Skip to main content
. 2021 Oct 21;51(8):668–678. doi: 10.1159/000519409

Table 3.

Discrimination power of the prediction models

Models AUC Low 95% CI High 95% CI Optimal cutoff value Sen Spe Acc PLR NLR DOR PPV NPV
1 Stepwise 0.82 0.76 0.88 −0.1052 0.76 0.8 0.78 3.81 0.29 12.84 0.77 0.79
2 BS-stepwise 0.8 0.74 0.87 −0.1630 0.78 0.74 0.76 3.08 0.28 10.79 0.73 0.79
3 mfp 0.81 0.74 0.87 −0.0718 0.71 0.76 0.74 3.05 0.37 8.14 0.73 0.75
4 Full 0.83 0.77 0.89 0.0349 0.75 0.81 0.78 3.97 0.3 12.88 0.77 0.78
5 BS-full 0.83 0.77 0.89 −0.7773 0.83 0.71 0.77 2.89 0.22 12.68 0.72 0.83

AUC, area under the curve; AIC, Akaike Information Criterion; BS, bootstrapping; CI, confidence interval; DOR, diagnostic odds ratio; mfp, Multiple Fractional Polynomial; NPV, negative predictive value; PLR, positive likelihood ratio; PPV, positive predictive value; NLR, negative likelihood ratio; Sen, sensitivity; Spe, specificity.

1

Backward stepwise variables selection based on AIC.

2

Stepwise model Bs 1,000 times.

3

Final model was generated based on mfp.

4

Full model.

5

Full model Bs 1,000 times