the JPATHOL
instance segmentation task, a functioning multi-class segmentation model was developed.
A range of improvements has been suggested that are expected to significantly boost the
model’s performance.

In sum, a baseline model for single-class object detection tasks has been successfully
developed, as well as a proof-of-concept model for multi-class instance segmentation tasks
based on WSI/medical histology slide datasets.
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