Table 3.
Models | AUC | Low 95% CI | High 95% CI | Optimal cutoff value | Sen | Spe | Acc | PLR | NLR | DOR | PPV | NPV |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 Stepwise | 0.82 | 0.76 | 0.88 | −0.1052 | 0.76 | 0.8 | 0.78 | 3.81 | 0.29 | 12.84 | 0.77 | 0.79 |
2 BS-stepwise | 0.8 | 0.74 | 0.87 | −0.1630 | 0.78 | 0.74 | 0.76 | 3.08 | 0.28 | 10.79 | 0.73 | 0.79 |
3 mfp | 0.81 | 0.74 | 0.87 | −0.0718 | 0.71 | 0.76 | 0.74 | 3.05 | 0.37 | 8.14 | 0.73 | 0.75 |
4 Full | 0.83 | 0.77 | 0.89 | 0.0349 | 0.75 | 0.81 | 0.78 | 3.97 | 0.3 | 12.88 | 0.77 | 0.78 |
5 BS-full | 0.83 | 0.77 | 0.89 | −0.7773 | 0.83 | 0.71 | 0.77 | 2.89 | 0.22 | 12.68 | 0.72 | 0.83 |
AUC, area under the curve; AIC, Akaike Information Criterion; BS, bootstrapping; CI, confidence interval; DOR, diagnostic odds ratio; mfp, Multiple Fractional Polynomial; NPV, negative predictive value; PLR, positive likelihood ratio; PPV, positive predictive value; NLR, negative likelihood ratio; Sen, sensitivity; Spe, specificity.
Backward stepwise variables selection based on AIC.
Stepwise model Bs 1,000 times.
Final model was generated based on mfp.
Full model.
Full model Bs 1,000 times