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Abstract: On the basis of star-shaped core sandwich panel, a novel sandwich panel with petal-triangle
core (SP-PSC) was proposed to improve the negative Poisson’s ratio (NPR) effect while retaining the
characteristics of light weight and high strength. To study the complex structure more conveniently
and quickly, a variational asymptotic method-based equivalent two-dimensional model (2D-EPM)
was developed. The accuracy and efficiency of 2D-EPM were verified by the three-point bending
experiment data and the 3D FE model results under different boundary and load conditions. The
effects of the geometric parameters on the equivalent stiffness, buckling, natural frequency and NPR
effect were also investigated. To increase the NPR of SP-PSC, the material of facesheet was changed
from isotropic material to unidirectional CFPR material, and the influence of the material anisotropy
on the NPR effect of SP-PSC was investigated. It is found that the NPR of SP-PSC increased first
and then decreased with the increase in the fiber angle, reaching the maximum value at 40–50◦. At
the same time, this law is applicable to SP-PSC with different material or geometric parameters.
Finally, two improved cores, petal star-triangular core with X-shaped ligaments (PSC-X) and double-
arc star-shaped core (DSC), were proposed and compared with SP-PSC in equivalent stiffness and
recovered local fields to demonstrate their advantages. Compared with the original plate, the stress
concentration and equivalent stiffness of the two improved PSCs significantly improved.

Keywords: honeycomb sandwich panel; negative Poisson’s ratio; static and dynamic performance;
variational asymptotic method

1. Introduction

Since the beginning of the 21st century, metamaterials have gradually developed into
an important branch of new material technology. Metamaterial refers to the design of the
internal structure of materials, so as to artificially control various properties to obtain new
materials that are not available in nature. The negative Poisson’s ratio (NPR) material is
a typical metamaterial, and its Poisson’s ratio characteristics are against intuition. The
NPR material was first proposed by Lakes [1] in 1987 and then attracted a large number of
interests. After decades of development, NPR materials have been vigorously developed
in many fields. For example, the NPR material is applied to the anti-collision device of the
vehicle to achieve the effect of energy absorption and cushioning.

Auxetic materials, namely negative Poisson’s ratio (NPR) materials, have many novel
and excellent properties which can be enhanced by virtue of their NPR effect. Firstly, auxetic
materials have stronger hardness or indentation resistance than non-auxetic materials
because the auxetic material contracts laterally and flows into the immediate region of
impact, which leads to an increase in density and affects indentation resistance for auxetic
materials, but non-auxetic materials flow laterally away from the region of impact during
an impact. In addition, according to classical elasticity theory, the hardness (H) of auxetic

materials decreased with the enhancement of negative Poisson’s ratio (H ∝
(

E
1−µ2

)γ
, γ is

Materials 2022, 15, 6407. https://doi.org/10.3390/ma15186407 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15186407
https://doi.org/10.3390/ma15186407
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-9294-2075
https://orcid.org/0000-0002-0867-0661
https://orcid.org/0000-0003-4049-1468
https://doi.org/10.3390/ma15186407
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15186407?type=check_update&version=1


Materials 2022, 15, 6407 2 of 26

sensitivity index [2]). Secondly, the NPR material has a better shear modulus. It can be seen
from G = E

2(1+µ)
(E is young’s modulus, G is shear modulus, and µ is Poisson’s ratio) that

the shear modulus G increases as µ approaches −1 [3]. Choi and Lakes [4] demonstrated
an improvement in fracture toughness of re-entrant auxetic foams. Therefore, it is valuable
to study the NPR of SP-PSC, especially to find a method that can improve the NPR effect.

The NPR materials can be grouped into three categories: re-entrant [5], chiral [6] and
rotating rigid structures [7]. The traditional honeycomb re-entrant structure and its auxetic
behavior were first proposed by Gibon et al. [5] and Master and Evans [8]. Some re-entrant
profiles, such as the star structure presented by Theocaris et al. [9], even have a NPR effect
in both directions. The main feature of a re-entrant structure is the concave. The core layer
of the sandwich panel studied in this article is a new annular concave structure based on
the star structure. In addition, not only can the in-plane re-entrant form an NPR structure,
but the spatial structure can also become a re-entrant structure as long as the concave
is arranged properly, such as the elastic porous solid studied by Lakes et al. [10]. The
comprehensive research on the spatial re-entrant structure is also known as “bucklicystals”.

The honeycomb sandwich panel has attracted much attention as a popular structure.
Geramizadeh et al. [11] proved that the facesheet thickness had a great impact on the
performance of sandwich panels. In fact, the effective performance of honeycomb sandwich
panels is quite different due to the different forms of core layers. Geramizadeh et al. [12]
found that rounding regular hexagonal structures can effectively improve mechanical
properties. The pursuit of a core layer with excellent performance has become the forward
direction of the honeycomb sandwich panel. This paper argues that replacing the core
layer with the NPR structure, which can better meet some practical requirements, would
improve some sandwich panel performance.

The sandwich panel with a petal star-triangular core (short for SP-PSC) studied in
this paper evolved from the regular star structure proposed by Theocaris et al. [9], which
combines the advantages of the honeycomb sandwich structure and the NPR effect.

Many theories have been put forward to calculate the performance of sandwich pan-
els, such as the Gibson formula [13], energy method [14], the homogenization method [15],
and many other theories. To address the issue of deformation authenticity, a series of re-
lated theories have been put forward, such as first-order shear theory [16], high-order shear
theory [17], layered theory [18], zig-zag theory, etc. In addition to the study of static defor-
mation, dynamics is also important. For the analysis of damping performance, the complex
eigenvalue method (CM) and the modal strain energy method (MSE) were derived to solve
many dynamic problems [19]. Gohari et al. [20,21] and Wang et al. [22] mainly studied the
numerical simulation and analytical solution of different carbon fiber reinforced composites.
Although the three-dimensional model of the honeycomb sandwich panel can obtain more
accurate results, it was too time-consuming and inefficient to be applied in practice.

Recently, the variational asymptotic method (VAM) was developed to build a rigorous di-
mensional reduction plate/shell model with a good balance of efficiency and accuracy [23–25].
The essence of the variational asymptotic method is to transform the problem of solving the
definite solution of complex elasticity into the problem of solving the extreme value of func-
tional. Finally, the problem is summarized as solving the system of linear algebraic equations.
The two-dimensional equivalent model obtained by VAM has high accuracy and efficiency,
which has been verified by many scholars [26–28]. If the three-dimensional model of SP-PSC
is equivalent to the two-dimensional model using VAM, the calculation time can be greatly
saved, and the efficiency can be very high while ensuring a certain accuracy.

In this study, the three-point bending test for 3D printer samples of sandwich panels
with petal-star cores (SP-PSC) was carried out using an electronic universal testing machine.
The calculation accuracy and efficiency of 2D-EPM were verified by comparing them with
the experimental data and 3D-FEM results under different boundary and load conditions.
The effects of geometric parameters (including angles θ1 and θ2, as well as height ratio) on
the stiffness, buckling, natural frequency, and NPR of SP-PSC were studied. To improve
the NPR effect of SP-PSC, the facesheet material was changed from isotropic materials to
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unidirectional composites. Finally, based on the mechanism of SP-PSC, two improved cores
were proposed, namely PSC-X and DSC. The findings of this study can be used as a guide
for parameter optimization of sandwich plates with complicated cores.

2. VAM Procedure
2.1. Kinematics of SP-PSC

Two coordinate systems are introduced in multiscale modeling: (1) the global coordi-
nates x = (x1, x2, x3) describing the macro plate; (2) the local coordinates y = (y1, y2, y3)
describing the unit cell, which is parallel to (x1, x2, x3). The dimension reduction analysis
of the SP-PSC is shown in Figure 1. That is, the three-dimensional FE model (3D-FEM)
analysis of SP-PSC is reduced to the constitutive modeling over the typical 3D unit cell
and 2D equivalent plate model analysis (2D-EPM). As a result, the original displacement
function of SP-PSC can be expressed as a displacement function defined along the reference
plane x1 − x2 (x3 disappears), with partial derivative as

∂u(xα; yi)

∂xα
=

∂u(xα; yi)

∂xα

∣∣∣∣
yi=const

+
1
ζ

∂u(xα; yi)

∂yi

∣∣∣∣
xα=const

≡ u,α +
1
ζ

u|i, (1)

where ζ denotes the ratio of the micro- and macro-scales.

Figure 1. Dimension reduction analysis of the sandwich panel with petal star-triangular core (SP-PSC)
using variational asymptotic method (VAM) (the top facesheet is removed for better view).

2.2. Step 1: Equivalent 2D Displacements from 3D Displacements

To develop the reduced plate model of SP-PSC using VAM, the 3D displacement field
ui of the original SP-PSC is represented by 2D plate variables ūi, such that

u1(x1, x2, y3) = ū1(x1, x2)− ζy3ū3,1 + w1(x1, x2, y3)

u2(x1, x2, y3) = ū2(x1, x2)− ζy3ū3,2 + w2(x1, x2, y3)

u3(x1, x2, y3) = ū3(x1, x2) + w3(x1, x2, y3)

, (2)

where wi denote unknown warping functions that cannot be considered in the classic plate
theory. The underlined terms should meet the constraints as

ū1 = 〈u1〉+ 〈ζy3〉ū3,1, ū2 = 〈u2〉+ 〈ζy3〉ū3,2, ū3 = 〈u3〉, (3)

where 〈·〉 denotes the volume integral over the unit cell.
If the origin of local coordinates is located at the geometric center of the 3D unit cell,

the 2-D displacements are the average of the corresponding 3-D displacements , and the
warping functions are constrained by
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〈ζwi〉 = 0. (4)

The 3-D strain field is obtained based on the concept of rotation tensor decomposition [29] as

εij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
. (5)

The change of variables is implemented into the original 3-D warping functions,

wi(x1, x2, y3) = ζy3 ϕi(x1, x2) + vi(x1, x2, y3), (6)

where ϕ1 and ϕ2 represent transverse normal rotations about the x2 and x1 axes, respec-
tively, and ϕ3 represents transverse normal elongation along the x3 axis.

Substituting Equations (2) and (6) into Equation (5) and ignoring higher-order terms
that have little influence on the total energy, we obtain the explicit expression of the 3D
strain field as

ε11 = ε11 + ζy3κ11 + ζy3 ϕ1,1 + v1,1,

2ε12 = 2ε12 + 2ζy3κ12 + ζy3 ϕ2,1 + v2,1 + ζy3 ϕ1,2 + v1,2,

ε22 = ε22 + ζy3κ22 + ζy3 ϕ2,2 + v2,2,

2ε13 = ϕ1 + v1,3 + ζy3 ϕ3,1 + v3,1,

2ε23 = ϕ2 + v2,3 + ζy3 ϕ3,2 + v3,2,

ε33 = ϕ3 + v3,3,

(7)

where εαβ and καβ can be defined as

εαβ(x1, x2) =
1
2
(
ūα,β + ūβ,α

)
, καβ(x1, x2) = −ū3,αβ. (8)

The 3D strain field E can be expressed in matrix form as

Ee = [ε11 ε22 2ε12]
T = ε + ζy3κ + Iα

(
ζy3ϕ‖,α + v‖,α

)
,

2Es = [2ε13 2ε23]
T = ϕ‖ + v‖,3 + eα(ζy3 ϕ3,α + v3,α),

Et = ε33 = ϕ3 + v3,3,

(9)

where ()|| = [()1 ()2]
T, ε =

[
ε11 2ε12 ε22

]T, κ = [κ11 κ12 + κ21 κ22]
T, and

I1 =

 1 0
0 1
0 0

, I2 =

 0 0
1 0
0 1

, e1 =

{
1
0

}
, e2 =

{
0
1

}
. (10)

2.3. Step 2: Strain Energy Expression

The strain energy of the sandwich panel can be expressed as

U =
1
2

∫ b/2

−b/2

∫ a/2

−a/2

1
Ω
UΩdx2dx1, (11)

where a and b are the length and width of the sandwich panel, respectively, UΩ
Ω is the stain

energy density over the domain of the macroscopic plate, and can be expressed as

UΩ =
∫ − h

2

− h
2−t f

E bT
CbE bdx3 +

∫ h
2

− h
2

E cT
CcE cdx3 +

∫ h
2 +t f

h
2

E tT
CtE tdx3. (12)
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where the superscripts b, c and t denote the bottom facesheet, the core layer and the top
facesheet, respectively, h and t f denote the core height and the thickness of the facesheet,
respectively.

Equation (11) can be written as

U =
1
2

〈
ETDE

〉
=

1
2

〈
Ee

2Es
Et


T De Des Det

DT
es Ds Dst

DT
et DT

st Dt


Ee

2Es
Et


〉

, (13)

where De, Des, Det, Ds, Dst, and Dt are the corresponding sub-matrices containing coeffi-
cients of the material stiffness matrix.

For the original sandwich panel, the virtual work carried out by the applied load is

W3D =W2D +W∗

=
∫

s
(piūi + qαδū3,α)ds +

∫
s
(〈 fiwi〉+ τihϕi/2− βihϕi/2)ds, (14)

where s denotes the reference surface;−hϕi/2 and hϕi/2 denote the warping displacements
on the bottom and top surfaces of the sandwich panel, respectively; fi is the body force;
βi and τi are the traction on the bottom and top surfaces, respectively; and the distributed
forces and moments along the reference surface are defined as pi = 〈 fi〉+ τi + βi, qα =
h/2(βα − τα)− 〈ζy3 fα〉.

The kinetic energy of the panel is expressed as

K =
1
2

∫
Ω

ρvTvdΩ, (15)

where ρ is the equivalent density, v is the absolute velocity of a generic point in the panel,
and can be expressed as

v = V + ω̃(ξ + w) + ẇ, (16)

where ẇ = ∂w/∂t, V is the absolute velocity of a point in the deformed reference surface,
ω̃ is the inertial angular velocity, and ξ = [ 0 0 x3 ]T .

The original kinetic energy can be divided into kinetic energy of equivalent 2D plate
and residual kinetic energy, such as

K = K2D +K∗, (17)

where
K2D =

1
2

∫
s

(
µ̄VTV + 2ωT µ̃ξV + ωTΦω

)
ds, (18)

K∗ = 1
2

∫
Ω

ρ
[
(ω̃w + ẇ)T(ω̃w + ẇ) + 2(V + ω̃ξ)T(ω̃w + ẇ)

]
dΩ, (19)

with µ̄ = 〈ρ〉, µξ =
⌊

0 0 〈x3ρ〉
]T , and Φ =

 〈
x2

3ρ
〉

0 0
0

〈
x2

3ρ
〉

0
0 0 0

.

According to the Hamilton’s principle, the elastodynamic behavior of the plate is
governed by ∫ t2

t1

[
δ(K2D +K∗ −U ) + δW2D + δW∗

]
dt = 0, (20)

where t1 and t2 are arbitrary fixed times.
The elastodynamic behavior of the panel is governed by Hamilton’s principle∫ t2

t1

[
δ(K2D +K∗ −U ) + δW2D + δW∗

]
dt = 0, (21)
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and wi can be solved from
min

wi ∈ Equation (4)

〈
ET DE

〉
. (22)

Clearly, this variational problem is posed over the 3D unit cell only, and the solution of
wi is the functions of the plate strains. The asymptotic analysis of the variational statement
in Equation (21) can be used to solve the unknown warping function wi instead of making
an ad hoc assumption, as discussed in the next section.

2.4. Step 3: Dimensional Reduction Analysis

To solve the unknown warping function wi using VAM, the order of each term in
Equation (21) must be evaluated as

εαβ ∼ hκαβ ∼ ϕi ∼ n, vi ∼ hn, v‖;α ∼ w3;α ∼
h
a

n

v‖;3 ∼ v3;3 ∼ n, h fα ∼ αα ∼ βα ∼ µ
h
a

n, h f3 ∼ α3 ∼ β3 ∼ µ

(
h
a

)2, (23)

where n is the order of the minimum strain and µ is the order of the material properties.
The zeroth-order approximation of the variational statement in Equation (21) can be

obtained by removing the asymptotically smaller terms K∗ and δW∗ according to VAM,
such as ∫ t2

t1

[
δ

(
K2D −

∫
Ω
U0dΩ

)
+ δW2D

]
dt = 0, (24)

where U0 can be obtained dropping the derivatives with respect to xα in Equation (13),

2U0 =

〈 (ε + ζy3κ)TDe(ε + ζy3κ) +
(

ϕ‖ + v‖,3
)T

Ds

(
ϕ‖ + v‖,3

)
+2(ε + ζy3κ)T

(
Des

(
ϕ‖ + v‖,3

)
+ Det(ϕ3 + v3,3)

)
+2
(

ϕ‖ + v‖,3
)T

Dst(ϕ3 + v3,3) + (ϕ3 + v3,3)
TDt(ϕ3 + v3,3)

〉
. (25)

The related Euler–Lagrange equation can be obtained by introducing Lagrange multi-
pliers λi, such as[

(ε + ζy3κ)TDes +
(

ϕ‖ + v‖,3
)T

Ds + (ϕ3 + v3,3)Dst

]
,3
= λ‖,[

(ε + ζy3κ)TDet +
(

ϕ‖ + v‖,3
)T

Dst + (ϕ3 + v3,3)Dt

]
,3
= λ3,

(26)

where λ|| = [λ1 λ2]
T.

The free surface conditions are[
(ε + ζy3κ)TDes +

(
ϕ‖ + v‖,3

)T
Ds + (ϕ3 + v3,3)DT

st

]+/−
= 0[

(ε + ζy3κ)TDet +
(

ϕ‖ + v‖,3
)T

Dst + (ϕ3 + v3,3)Dt

]+/−
= 0

(27)

From these conditions, we can solve for v|| and v3 as

v‖ =
〈
−(ε + ζy3κ)D̄es(Ds)

−1
〉T

, v3 =
〈
−(ε + ζy3κ)D̄et(D̄t)

−1
〉

, (28)

where
D̄es = Des − D̄et(Dst)

T(D̄t)
−1, D̄et = Det − Des(Ds)

−1Dst,
D̄t = Dt − (Dst)

T(Ds)
−1Dst.

(29)
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Substituting Equation (27) in Equation (24), we obtain

U2D = 1
2

〈
(ε + ζy3κ)TK(ε + ζy3κ)

〉
= 1

2

{
ε
κ

}T[ A B
BT D

]{
ε
κ

}
, (30)

where A, B, and D are 3× 3 sub-matrices and can be expressed as

A = 〈K〉, B = 〈ζy3K〉, D =
〈
ζy2

3K
〉
,

K = De − DesD−1
s DT

es − DetDT
et/Dt.

(31)

The constitutive relation of the equivalent 2D plate may be obtained as

N11
N22
N12
M11
M22
M12


=



A11 A12 A16 B11 B12 B16
A12 A22 A26 B12 B22 B26
A16 A26 A66 B16 B26 B66
B11 B12 B16 D11 D12 D16
B12 B22 B26 D12 D22 D26
B16 B26 B66 D16 D26 D66





ε11
ε22
2ε12
κ11
κ22
2κ12


. (32)

where Nαβ = ∂U2D
∂ε , Mαβ = ∂U2D

∂κ .
The variational statement in Equation (24) only involves the 2D field variables with macro-

coordinates xα. As a result, the obtained equivalent 2D plate (2D-EPM) can be used to replace
the original sandwich panel in the global analysis, such as global displacement and buckling,
and can be solved using a linear solver in finite element software like ABAQUS/Standard.

2.5. Step 4: Recovering Relations from 2D to 3D

The accuracy in recovering the local fields of the original three-dimensional SP-PSC
determines the reliability of the equivalent 2D plate model. As a result, the recovery
relationship must be provided. In other words, the 2-D variables and warping functions are
used to describe the 3D local fields. The local displacement field can be recovered according
to Equation (4), such as

ui = ūi +

 ū1,1 ū1,2 ū1,3
ū2,1 ū2,2 ū2,3
ū3,1 ū3,2 ū3,3


y1
y2
y3

+ ζ(y3 ϕi + vi), (33)

The local strain field can be recovered as

E0
e = ε + x3κ, 2E0

s = −ϕ||, E0
t = ϕ3 + v3,3. (34)

According to the constitutive relations, the local stress field can be recovered as

σe = DeEe + DetEt, σs = Ds(2Es), σt = DT
etEe + DtEt (35)

The equivalent density of the SP-PSC can be calculated as

ρ =
m

VΩ
=

8× Schρc + 4× (l1 + l2)thρc + 2× l3thρc + 2abt f ρ f

ab
(

h + 2t f

) (36)

where ρ f and ρc are the densities of the face sheet and core layer, respectively; Sc is the arc
length of the petal wall.

3. Model Validation

The accuracy of 2D-EPM is validated in this section by comparing it to experimental
data, as well as bending, buckling, and free vibration results from 3D-FEM under various
boundary and load conditions, as shown in Figure 2. The 3D-FEM of SP-PSC is created by
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repeating the unit cell with dimensions of 20 mm× 15 mm along the x1 and x2 directions.
The size of the macro plate is 240 mm× 135 mm in the three-point bending test, while
200 mm× 200 mm in other cases. Since the VAM-based 2D-EPM is developed by taking
advantage of small parameters, the global size of the plate should be close to or greater
than 10 times the cell size, resulting in more accurate numerical simulation results. The
SP-PSC is composed of top and bottom facesheets with a thickness of 0.5 mm and a core
layer with a height of 9 mm. The material properties are from the 3D printing materials:
E = 2100 MPa, ρ = 1300 kg ·m−3 and µ = 0.41. In the ABAQUS package, the material
parameters are input in the “property” option of “module” and assigned to the established
model. The boundary and loading conditions of the model are defined in the “load”
option of “module”. The relative error between 2D-EPM and 3D-FEM is defined as:
Error =| 2D-EPM results −3D-FEM results | /3D-FEM results (%).

Figure 2. Verification flowchart of the accuracy of 2D-EPM for SP-PSC.

The mesh convergence has been studied before the numerical simulation, and the
results are shown in Figure 3. For 3D-FEM, the numerical simulation had excellent con-
vergence when the number of elements was more than 15,000. Although adding more
elements can improve the accuracy of the numerical simulation, it also puts forward higher
requirements for the calculated cost. Therefore, 324,869 C3D20R elements for 3D-FEM
were adopted to maximize computation efficiency. Similarly, a mesh convergence study
for 2D-EPM was also conducted. The study found that the numerical simulation had good
convergence when the number of elements was more than 1000, and 10,201 S4R elements
for 2D-EPM were adopted based on computation efficiency. In addition, the mesh of the
contact surface between the loading head and the surface was refined during the 3-point
loading simulation.
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(a) 3D-FEM
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(b) 2D-EPM

Figure 3. Mesh convergence study for 3D-FEM and 2D-EPM.

3.1. Static Deflection Analysis

The SP-PSC has the characteristics of light weight and high strength. Therefore, it
is necessary to study the bending performance of SP-PSC accurately and quickly. In this
sub-section, the WDW-10 electronic universal testing machine with a maximum load of
10 kN was used to perform the three-point bending test. A constant loading with a speed of
5 mm/min was adopted in the test, and the displacement of the central roll was recorded.
Considering that the heat dissipation of the 3D printing process was slow due to the high
temperature, a non-closed 3D printer with a single nozzle was used to print the samples.

Figure 4 shows the displacement-load curves from experiments, 3D-FEM and 2D-EPM
under three-point bending load. It can be seen that the linear elastic lines predicated by 3D-
FEM and 2D-EPM were very similar to the curves obtained from experiments. In addition,
the slope errors corresponding to the three linear elastic stages were less than 10%, meeting
the requirements of engineering accuracy. The sources of the errors mainly included
two aspects: (a) the bottom facesheet and the core layer were printed together, while the
top facesheet was printed separately, resulting in a decrease in the overall mechanical
performance; (b) the temperature affected the forming quality of the printed sandwich
panel and the bearing performance under loading.

Figure 5 shows the deflection curves along the center line obtained by 3D-FEM and
2D-EPM under four BCs and a uniformly distributed load of 10 N/mm2. It can be seen that
the deflection corresponding to the center line was larger as it was farther away from the
boundary. At the same time, the displacement obtained by 3D-FEM under four BCs was
less than that obtained by 2D-EPM, which may be due to the different meshing between
2D-EPM and 3D-FEM. The deflection error under different BCs was less than 7%, which
also meets the requirements of engineering accuracy.

(a) 130-130-8 (b) 130-130-9

Figure 4. Cont.
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(c) 120-130-8 (d) 130-120-8

Figure 4. Displacement-load curves from experiments, 2D-EPM, and 3D-FEM, unit: mm (θ1-θ2-h
denote the included angle between cancave petal walls, included angle between cancave inclined
walls and core height, respectively).

(a) Case1 (CCFF) (b) Case2 (CCCC)

(c) Case3 (CCSS) (d) Case4 (SSSS)

Figure 5. Comparison of deflection curves along the center line obtained by 2D-EPM and 3D-FEM
under different BCs (the indices C, S, and F represent clamped, simply supported, and free boundary
conditions, respectively).
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3.2. Global Buckling Analysis

The sandwich panel is prone to buckling when subjected to an in-plane load. This
section mainly compares the global buckling modes and buckling loads of 2D-EPM and
3D-FEM under the same boundary conditions. The loads applied to the boundary of
2D-EPM and 3D-FEM are 1 N/mm and 1× 200 = 200 N, respectively.

Table 1 shows the first four buckling modes of SP-PSC under three different boundary
conditions, and the numbers in parentheses indicate the relative error of the buckling loads.
It can be found that the error of the buckling loads was less than 6%. At the same time,
it can be found that the buckling modes of 2D-EPM and 3D-FEM were almost the same
under different boundary conditions, indicating that 2D-EPM can replace 3D-FEM in the
global buckling analysis of SP-PSC with confidence.

Table 1. Comparison of first three buckling modes under different boundary conditions.

Modes Models Case 5
CCSS-Uniaxial

Case 6
CSFF-Uniaxial

Case 7
SSSS-Uniaxial

Mode 1

3D-FEM

210.2 N 53.2 N 74.1 N

2D-EPM

217.2 N (3.36%) 57.2 N (1.77%) 75.8 N (2.23%)

Mode 2

3D-FEM

237.9 N 105.1 N 181.9 N

2D-EPM

232.4 N (2.31%) 101.4 N (3.50%) 188.3 N (3.51%)

Mode 3

3D-FEM

372.1 N 175.0 N 206.0 N

2D-EPM

378.6 N (1.77%) 171.0 N (2.31%) 197.2 N (4.26%)

Mode 4

3D-FEM

589.3 N 229.4 N 330.4 N

2D-EPM

563.6 N (4.36%) 217.6 N (5.15%) 316.0 N (4.34%)

3.3. Free Vibration Analysis

Table 2 shows the first four natural frequencies predicted by 2D-EPM and 3D-FEM
under different BCs. Their natural frequencies were in good agreement. The errors of
natural frequencies increased with an increase in orders, but they were all within 7%. It
is worth noticing that the natural frequency increased gradually with the enhancement
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of boundary constraints. For example, the fundamental frequency under the CCCC BCs
(669.6 Hz) was 1.5 times that under the SSSS BCs (487.3 Hz).

Table 2. Comparison of fist four natural frequencies predicted by two models under different BCs.

Orders
Case1 (CCCC) Case2 (CCFF) Case3 (SSSS)

3D-FEM 2D-EPM Error 3D-FEM 2D-EPM Error 3D-FEM 2D-EPM Error

1 659.2 669.6 2.04% 408.4 417.3 2.16% 470.4 487.3 3.58%
2 1231.1 1307.0 6.14% 463.4 477.7 3.09% 907.0 953.4 5.12%
3 1297.4 1310.5 1.01% 783.0 763.6 2.49% 942.2 959.9 1.88%
4 1764.3 1857.1 5.26% 1062.6 1098.3 3.36% 1535.3 1500.0 2.30%

Table 3 shows the first eight free vibrations of SP-PSC under the CCCC boundary
condition. It can be found that the error of natural frequency was within 7% regardless of
order, low or high. At the same time, the vibration modes predicted by the two models
were identical in all orders. There was only one half-wave along the x2 direction in modes
1 and 3; two half-waves along the x2 direction in modes 2, 4 and 8; and three half-waves
along the x2 direction in mode 7. On the contrary, there was only one half-wave along the
x1 direction in modes 1 and 2, two half-waves along the x1 direction in modes 3, 4 and 7,
and three half-waves along the x1 direction in mode 8. The mode shapes of modes 5 and 6
were axisymmetric or centrosymmetric, which was related to the consistency of the density
gradient of the sandwich panel along the direction of x1 and x2.

Table 3. Comparison of first eight natural frequencies of SP-PSC predicted by two models under
CCCC BCs.

Modes mode 1 mode 2 mode 3 mode 4

3D-FEM

656.2 Hz 1231.4 Hz 1297.4 Hz 1764.2 Hz

2D-EPM

669.6 Hz (2.04%) 1307.0 Hz (6.14%) 1131.0 Hz (1.01%) 1857.1 Hz (5.26%)

Modes mode 5 mode 6 mode 7 mode 8

3D-FEM

2243.7 Hz 2294.6 Hz 2753.4 Hz 2817.7 Hz

2D-EPM

2215.9 Hz (1.24%) 2235.3 Hz (1.99%) 2689.8 Hz (2.31%) 2694.9 Hz (4.36%)

3.4. Comparison of Calculation Efficiency

Table 4 shows that the 2D-EPM has three advantages over the 3D-FEM: (1) the def-
inition of contact, the application of the load, and the boundary constraints are more
convenient and concise; (2) the different meshing of the 3D-FEM has a greater impact on
the calculation speed and accuracy; whereas the meshing of the 2D-EPM is faster and less
difficult; and (3) the calculation efficiency of 2D-EPM is nearly 20 times higher than that of
3D-FEM. The configuration includes a Lenovo XiaoXinAir 15 ITL powered by an 11th Gen
Intel i5-1135G7 CPU running at 3.2 GHz and 32 GB of RAM.
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Table 4. Comparison of calculation efficiency between two models.

Items 3D-FEM
2D-EPM

Unit Cell 2-D Plate

Element type C3D20R C3D20R S4R
Number of elements 324,869 393,147 10,201

Number of nodes 160,332 75,682 10,000

Bending 96 min / 5 min
Buckling 45 min / 156 s
Vibration 27 min / 121 s

4. Variable Parameter Analysis

The SP-PSC is an anisotropic structure, which means that it has different effective
performances in different directions. As a result, it is critical to investigate the change in
effective performance with different geometric and material parameters. The geometric
parameters of SP-PSC shown in Figure 6 mainly include: the included angle θ1 between
concave petal walls (CPW for short), the included angle θ2 between concave inclined walls
(CIW for short), wall thickness of core layer (t), core height (h) and plate height (H). The
geometric and material parameters in Section 3 were used as benchmark parameters except
that the facesheet thickness was set to 0.075 mm to demonstrate the NPR effect. The
geometric parameters of the benchmark model are 130◦ − 130◦ − 9.85 (θ1 − θ2 − h).

(a) Top view (b) Side view

Figure 6. Geometric parameters of unit cell within the SP-PSC.

4.1. Included Angles θ1

Figure 7a shows the effect of included angle θ1 on the equivalent stiffness of SP-PSC.
It can be observed that the equivalent tensile stiffness A22 and equivalent bending stiffness
D22 increased as θ1 increased, while other stiffness decreased. The deformation of the core
cell along the x2 direction was mainly caused by the axial deformation of the CPW when θ1
approached 180◦, but there was no external constraint at the intersection of the CPW when
θ1 < 180◦. Therefore, the deformation of the core layer along the x2 direction was mainly
caused by the axial and rotation deformations of CPW (which was also the reason for the
NPR effect), and this rotation tended to increase the deformation rather than weaken the
deformation. Therefore, the larger the θ1, the smaller the deformation of the core along the
x2 direction, resulting in an increase in A22. In addition, there was a synchronous change
between the equivalent bending and tensile stiffness in the corresponding direction.

Figure 7b shows the variation of specific stiffness when θ1 changed. It can be found
that D11/ρ∗ increased significantly with the increase of θ1. As a result, the smaller θ1, the
greater the advantage of SP-PSC. It is worth noting that the included angle θ1 had little
effect on the other three specific stiffnesses. Figure 7c,d show the influence of θ1 on the
buckling load and natural frequency of SP-PSC. The equivalent flexural elastic modulus of
the sandwich panel decreased with the increase in θ1, so the anti-buckling capacity also
decreased. It can be found that the equivalent density of the plate decreased in a small
range with an increase in θ1, resulting in an increase in natural frequency, which may be
related to the small increase in equivalent stiffness.
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Figure 7. Influence of included angle θ1 on equivalent stiffness of SP-PSC.

4.2. Included Angles θ2

Figure 8a shows that the equivalent tensile stiffness A11, A22 and the equivalent
bending stiffness D11, D22 increased with the increase of θ2, but the increase in A22 and D22
was relatively obvious. The CPW of the core cell remained unchanged when θ2 changed.
The CIW was parallel to the x1 direction when θ2 = 180◦. At that time, the deformation
along x1 direction was primarily caused by the axial deformation of CIWs when loaded
in the same direction. However, as θ2 was gradually decreased , the concave degree of
CIWs increased, and the deformation in the x1 direction was gradually dominated by the
additional deformation caused by rotation. As a result, as θ2 decreased, the deformation in
the x1 direction increased, indicating that the equivalent stiffness of A11 and D11 of SP-PSC
decreased as θ2 decreased .

To study the deformation mechanism of the core layer in SP-PSC, a core cell loaded
only in the x2 direction was considered as shown in Figure 9, in which the four corners
of the core cell were elastically restrained. There were three different actions when the
load was transferred to the corner through CIWs: the bending moment in the left and right
CPWs; 0.5 F2 in the x2 direction; and F1 in the x1 direction.

The left and right CPWs under 0.5 F2 load generated compression deformation along
the x2 direction while generating tensile deformation along the x2 direction under F1 load.
As a result, the action of F1 reduced the deformation caused by 0.5 F2 in the x2 direction. The
included angle between CIW and x2 direction increased as θ2 increased. That is, when the
core cell was subjected to the action of F2, the value of F1 became larger, so the deformation
in the corresponding x2 direction was smaller. It can be concluded that the equivalent
stiffness of A22 and D22 increased with the increase in θ2.
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Figure 8. Influence of included angle θ2 on effective performance of SP-PSC.

Figure 9. Simplified model for analyzing the deformation mechanism of core cell withint the SP-PSC.

Figure 8b shows the effect of θ2 on specific stiffness. As θ2 increased, D11/ρ∗ and
D22/ρ∗ increased, while D12/ρ∗ decreased. Hence, the SP-PSC with the larger the θ2 should
be selected to make full use of the performance of the panel. Figure 8c,d show the effects
of included angle θ2 of CIWs on buckling load and natural frequency of SP-PSC. It can
be found that the influence of θ2 on the anti-buckling capacity was not very significant,
while the natural frequency of SP-PSC increased. The reason may be due to the fact that the
equivalent density of SP-PSC gradually decreased, and the stiffness D11 and D22 gradually
increased with the increase of θ2.
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4.3. Height Ratio h/H

Figure 10a shows the effect of the height ratio h/H on equivalent stiffness when all
other geometric and material parameters are held constant . It can be found that when
the total height of SP-PSC remained unchanged, the equivalent tensile stiffness gradually
decreased with the increase in h/H. This change was straightforward to comprehend since
the tensile stiffness of the core layer was weaker than that of the facesheet with the same
thickness. It is worth noting that the change of equivalent bending stiffness was consistent
with that of equivalent tensile stiffness.

Figure 10b shows the specific stiffness of SP-PSC decreased as h/H increased , but the
change in h/H had little effect on the specific stiffness when h/H < 0.6. The reduction
of specific stiffness increased when h/H > 0.6. Therefore, from an economic point of
view, SP-PSC with h/H < 0.6 should be used in actual applications to the greatest extent
feasible. Figure 10c,d show the influence of height ratio on the buckling load and natural
frequency of SP-PSC. Because the equivalent flexural elastic modulus reduced as the height
ratio increased, so did the anti-buckling capacity, particularly the high-order anti-buckling
ability. The equivalent density of the plate reduced linearly as the height ratio increased,
and so did the equivalent stiffness. The reduction of the equivalent stiffness had a greater
impact on the natural frequency than the equivalent density, so the natural frequency first
increased slightly and then decreased greatly when h/H > 0.6, which should be paid
attention to in structural design.
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Figure 10. Influence of included angle θ2 on effective performance of SP-PSC.

5. Negative Poisson’s Ratio

This section studies the variation of the NPR of SP-PSC by changing geometric and
material parameters, which lays a foundation for improving the NPR effect of SP-PSC for
practical application.
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5.1. SP-PSC with Isotropic Materials

The facesheet and core layer of SP-PSC in this section were made of isotropic materials,
namely carbon steel (E = 210 GPa, µ = 0.3). The effect of geometric parameters of the core
layer (θ1, θ2 and h/H) on the NPR of SP-PSC was investigated.

Figure 11a shows the changes in Poisson’s ratio of the core layer and the sandwich
panel when θ1 changed. It can be found that the NPR effect of the core layer gradually
weakened with the increase in θ1. The CPWs had a significant NPR effect relative to the
non-concave walls. The CPWs tended to be parallel to the x2 direction when θ1 gradually
increased, resulting in the absolute value of the NPR of the core gradually decreasing. The
sandwich panel has no NPR effect when θ1 < 120◦, but it has an increasing NPR effect
when 120◦ < θ1 < 130◦and a decreasing NPR effect when 130◦ < θ1 < 140◦.

It can be found from Figure 7a that the tensile stiffness A22 of SP-PSC increased when
120◦ < θ1 < 140◦. The load carried by the core layer along the x2 direction gradually
increased with the increase in θ1, indicating that the influence of the core layer deformation
was greater than that of the facesheet deformation. However, the NPR effect of the core
layer gradually weakened with the increase in θ1. Under the combined action of these two
factors, the Poisson’s ratio of the sandwich panel had a critical point at θ1 = 130◦, as shown
in Figure 11a.
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Figure 11. Influence of geometric parameters on the NPR of SP-PSC.

Figure 11b shows that the NPR of the core layer and sandwich panel gradually in-
creased as θ2 increased. The NPR effect of the core layer gradually increased with the
increase of θ2, and the increase in θ2 led to the gradual reduction in the stiffness of CIWs in
the x2 direction. Therefore, when the core layer was loaded in the x2 direction, the larger
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the θ2, the higher the load proportion undertaken by CPWs, improving the NPR effect of
the core layer.

The NPR effect of the sandwich panel gradually increased with an increase in θ2,
which was mainly due to two aspects: (1) the equivalent stiffness A22 of SP-PSC increased
as θ2 increased in Figure 8a, when the SP-PSC was loaded in the x2 direction, the weight
of the load undertaken by the core layer increased, and the influence of the deformation
of the core layer on the deformation of the SP-PSC was higher than that of the panel;
(2) the absolute value of the NPR of the core layer gradually increased as θ2 increased. The
Poisson’s ratio of SP-PSC was more sensitive to changes in θ2 than θ1 .

Figure 11c shows the effects of different height ratios on the NPR of the core layer and
the sandwich panel. It can be found that the change of h/H had little effect on the NPR of
the core layer. However, with an increase in h/H, the Poisson’s ratio of SP-PSC gradually
changed from a positive Poisson’s ratio to an NPR. The reason could be that the tensile
stiffness A22 of the facesheet gradually decreased as h decreased, whereas that of the core
layer gradually increased, resulting in a gradual increase in the effect weights of core layer
deformation in the overall deformation of SP-PSC.

5.2. SP-PSC with Composite Laminated Facesheets

In this section, the top/bottom facesheet of SP-PSC is made of heterogeneous material
CFPR, and material parameters were: ρ = 1.49 g/cm3, E1 = 105.5 GPa, E2 = E3 = 11.3 GPa,
G12 = G13 = 3.23 GPa, G23 = 3.18 GPa, µ12 = µ13 = 0.28, and µ23 = 0.53. The constraints
of CFRP facesheets on the core layer changed throughout the process of collaborative
deformation of the facesheets and the core layer. As a result, the composite laminated
facesheet was expected to affect the NPR of SP-PSC.

To more conveniently study the influence of composite anisotropy on the NPR of
SP-PSC, the top/bottom facesheets were made of 4-layer CFRP unidirectional laminates
with a thickness of 0.075 mm, and the core layer was made of isotropic materials: carbon
steel (E = 210 GPa, µ = 0.3), aluminum (E = 70 GPa, µ = 0.3) and Magnesium Alloy
(E = 45 GPa, µ = 0.35). Figure 12 shows the variations of NPR with different fiber
angles (defined as the angle between the fiber direction and x1 axis) of the top and bottom
laminated facesheet. The NPR increased first and then decreased gradually with increasing
fiber angle α, and these changes remained when the material properties of the core layer
changed, indicating that the effect of fiber angle on the NPR had little relationship with the
material used in the core layer. In addition, the NPR effect was shown to be most significant
when the fiber angle of unidirectional composite laminates was in the range of 40∼50◦.

The direction of reinforcement fiber was parallel to the CIW of the unit cell when
the fiber angle α equals 90◦. That is, the carbon fiber reinforcement limited the relative
displacement of the CIWs. Because the load along the x2 direction was mostly transmitted
through CIW in the unit cell, the load undertaken by CPW was reduced, resulting in a
reduction in the NPR effect. The direction of reinforcement fiber was parallel to the CPW
of the unit cell when α = 0◦. The load undertaken by CPW increased, but the laminated
facesheet also directly limited the relative displacement of the CPWs. The NPR effect was
weakened as a result of the limited relative displacement between CPWs.

To study the relationship between the NPR and fiber angle α, we investigated the
variations of α-NPR curves by changing the geometric parameters θ1, θ2 and h of core
layer, respectively. Figure 13 shows that the NPR of SP-PSC with different θ1, θ2 or h
increased first and then decreased as α increased. The NPR of the sandwich panel was
most significant when the fiber angle α was between 40◦ and 50◦, which was similar to
the results in Section 5.2. In addition, when the top and bottom facesheets of SP-PSC were
made of fiber reinforced composites, the NPR decreased with an increase in θ1. The NPR
effect increased with an increase in θ2, and the NPR of the sandwich panel increased with
the core height h.
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Figure 12. Variations of the negative Poisson’s ratio of SP-PSC with different core materials and
unidirectional fiber angles.
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Figure 13. Effects of θ1, θ2 or h/H on the NPR of SP-PSC.

6. Comparative Analysis
6.1. PSC, STC and SC

The PSC evolved from the star-triangular core (STC) as shown in Figure 14. These two
honeycombs are actually variations of the star core (SC) proposed by Theocaris et al. [9]
and the improved star honeycomb proposed by Wei et al. [30]. This section compares the
sandwich panels with three honeycombs in four aspects: equivalent stiffness, buckling, free
vibration, and NPR effect. The 2D-EPM with a dimension of 200 mm × 200 mm was used
to simulate the buckling and free vibration behaviors under SSSS and CCCC boundary
conditions, respectively.
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Figure 14. Core cell of petal star-triangular core, star-triangular core and star core.

Table 5 shows the recovered local stress, strain, and displacement fields at the midpoint
of 2D-EPM for PSC, STC, and SC in case 2, respectively. The top facesheet was removed
for a better view. The local stress, strain, and displacement of PSC were smaller than those
of STC and SC, and the local stress and strain of PSC were evenly distributed between
the core layer and the facesheet due to the fact that the petal walls of PSC increased the
bonding area with the facesheet. The connection between the core layer and facesheets was
also poor in STC, but the local deformation was small, and the uniformity of local stress
and strain was better than in SC due to the sufficient structural stiffness.

Table 5. Comparison of recovered local stress, strain and displacement within the unit cell of PSC,
STC and TH in case 2.

Type PSC STC SC

σ

σmax : 7.446× 103 MPa σmax : 1.881× 104 MPa σmax : 1.925× 104 MPa

ε

εmax : 6.969× 10−2 εmax : 1.641× 10−1
εmax : 1.666× 10−1

U

Umax : 5.55 mm Umax : 11.73 mm Umax : 11.94 mm

Figure 15 shows the equivalent stiffness of the three panels in different directions.
There was little difference in the equivalent stiffness of the three panels, but the equivalent
stiffness of SP-PSC was higher. It can be seen that replacing the horizontal link with a
triangular link can improve the equivalent stiffness, while changing the concave inclined
walls into arc walls can further improve the equivalent stiffness of the panel, which is of
great significance in engineering.

Figure 16 compares the first six buckling loads and the first eight natural frequencies
of three sandwich panels with different honeycomb cores. The first six buckling loads
of SP-PSC were greater than those of the other two sandwich panels, indicating that the
anti-buckling capacity of the proposed SP-PSC was better than the other two panels. The
changes in the first eight natural frequencies shown in Figure 17b were exactly the opposite
of the anti-buckling ability. It can be seen from the structural analysis that whether replacing
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the horizontal link with a triangular link or replacing the concave linear walls with arc
walls, the equivalent stiffness of the panel increased and the specific stiffness was reduced.
Therefore, the specific stiffness of PSC should be improved as much as possible in the
following section.
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Figure 15. Comparison of equivalent stiffness between three sandwich panels with different honey-
comb cores (PSC, STC and SC).

(a) Buckling load (b) Natural frequency

Figure 16. Comparison of the buckling load and natural frequency of three sandwich panels with
different honeycomb cores.

Figure 17. Core cell of (a) petal star-triangular core, (b) petal star-triangular core with X-shaped
ligaments and (c) double-arc star-shaped core.

Table 6 compares the Poisson’s ratio of the core layer and the whole panel with
different honeycomb cores. It can be found that the Poisson’s ratio of the three core layers
was negative. The relationship between the Poisson’s ratio of the core layer and the whole
panel was consistent. The NPR of SP-PSC was the largest, followed by SP-STC, and that of
SP-SC was the smallest. Therefore, the hardness and shear capacity of SP-PSC were the
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strongest, followed by SP-STC and SP-SC. It can be seen that the stiffness, hardness, shear
capacity, and NPR effect of SP-PSC were optimal except for specific stiffness.

Table 6. Comparison of Poisson’s ratio of sandwich panels with PSC, STC and SC.

Types PSC STC SC

Panel −2.1507469× 10−2 −9.7106579× 10−3 1.8372254× 10−3

Core layer −5.8526654× 10−1 −4.8582582× 10−1 −4.7765997× 10−1

6.2. PSC, PSC-X and DSC

The proposed SP-PSC has excellent NPR, but there is potential for improvement in
some aspects. The core cell of SP-PSC, which is similar to novel re-entrant circular auxetic
honeycombs [30], is easy to crack at the intersection of the left and right concave annular
members before the overall bearing capacity of the panel has been fully developed. In
addition, the stress in this small area is complex and relatively concentrated, so the initial
defects of the panel have an extremely adverse impact. To address this issue, the DSC
model is proposed on the basis of PSC by increasing the intersection area and reducing the
complexity of the intersection stress as shown in Figure 17. The horizontal outriggers on
both sides of the PSC are triangular, mainly considering that the constraints on both ends
are not strong. To improve the critical bearing capacity, it is specially set as a variable cross-
section in the design. However, the horizontal outriggers on both sides of the improved
DSC are changed into thinner constant cross-sections because the constraints on both ends
of the DSC outrigger are significantly enhanced.

To address the above issues, another improved scheme is proposed, PSC-X. In the field
of civil engineering, the stiffness of the structure is often increased by adding X-shaped
support. Inspired by this, the X-shaped support was added on the basis of PSC. The support
shares the load undertaken by the left and right CIMs, and improves the overall stiffness of
SP-PSC. Compared with PSC, the local stresses of the two improved cores at the intersection
of the left and right CPMs have been reduced, which is what we expected. In addition, the
specific stiffness of improved cores increases compared with PSC.

Based on the principle of control variables, the cell sizes of both improved models
are kept consistent with PSC. That is, the top and bottom facesheets are both 0.075 mm
thick, the wall thickness of the core layer is 0.7 mm, the lengths of the unit cells in x1 and
x2 directions are 20 mm and 15 mm, respectively, and the height of the panel is 10 mm.
The elastic modulus E of isotropic steel is 210,000 MPa, the Poisson’s ratio µ = 0.3, and
the density ρ = 7850 kg/m3. The dimensions of the panels in the comparison process are
200 mm× 200 mm× 10 mm, of which the thicknesses of the top and bottom facesheets of
the three panels are 0.075 mm and the core layer is 9.85 mm.

To study the performance of the improved sandwich panels, the homogenization
method was adopted to calculate the equivalent stiffness and equivalent density. Figure 18
shows the comparison of equivalent stiffness and specific stiffness between the improved
panels and the original panel. It can be seen that the equivalent stiffness of the sandwich
panel with PSC-X has been improved to a certain extent in all directions. Moreover, the NPR
of the core layer increased from −0.585 to −0.725, which further resulted in the increase of
shear modulus and shear resistance. The increase in NPR indicates the auxetic phenomenon
was more significant, which was closely related to the deformation characteristics of the
panel. The deformations of four corners in the cell core were limited by the added X-shaped
ligaments. As a re-entrant structure, the NPR of sandwich panels with PSC-X mainly
depended on the movement of triangles on both sides, which was not limited by the
X-shaped ligaments.

To improve the specific stiffness, a sandwich panel with a double-arc star-shaped
honeycomb (DSC) was proposed. Figure 18b compares the specific stiffness between SP-
DSC and the original panel. Except for A22/ρ∗, the specific stiffness of SP-DSC was greater
than that of the original panel, and the NPR of the core layer decreased from −0.585 to
−0.345, indicating that the energy absorption characteristics were reduced. This change
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was closely related to the core cell form. Because of the X-shaped ligaments, the connection
between the SP-DSC parts was closer, and the deformation in the x1 direction was more
limited than in the original panel, resulting in a reduction in the NPR effect. In general,
the specific stiffness of SP-DSC was better than the original panel, but the NPR effect
was smaller.
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Figure 18. Comparison of equivalent stiffness and specific stiffness between sandwich panels with
PSC-X, DSC and PSC.

Table 7 shows the recovered local stress, strain, and displacement fields at the midpoint
of 2D-EPM for PSC, DSC, and PSC-X in case 2, respectively. The top facesheet was removed
for a better view. It can be observed that the recovered stress and strain fields within the
three core forms were quite different. The local stress and strain difference between the core
layer and the facesheet in DSC was not as obvious as that of PSC and PSC-X, indicating
that the core layer of DSC also played a more important role in the resist-bending. The
bearing area of the facesheet was large in PSC due to the porosity in the core layer, resulting
in the local stress and strain of the core layer being far less than that of the facesheet. The
X-shaped ligaments were too weak to provide strong constraints on the facesheet in PSC-X,
so its local stress and strain distributions were similar to those of PSC. The recovered local
displacements showed that the local displacement in the middle of the core height was the
largest, and the recovered maximum displacement was also consistent with the stiffness of
the three plates.

Figure 19 compares the buckling and free vibration characteristics of three panels.
Figure 19a shows that the buckling modes of the three panels were basically the same except
for modes 5 and 6. The fifth and sixth buckling modes of sandwich panels with PSC and
PSC-X were f (3, 1) and f (1, 3), respectively, while those of DSC were axisymmetric ( f (m, n)
was the mode shape with m, n denoting the half-waves along the x1 and x2 directions). The
first six buckling loads of the sandwich panel with PSC-X were the largest, followed by
SP-PSC and SP-DSC, which also reflected the relationship between the equivalent stiffness
of the three panels with different core forms.

Figure 19b shows that the free vibration modes of the three panels were essentially the
same except for modes 5 and 6. In modes 5 and 6, the mode shapes of PSC and PSC-X had
three half-waves in x1 and x2 directions, respectively, while the mode shapes of DSC were
centrosymmetric, which were related to the density gradient of different sandwich panels
along x1 and x2 directions. In addition, the natural frequencies of the three panels were
close to each other. The first three natural frequencies of the improved sandwich panel with
PSC-X were the smallest, indicating its smaller specific stiffness. The natural frequency
and NPR of SP-PSC were in the middle of three panels, indicating that the comprehensive
performance of SP-PSC was better than two improved sandwich panels. One of the three
panels could be selected for engineering application according to actual requirements.
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Table 7. Comparison of recovered local stress, strain and displacement within the unit cell of PSC,
DSC and PSC-X in case 2.

Type PSC PSC-X DSC

σ

σmax : 7.446× 103 MPa σmax : 6.731× 103 MPa σmax : 2.532× 103 MPa

ε

εmax : 6.969× 10−2 εmax : 6.212× 10−2
εmax : 2.193× 10−2

U

Umax : 5.55 mm Umax : 4.37 mm Umax : 5.26 mm

(a) Buckling load (b) Natural frequency

Figure 19. Comparison of buckling load and natural frequency of three panels.

7. Conclusions

In this article, the accuracy and efficiency of VAM-based 2D-EPM for sandwich panels
with a petal star-triangular core (SP-PSC) were verified. The effects of geometric and
material parameters of PSC (including angles θ1 and θ2 and height ratio) on the equivalent
stiffness, buckling critical load, and natural frequency of sandwich panels were system-
atically investigated based on the 2D-EPM. The effective performance of the SP-PSC was
compared with those of STC and SC to demonstrate its advantages. Then, two improved
sandwich panels with PSC-X and DSC were proposed according to the stiffness characteris-
tics of the panel, and their static and dynamic characteristics were compared with those of
SP-PSC. The following conclusions can be drawn:

(1) The calculation efficiency of 2D-EPM for SP-PSC is about 20 times that of 3D-FEM,
and the calculation accuracy can fully meet the engineering requirements. Except for A22
and D22, the equivalent stiffness and anti-buckling capacity decreased as the included
angle θ1 between the adjacent petal walls increased. The change in equivalent stiffness
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was relatively insignificant with the increase in the included angle θ2 between adjacent
concave inclined walls, as did the the corresponding anti-buckling capacity. The equivalent
stiffness and the corresponding anti-buckling capacity decreased with the increase in height
ratio. The change in natural frequency was affected by both the equivalent stiffness and the
equivalent density.

(2) The fiber orientation had a significant effect on the NPR of the sandwich panel
when the facesheet was made of unidirectional CFPR, and the change rule was as follows:
the absolute value of Poisson’s ratio of SP-PSC increased with an increase in α when
α < 40◦. The absolute value of Poisson’s ratio of SP-PSC decreased with an increase in α
when α > 50◦, and the NPR effect was greatest when α = 45◦. The aforementioned rules
held true when the material properties and geometric parameters (θ1, θ2 and h/H) of the
core layer were changed.

(3) Compared with STC and SC, SP-PSC had greater equivalent stiffness and better
anti-buckling ability under the same conditions. The two improved panels improved the
equivalent stiffness in different directions. The sandwich panel with PSC-X had higher
stiffness and greater NPR effect with the same sizes as SP-PSC, so the corresponding
buckling critical load had been improved. Compared with the SP-PSC, the specific stiffness,
buckling critical loads, and local field distributions of the sandwich panel with DSC were
improved. In the future, the energy absorption capacity of SP-PSC can be deeply studied,
which lays the foundation for the practical application of this panel.
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