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Abstract: Recent advances in precision manufacturing technology and a thorough understanding of
the properties of piezoelectric materials have made it possible for researchers to develop innovative
microrobotic systems, which draw more attention to the challenges of utilizing microrobots in areas
that are inaccessible to ordinary robots. This review paper provides an overview of the recent
advances in the application of piezoelectric materials in microrobots. The challenges of microrobots
in the direction of autonomy are categorized into four sections: mechanisms, power, sensing, and
control. In each section, innovative research ideas are presented to inspire researchers in their
prospective microrobot designs according to specific applications. Novel mechanisms for the mobility
of piezoelectric microrobots are reviewed and described. Additionally, as the piezoelectric micro-
actuators require high-voltage electronics and onboard power supplies, we review ways of energy
harvesting technology and lightweight micro-sensing mechanisms that contain piezoelectric devices
to provide feedback, facilitating the use of control strategies to achieve the autonomous untethered
movement of microrobots.

Keywords: piezoelectric; microrobotic systems; microelectromechanical systems; sensing; energy
harvesting; control systems

1. Introduction

In recent years, there has been an increasing effort to utilize piezoelectric materials in
the development of microrobotic systems. With the growing number of mechanisms that
scientists use to develop microrobots, there is a great challenge in designing lighter and
more efficient microrobots to achieve a certain level of autonomy. Important reviews on
microrobotics have been published with different focuses, such as micro-scale flapping-
wing robots [1], biohybrid microrobots [2], light-powered microswimmers [3] and drug
delivery microrobots [4], etc. Here, we summarize the recent application of piezoelectric
materials for the development of microrobots in the direction of autonomy based on
the areas corresponding to its basic challenges, including mechanism, power, sensing,
and control.

Piezoelectric materials are widely employed in precision motion due to their dis-
tinctive advantages such as quick response, high displacement resolution, high stiffness,
high actuating force, and little heat generation [5,6]. These features make piezoelectric
materials good candidates for developing the actuating module of microrobots. In 2006,
Anton and Sodano [7] reviewed the literature (2003–2006) on power harvesting using
piezoelectric materials for self-powered wireless sensor applications, and they updated
their review with Safaei [8] to include the literature from 2008 to 2018. Moreover, Ma-
hapatra et al. [9] reviewed the nanostructures of piezoelectric materials, manufacturing
methods, and material-specific underpinning concepts. The application of piezoelectric
actuators is discussed more specifically in areas such as medical and robotics engineering
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by Uchino [10]. In 2018, Shevtsov et al. [11] discussed the mathematical modeling, experi-
mental techniques, and computer algorithms for piezoelectric generators. They included
the particular effects of piezoceramics, such as the flexoelectric effect, and methods for
defect identification. As piezoelectric materials development advanced, computational
methods were proposed to contain certain phenomena, including rate-dependent switching
in the micromechanical 3D finite element model [12].

The mechanism by which piezoelectric microrobots achieve mobility, as well as the
environment in which they are expected to maneuver, are important in the development
of microrobots. Each mechanism has specific characteristics suitable for an objective en-
vironment. Ambulatory locomotion gives the advantages of mobility on rough surfaces
as opposed to the traditional wheeled mechanism [13]. Moreover, increasing the num-
ber of legs enables the system to be more robust due to the actuation failure [14]. The
inchworm mechanism can gain control of the friction force by exploiting the squeeze film
effect [15,16]. To create biologically-inspired flapping-wing microrobots like insects for
exploration purposes, high-density actuation power [17] is required, which can be devel-
oped using piezoelectric materials. Additionally, amphibious microrobots are designed to
conform to the multi-environment [18].

The key roles in the operation of the microrobot are the power source to achieve
mobility and the way it is transferred to the microrobot. The piezoelectric materials that
are used in microrobots require high input voltages, which can reach as high as 220 V [19],
creating challenges for power transmission. As a promising strategy, there are a variety
of methods based on energy harvesting in the direction of the wireless functionality of
microrobots relying on piezoelectric actuation [20].

The sensing capabilities involve microrobots or piezo-based devices dealing with their
environments to achieve autonomy like their biological counterparts, such as tactile sensing
similar to that of nature-inspired insects [21]. Additionally, piezoelectric sensing is investi-
gated in a range of fields such as detecting cracks [22] and human health monitoring [23],
which could be used to inspire ideas for microrobotic applications.

The control strategy is essential for the microrobots to achieve stability and follow
trajectories. Due to their lightweight and miniature sizes, microrobots are more sensitive to
environmental disturbances. Researchers have attempted to address these challenges by
adding dampers [24], taking into account the disturbances [25], and using adaptive, model-
free MIMO, nonlinear, and spiking neural network control strategies [26–30]. Moreover,
the augmentation of accurate sensors to the system helps enhance the stability control of
the microrobot.

In this review, we intend to give an overview of the latest advances in the field of
piezoelectric microrobots focusing on their innovation and limiting factors. Therefore, we
present the up-to-date applications of piezoelectric mechanisms to the development of
microrobots with a focus on power, sensing, and control, so as to recognize the challenges
that need more consideration and contribute to the understanding, design, and fabrication
of piezoelectric microrobots.

2. Movement Mechanism

For any specific application, choosing an appropriate type of microrobot is of great
importance as they have limited capabilities so far. Several innovative piezoelectric mecha-
nisms have been employed for the movement of microrobots. Here, we divide them into
subcategories based on the principles that they use to achieve mobility. Figure 1 depicts the
categories defined for microrobots.
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2012, SAGE. Reprinted with permission from Ref. [34]. Copyright 2017, IEEE. Reprinted with per-
mission from Ref. [35]. Copyright 2010, IEEE. Reprinted with permission from Ref. [36]. Copyright 
2011, IEEE. 
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proposed a 3 g crawling robot that resulted in three prototypes integrating the microtech-
nologies, as depicted in Figure 2a. Later in 2011, Hoffman and Wood [37] designed and 
fabricated a myriapod-like microrobot (Figure 2b) equipped with bimorph piezoelectric 
actuators that weighed 750 mg. This is the improved version of their centipede-inspired 
microrobot that features better stability. However, it has singularities, and the fabrication 
process is more complex than the previous version [38]. In 2010, Baisch et al. [35] devel-
oped the second generation Harvard Ambulatory MicroRobot (HAMR2) that is a biologi-
cally-inspired hexapod microrobot (Figure 2c); later in 2011, HAMR2 was improved into 
a lighter autonomous version, which is named HAMR3 [36], as shown in Figure 2d,e. 
Other features such as the robustness of this type of microrobot are discussed by Hoffman 
and Wood [14], who used redundancy to improve robustness in the case of a leg failure 
(Figure 2f). In 2014, Baisch et al. proposed the design (Figure 2g) and fabrication of the 
HAMR-VP [39] to reach a speed as high as biological insects of a similar size, enabling a 
maximum speed of 10.1 body length per second (440 mm/s). The ambulatory microrobots 
manufactured by Rios et al. [40] use bimorph piezoelectric benders and can reach a speed 
of 520 mm/s, as displayed in Figure 2h. Later, Hernando-García et al. [41] increased the 
maximum speed of such microrobots by comparing the standing and traveling types of 

Figure 1. Categories defined for the movement mechanisms of microrobots. Reprinted with per-
mission from Ref. [15]. Copyright 2011, IEEE. Reprinted with permission from Ref. [31]. Copyright
2018, MDPI. Reprinted with permission from Ref. [32]. Copyright 2021, Elsevier. Reprinted with
permission from Ref. [18]. Copyright 2013, Springer. Reprinted with permission from Ref. [33].
Copyright 2012, SAGE. Reprinted with permission from Ref. [34]. Copyright 2017, IEEE. Reprinted
with permission from Ref. [35]. Copyright 2010, IEEE. Reprinted with permission from Ref. [36].
Copyright 2011, IEEE.

2.1. Ambulatory Locomotion

One of the popular mechanisms is ambulatory locomotion. In 2006, Sahai et al. [13]
proposed a 3 g crawling robot that resulted in three prototypes integrating the microtech-
nologies, as depicted in Figure 2a. Later in 2011, Hoffman and Wood [37] designed and
fabricated a myriapod-like microrobot (Figure 2b) equipped with bimorph piezoelectric
actuators that weighed 750 mg. This is the improved version of their centipede-inspired
microrobot that features better stability. However, it has singularities, and the fabrica-
tion process is more complex than the previous version [38]. In 2010, Baisch et al. [35]
developed the second generation Harvard Ambulatory MicroRobot (HAMR2) that is a
biologically-inspired hexapod microrobot (Figure 2c); later in 2011, HAMR2 was improved
into a lighter autonomous version, which is named HAMR3 [36], as shown in Figure 2d,e.
Other features such as the robustness of this type of microrobot are discussed by Hoffman
and Wood [14], who used redundancy to improve robustness in the case of a leg failure
(Figure 2f). In 2014, Baisch et al. proposed the design (Figure 2g) and fabrication of the
HAMR-VP [39] to reach a speed as high as biological insects of a similar size, enabling a
maximum speed of 10.1 body length per second (440 mm/s). The ambulatory microrobots
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manufactured by Rios et al. [40] use bimorph piezoelectric benders and can reach a speed
of 520 mm/s, as displayed in Figure 2h. Later, Hernando-García et al. [41] increased the
maximum speed of such microrobots by comparing the standing and traveling types of
wave-based locomotion mechanisms. In comparison, the traveling type of locomotion
surpassed the standing type by reaching a terminal velocity of 14 body lengths per second.
Moreover, legged microrobots could gain the advantage of a higher payload power ratio
by using lead zirconate titanate (PZT)-based actuators [42].
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the quadruped microrobot [31] that uses the bending-bending mode of hybrid oscillation 
inspired by rowing and can reach a speed of 33.45 mm/s with a weight of 49.8 g. MagPier 
[48] is a wireless electromagnetic microrobot that uses piezoelectric for sliding actuation 
(Figure 3f). The friction-based locomotion mechanism benefits from the stability that it 
has, but the bumpy surface may affect its performance.  

Figure 2. (a) Crawler with zoomed-view of fibers in the feet. Reprinted with permission from
Ref. [13]. Copyright 2006, IEEE. (b) Centipede-like microrobot. Reprinted with permission from
Ref. [37]. Copyright 2011, Springer. (c) HAMR2. Reprinted with permission from Ref. [35]. Copyright
2010, IEEE. (d) Top-view and (e) bottom-view of HAMR3. Reprinted with permission from Ref. [36].
Copyright 2011, IEEE. (f) Centipede millirobot. Reprinted with permission from Ref. [14]. Copy-
right 2013, IEEE. (g) HAMR-VP. Reprinted with permission from Ref. [39]. Copyright 2014, SAGE.
(h) MinRAR. Reprinted with permission from Ref. [40]. Copyright 2017, IEEE.

Similar microrobots with a focus on the piezoelectric stick-slip motion are mathemati-
cally modeled [43], showing that increasing the friction constant results in a lower speed.
Additionally, mechanisms were proposed to achieve the stick-slip motion by simultane-
ously provoking the perpendicular oscillators [44,45]. The ambulatory locomotion-based
microrobots are robust to the failure of the individual actuator. However, enabling complex
mechanical structures, assembling processes, and onboard electronics pose challenges to
their locomotion abilities.

2.2. Friction-Based Locomotion

The inchworm microrobot is another type of piezoelectric microrobot that uses friction
force to move. Itatsu et al. [15] proposed the use of the squeeze film effect to control
the friction force in inchworm microrobots as depicted in Figure 3a. The principle of
the inchworm microrobot achieving locomotion is illustrated in Figure 3b. The other
ground microrobot that exploits friction to locomote is the rolling type microrobot, as
shown in Figure 3c [46]. With a total weight of 640 mg and a velocity of 5.6 mm/s, this
microrobot employing micro ultrasonic motors is capable of delivering 60 µNm of torque.
Figure 3d shows a type of wireless piezoelectric microrobot [47] that utilizes traveling-
wave actuation to move at a speed of 14 mm/s by using 50 V of power supply. Figure 3e
demonstrates the quadruped microrobot [31] that uses the bending-bending mode of hybrid
oscillation inspired by rowing and can reach a speed of 33.45 mm/s with a weight of 49.8 g.
MagPier [48] is a wireless electromagnetic microrobot that uses piezoelectric for sliding
actuation (Figure 3f). The friction-based locomotion mechanism benefits from the stability
that it has, but the bumpy surface may affect its performance.
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Figure 3. (a) Photograph and (b) principle of the inchworm microrobot. Reprinted with permission
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Ref. [31]. Copyright 2018, MDPI. (f) MagPier microrobot. Reprinted with permission from Ref. [48].
Copyright 2011, IEEE.

2.3. Flapping-Wing Locomotion

Another popular mechanism is the flapping-wing microrobot. Durán et al. [49] pro-
vided the modeling of piezoelectric actuators necessary for the control of the flapping-wing
mechanism that needs high voltage drive electronics [50]. In 2012, Arabagi et al. [33]
developed two prototypes of piezoelectric actuators that achieve a 3/8 lift-to-weight ratio
(Figure 4a). Ma et al. [17] produced a piezoelectric with high power density for the 80 mg
flapping-wing microrobot, capable of flight control, and Lok et al. [34] proposed a low-mass
high-voltage drive for piezoelectric actuators with 290 mW power consumption and an
overall weight of 70 mg for the RoboBee, which is displayed with its piezoelectric actua-
tor in Figure 4b,c. Furthermore, Zou et al. [51] microfabricated an 84 mg flapping-wing
microrobot (Figure 4d) by using a precision assembly of microsystems to achieve high
performance. Moreover, a novel design for this concept is shown in Figure 4e, which is
a micro aerial vehicle using the flapping-wing integrated within the quadrotor control
strategy with a total weight of 247 mg [52]. Jafferis et al. [53] developed an X-wing micro
aerial vehicle with lightweight power electronics to accomplish untethered flying via a
photovoltaic array, which is shown in Figure 4f with its time-lapse and piezoelectric actua-
tor displayed in Figure 4g,h, respectively. The challenges of achieving high-performance
flapping-wing locomotion include developing efficient actuators with a high lift-to-weight
ratio and handling the presence of air disturbances that make it difficult to stabilize the
flying attitude. Despite these challenges, the advantage of flapping-wing locomotion is
obvious: the movement of this type of microrobot is not hindered by ground obstacles.
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Figure 4. (a) Large and small flapping-wing prototypes. Reprinted with permission from Ref. [33].
Copyright 2012, SAGE. (b) Bimorph actuator and (c) overall structure of RoboBee. Reprinted with
permission from Ref. [34]. Copyright 2017, IEEE. (d) Whole and separated pieces of flapping-wing
microrobot. Reprinted with permission from Ref. [51]. Copyright 2017, Wiley. (e) Flapping-wing
micro aerial vehicle. Reprinted with permission from Ref. [52]. Copyright 2018, Wiley. RoboBee’s
(f) X-wing, (g) Time-lapse of wing actuation, and (h) piezoelectric actuator with alumina and PZT.
Reprinted with permission from Ref. [53]. Copyright 2019, Springer.

2.4. Amphibious and Swimming Locomotion

There are other types of movement mechanisms that allow microrobots to operate in
different environments. Becker et al. [18] developed a piezoelectric amphibious microrobot
capable of locomotion in solid and liquid environments where their prototype, shown in
Figure 5a, can reach a speed of 30 mm/s. Its zoomed view of semi-submerged parts is
displayed in Figure 5b. Another example is RoboFly [54], which can fly and perform ground
and water locomotion movements with a weight of 74 mg, depicted with its actuator in
Figure 5c,d. Moreover, RoboFly can land from an unsteady flying position due to its low
center of mass compared to its counterparts. There are other types of microrobots operable
in liquid environments, such as the micro-robotic fish [32], as shown in Figure 5e. It is
powered by bimorph piezoelectric actuators and can reach a speed of 45 mm/s with a
weight of 1.93 g. Additionally, for biomedical applications, the magnetic piezoelectric
microswimmers [55] have proved to be effective, as they can be powered by magnetic force
and steered by piezoelectric polymer (Figure 5f). The amphibious microrobots will gain
versatility while being restrained in any individual environment. Although swimming
microrobots face the same issues as flying microrobots, they have advantages in various
applications, such as biomedical drug delivery and sewer system monitoring. Table 1 gives
an overview of the characteristics of the microrobots to provide a clear distinction among
different designs.
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Reprinted with permission from Ref. [55]. Copyright 2019, Royal Society of Chemistry.

Table 1. Summary of microrobots with different movement mechanisms.

Movement
Mechanism Author Year Weight Length Scale Speed Ref.

Ambulatory Sahai et al. 2006 3.1 g mm 10 mm/s [13]
Ambulatory Hoffman and Wood 2011 750 mg mm 0.3 mm/s (0.1 bl/s) [37]
Ambulatory Baisch et al. 2014 1.27 g mm 440 mm/s (10.1 bl/s ) [39]
Ambulatory Rios et al. 2017 16 g mm 520 mm/s [40]
Ambulatory García et al. 2021 250 mg mm 280 mm/s (14 bl/s) [41]

Friction-based Hutama et al. 2021 640 mg mm 5.6 mm/s [46]
Friction-based Pan et al. 2010 100 g mm 14 mm/s [47]
Friction-based Su et al. 2018 49.8 g mm 33.45 mm/s [31]
Flapping-wing Ma et al. 2013 80 mg mm - [17]
Flapping-wing Lok et al. 2017 70 mg mm - [34]
Flapping-wing Zou et al. 2017 84 mg mm - [51]
Flapping-wing Zhou et al. 2018 247 mg mm - [52]

Amphibious Becker et al. 2013 2.5 g mm 30 mm/s [18]
Amphibious Chukewad et al. 2021 74 mg mm 5 mm/s [54]
Swimming Zhao et al. 2021 1.93 g mm 45 mm/s [32]
Swimming Sui et al. 2021 - mm 19.1 bl/s [56]

bl/s—body lengths/second.

3. Power Supply

Power source determination and electronics design for piezoelectric microrobots
are major challenges in this field. Microrobots usually use wired power supplies at the
preliminary stages of innovative mechanism development. However, in this section, we
aim to provide a review of the recent technologies that could be used to give enough power
for microrobots to move toward wireless autonomy.

In 2008, Karpelson et al. [19] summarized the research on power and actuation for
flapping-wing microrobots. In this review, they noted that for sub 1 g micro air vehicles
(MAV), a voltage ranging from 110 V to 220 V is needed to drive the piezoelectric bimorph
cantilever, which can be exploited to enable 6.75 minutes of maximum flight time with a
ten mAh of battery.

Energy harvesting could be another source of power supply for microrobots in the
future. In 2011, Kim et al. [20] reviewed the performance and different ways in which
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piezoelectric materials can harvest energy based on vibrations. Pan et al. [57] used the
piezoelectric polypeptide poly(γ-benzyl-L-glutamate) on the wings of the cicada shown
in Figure 6a to verify their application and reached a power output of 138.42 pW for
one fiber. The use of piezoelectric nanofibers is reviewed in [58], as shown in Figure 6b.
You et al. [59] developed aligned P(VDF-TrFE) nanofibers displayed in Figure 6c, being
capable of outputting a voltage of 12 V for potential self-powered devices. Moreover,
different shapes of piezoelectric energy harvesters have been developed. For example, Kim
and Yun proposed a helical piezoelectric capable of stretching up to 158% of its length [60]
with a maximum output voltage of 20 V, and Beker et al. demonstrated a circular diaphragm
of an aluminum nitride piezoelectric along with a concentric ring boss that can generate
1.3 µW of power (Figure 6d) [61]. Furthermore, there have been theoretical efforts to expand
the bandwidth of piezoelectric vibration energy harvesters to absorb more power using
nonlinear characteristics [62].
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Figure 6. (a) Piezoelectric fibers on cicada wings. Reprinted with permission from Ref. [57]. Copyright
2014, Royal Society of Chemistry. (b) PZT microfibers. Reprinted with permission from Ref. [58].
Copyright 2012, Elsevier. (c) Piezoelectric nanogenerator (PENG). Reprinted with permission from
Ref. [59]. Copyright 2019, MDPI. (d) Concentric ring boss harvesters (CRBH). Reprinted with
permission from Ref. [61]. Copyright 2017, Springer.

Additionally, nanogenerators could be used to harvest energy. In 2016, Li et al. [63,64]
introduced the polypropylene ferroelectret to develop a biocompatible, flexible ferroelectret
nanogenerator (FENG) that can be used as a dual-functional thin film and can reach a
voltage of 50 V by hand pressing [65]. Furthermore, Cao et al. [66] discussed the capability
of transferring energy from ferroelectret polymer to energy storage devices and developed
a micro-robotic arm controlled by the movement of human fingers through combining the
FENG with a VO2-based bimorph MEMS actuator [67].

For the wireless power transmission, James et al. [68] presented the first laser-powered
micro aerial vehicle that needs the power of 200–300 mW and has previously been tethered
due to its high voltage, as displayed in Figure 7a. Moreover, Jafferis et al. [53] used
three solar light sources to power a 60 mg photovoltaic for an untethered flight of the
flapping-wing MAV shown in Figure 7b. In 2021, Bunea et al. [3] reviewed light-powered
microswimmers of soft-and hard-responsive types. In addition, the first application of
radio frequency (RF) wireless power transfer in microrobots is presented in [69], which can
power HAMR with a power requirement of 0.01–1 W (Figure 7c). Figure 7d demonstrates a
magnetically actuated micro-swimming robot with 1.5 mT to reach a speed of 19.1 body
length per second [56]. Furthermore, Wang and Zhang [70] reviewed the untethered-
driven micro-or nanorobots, including their swarm behavior. In addition, there are some
microrobots powered by novel methods, such as microswimmers that are powered by
microalga [71]; a dandelion-inspired [72] wind-dispersed wireless device that carries solar
cells; and a data transmission link that can generate 0.25 mW/mm2 (Figure 7e).
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Figure 7. (a) Laser-powered insect scale aerial vehicle. Reprinted with permission from Ref. [68].
Copyright 2018, IEEE. (b) Untethered flight of flapping-wing MAV. Reprinted with permission from
Ref. [53]. Copyright 2019, Springer. (c) Wireless-powered HAMR. Reprinted with permission from
Ref. [69]. Copyright 2014, IEEE. (d) Magnetically driven micro-swimming prototype. Reprinted with
permission from Ref. [56]. Copyright 2021, IEEE. (e) Wireless wind-dispersed device. Reprinted with
permission from Ref. [72]. Copyright 2022, Springer.

4. Sensing Capabilities

As the research interest in microrobotics grows, more sensing capabilities are needed
to enable insect-like autonomous robots. In this section, we intend to discuss the research
works that utilize piezoelectric devices for sensing in microrobotics and other related fields
that could be beneficial for further improving the performance of microrobots. Figure 8
illustrates the classifications of sensing capabilities for microrobotic applications.
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As for the piezoelectric sensors in microrobots, Fahlbusch and Fatikow [73] gave a
preliminary overview of force sensing during manipulation in microrobotic systems. Tactile
sensors inspired by insects such as spiders and geckos have been investigated by Koç and
Akça [21]. In 2014, Lee et al. [74] fabricated a piezoelectric thin-film force sensor that can
be used in biomedical applications. Adam et al. [75] developed a microrobot for various
environments that has a micro-force sensing magnet. As it is challenging to develop a
highly integrated sensing system for microrobots, Jayaram et al. [76] proposed a method
to determine the velocity as a function of frequency and voltage in piezoelectric materials.
Moreover, proprioceptive sensing in locomotion movement is presented by Doshi et al. [77].
In 2019, Chopra and Gravish [78] used the linear relationship of actuator displacement
and voltages with an input of 25 V to 200 V to detect wing collision for flying robots.
Furthermore, as vision is an important sensing ability in the environment for insect-sized
microrobots, Iyer et al. [79] used a wireless steerable vision on a live beetle that is capable
of streaming via Bluetooth radio. Moreover, Han et al. [80] reviewed triboelectric and
piezoelectric sensors for displacement, pressure, and acceleration.

Various methods have been used to design piezoelectric sensors. Yamashita et al. [81]
developed ultrasonic micro-sensors with PZT thin films and adjusted their resonance fre-
quencies. Chen and Li [82] proposed a PZT-based self-sensing actuator capable of not only
generating high-resolution displacement but also monitoring the dynamic characteristics
of the mechatronic system. Self-powered piezoelectric materials are studied as both sensors
and power generators [83]. In addition, micro-grippers that use micro-force sensors with
cantilever structures using piezoelectric biomorphs were investigated [84]. A piezoelec-
tric wireless micro-sensing accelerometer has been studied [85]. In 2017, Hosseini and
Yousefi [86] examined the PVDF fabric with the control of crystalline phases for use in
flexible force sensors. Hu et al. [87] enhanced piezoelectric sensing by using penetrated
electrodes and nanoparticles. Cao et al. [88] used FENG to develop the self-powered
bending sensors.

Moreover, piezoelectric materials can serve as integrated sensors for the structures of
robotic systems, such as observing and detecting fatigue cracks [22], as well as identifying
structural damage [89]. Moreover, piezoelectric materials have been used as a means
of monitoring structural strength [90,91]. In 2010, Feng and Tsai [92] developed a new
piezoelectric acoustic emission sensor with PVDF that has a wider bandwidth, and in 2020,
Jiao et al. [93] gave a review on structure monitoring with piezoelectric sensing.

Additionally, piezoelectric sensors have been used for biomedical applications. Kalange
and Gangal [94] utilized piezoelectric sensors to determine human pulse, and Kalantarian
et al. [95] used them in a necklace to observe the eating habits, displayed in Figure 9a.
Moreover, Figure 9b [96] shows a new device using piezoelectric sensors to measure heart
rate by utilizing in-ear pressure data, and Zhou et al. [97] used piezoelectric ceramic to
receive signals of sound. In 2018, Curry et al. [98] investigated a piezoelectric biodegradable
device (shown in Figure 9c) to measure internal body pressure. As it is essential to have
continuous data when sensors are related to vital health monitoring, a wireless self-powered
piezoelectric sensor is introduced by Sun et al. (Figure 9d) [23].
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There are other applications for piezoelectric sensors, such as using piezoelectric
sensors as pressure sensors for obstacle avoidance in underwater vehicles [99], and using
PXT/PVDF piezoelectric sensors on the racket for table tennis training purposes [100].
Table 2 provides a summary of the applications of the sensing capabilities of piezoelec-
tric materials.

Table 2. Application of sensing capabilities of piezoelectric materials.

Authors Application Ref.

Fahlbusch and Fatikow Force sensor in microgripper [73]
Koç and Akça Tactile sensing [21]

Lee et al. Biomedical applications [74]
Adam et al. Real-time micro-force sensing [75]

Jayaram et al. Control and tracking trajectories [76]
Doshi et al. Leg trajectories estimation and control [77]

Chopra and Gravish Detecting wing-collision [78]
Iyer et al. Object tracking [79]

Yamashita et al. Measurement of position [81]
Chen and Li Monitoring displacement and dynamic features [82]
Ng and Liao Self-powered sensors [83]
Huang et al. Identifying micro-force [84]
Shen et al. Measuring acceleration [85]

Hosseini and Yousefi Flexible force sensor [86]
Hu et al. Dynamic loading observation [87]
Cao et al. Athletic performance [88]

Ihn and Chang Identifying fatigue cracks [22]
Xu et al. Structural damage identifying [89]

Shin et al. Structural strength monitoring [90]
Chen et al. Structural strength monitoring [91]

Feng and Tsai Industrial transducers [92]
Kalange and Gangal Human pulse measuring [94]

Kalantarian et al. Monitoring eating habits [95]
Park et al. Heart rate measurement [96]
Zhou et al. Sound signal detection [97]
Curry et al. Internal body pressure [98]
Sun et al. Continuous health monitoring [23]

Asadnia et al. Avoiding obstacles [99]
Tian et al. Training for table tennis [100]

5. Control and Stability

Due to the instability of microrobots, controlling the system is of foremost importance.
As flapping-wing microrobots have a higher number of DOFs, controlling them is more
challenging. Figure 10 provides a summary of the techniques utilized in this section to
achieve the stable control of the system.
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Teoh et al. [24] stabilized the flying microrobot by adding an aerodynamic damper
and used altitude control on the system by providing feedback with a tracking camera
(Figure 11a). Moreover, Teoh and Wood [101] decoupled the control and power to create
yaw and roll torques for attitude control by using a spherical four-bar linkage. In an effort
to remove external devices for tracking trajectories, Helbling et al. [102] used an onboard
magnetometer with a weight of 22 mg for angular feedback to control pitch and yaw
(Figure 11b). Duhamel et al. [103] used an image sensor (model: Tam4 chip) to determine the
altitude that is biologically inspired for the purpose of making an autonomous microrobot
using the LTI system model (Figure 11c). Another type of vision used in flapping-wing
microrobots is ocelli, which is inspired by insects and provides angular velocity in the
feedback controller [104]. Moreover, different methods are used to control the flight of
flapping-wing microrobots, such as adaptive control that is used to track trajectories as a
type of lift control strategy [26,29,105]; model-free MIMO control that utilizes experimental
methods to detect the behavior of the system, providing key factors for the development
of the future model-based controller [27]; and spiking neural network control to mimic
the behavior of the insect’s brain and consider the model uncertainties [28]. For enabling
yaw control, Teoh and Wood [106] used the fruit fly control strategy that is also capable of
creating roll torque by vibrating the hinge, while Chukewad and Fuller [107] utilized three
innovative ways, including a novel design, employing wide actuators, and phase shifting
on flapping-wing vehicles using a passive hinge. In 2017, Chen et al. [108] simulated
the dynamics of flapping-wing microrobots on quadrotors to facilitate the application
of control strategies, and Chirarattananon et al. [25] investigated flight control in the
case of wind disturbances with prediction and compensation schemes. Moreover, to
achieve better control capabilities, the piezoelectric tail has been utilized for fast inertial
reorientation [109,110], as displayed in Figure 11d. Chen et al. [111] used soft artificial
muscles to achieve open-loop stability and closed-loop flying while proposing solutions to
the challenges of using soft actuators. In 2021, James and Fuller [112] provided an electronic
high-voltage power source for flying insect microrobots to give the necessary torques and
forces for the thrust of the control system.
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Ref. [103]. Copyright 2012, IEEE. (d) Flapping-wing microrobot with piezoelectric tail. Reprinted
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Control strategies were also investigated on legged insect-scale robots. Ozcan et al. [113]
controlled the lateral velocity and orientation of HAMR to follow trajectories and experi-
mented with the maneuverability of the microrobot. Furthermore, Doshi et al. [114] made
a model from the experimental data of HAMR and used an off-board phase detector to
control the legs at their resonance frequency. Designing lightweight power electronics
is a great challenge as well, which is investigated along with onboard straight line and
high-speed running control [115].

Nonlinear control methods are effective in microrobots due to their high nonlineari-
ties in the system. Karami et al. [30] designed an ant colony optimization-based optimal
nonlinear control method for stick-slip microrobots and noted that a linear optimal PID
controller does not provide adequate performance for the system. Additionally, nonlin-
ear control methods have been employed for endovascular microrobots. For example,
Arcese et al. [116] satisfied the stability with control Lyapunov functions by using a non-
linear adaptive control law for the magnetic microrobot, and in 2020, Pourmand and
Sharifi [117] proposed a nonlinear adaptive sliding mode control method by using the
Lyapunov theorem for assuring the stability of the system. In 2022, Jiang et al. [118] re-
viewed the control of microrobots and suggested that for the nonlinear control of systems
with significant uncertainties; robust control methods, for example, H∞ control and sliding
mode control; and for systems without a comprehensive model, nonlinear adaptive control
strategies are appropriate. Additionally, Diller et al. [119] presented a method for the
control of multiple agents individually using magnetic gradient pulling to follow 3-D tra-
jectories. Yang and Zhang [120] reviewed the motion and control of magnetic microrobots
and discussed the challenges of swarm control.

6. Conclusions

In this review, we summarize the recent advances in the application of piezoelectric
materials in developing microrobots. A variety of mechanisms are presented with the
details of the weight and speed they can reach. The microrobotic field is advancing
toward making autonomous untethered microrobots where one challenge is to meet the
high voltage requirement for piezoelectric actuators. Here, we review the methods of
untethered mobility with power harvesting that would benefit the design of next-generation
microrobots. Furthermore, for nature-inspired autonomy, the microrobots require adequate
sensing and actuation to formulate a sense of the environment and incorporate control
strategies to stabilize the system. Adding a sensor to the microrobot can significantly
increase the weight of the robot. Therefore, we conduct reviews of practical approaches
along with piezoelectric sensing and control methods to achieve stable orientations and
accurate trajectories. As wireless power transmission technologies advance and the sensors
become lighter and more accurate, by overcoming the design and fabrication challenges,
untethered autonomous piezoelectric microrobots will gain more popularity.
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