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Abstract: Among the factors that delay the wound healing process in chronic wounds, bacterial
infections are a common cause of acute wounds becoming chronic. Various therapeutic agents, such
as antibiotics, metallic nanoparticles, and essential oils have been employed to treat infected wounds
and also prevent the wounds from bacterial invasion. Essential oils are promising therapeutic agents
with excellent wound healing, anti-inflammatory and antimicrobial activities, and good soothing
effects. Some essential oils become chemically unstable when exposed to light, heat, oxygen, and
moisture. The stability and biological activity of essential oil can be preserved via loading into
hydrogels. The polymer-based hydrogels loaded with bioactive agents are regarded as ideal wound
dressings with unique features, such as controlled and sustained drug release mechanisms, good
antibacterial activity, non-toxicity, excellent cytocompatibility, good porosity, moderate water vapour
transmission rate, etc. This review addresses the pre-clinical outcomes of hydrogels loaded with
essential oils in the treatment of infected wounds.

Keywords: wound dressing; polymers; hydrogels; essential oils; lavender oil; infected wounds;
tea tree oil

1. Introduction

Chronic wounds remain a huge challenge in the biomedical fields due to their slow
healing process and some do not heal at all. Several factors make wounds chronic, in-
cluding bacterial infections, underlying health conditions (such as diabetes and cancer),
malnutrition, obesity, and smoking [1,2]. Statistics have shown that chronic and acute
wounds affect over 2% of the world population, with treatment costs taking up to 4% of
the overall health care budget [3]. The cost of managing a patient that suffers from chronic
injury can cost up to 6000–10,000 EUR per annum in Europe [4]. Among the approaches
that are used for the management of wounds, wound dressings that are formulated from
polymers (synthetic polymers and biopolymers) are potential materials, although they
also suffer from some limitations. Limitations associated with some of the currently used
polymer-based wound dressing materials include their poor absorption of wound exudates;
inability to maintain a moist environment; poor mechanical properties, retarded process of
wound recovery (i.e., epidermal migration, connective tissue synthesis, and angiogenesis);
poor antibacterial activity; difficulty in removal of the wound dressing after healing; and
their capability to cause allergic reactions [5]. These shortcomings are commonly overcome
by combining biopolymers and synthetic polymers to form hybrid-based wound dress-
ings with improved properties. Wound dressings are generally classified into different
categories: skin substitutes, dermal grafts, traditional dressings, interactive dressings, and
bioactive dressings [6].

Skin substitutes and dermal grafts are used to replace disrupted skin [7]. Dermal grafts
include autografts, acellular xenografts, and allografts [8]. The limitations of skin substitutes
and dermal grafts are short survival time on wound site, host rejection, and possibilities of
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disease transmission [7,8]. Traditional dressings are mainly used to keep the wound safe
from contamination or foreign substances, cushion the wound, and absorb wound exudate,
and examples include wool dressing, plaster, gauze, and bandages [9]. The limitation of
traditional dressings is the possibility of skin re-damage and pain if they are not changed
frequently [9]. Interactive dressings are employed as the barrier against bacterial infections,
offering a moist environment to accelerate the wound healing process, displaying good
water transmission, and enhancing re-epithelialization and granulation, and examples
include films, gels, and foams. The shortcoming of interactive dressings is their limited
antibacterial efficacy [10]. Bioactive dressings are biocompatible and biodegradable and
are mainly used as drug delivery systems for various bioactive agents, such as antibiotics,
metal-based nanoparticles, growth factors, and essential oils to accelerate the wound
healing process [11]. Examples of bioactive wound dressings include hydrogels, nanofibers,
sponges, and transdermal patches. Hydrogels are characterized by a cross-linked polymeric
network that can retain a significant amount of water in their networks. Their elasticity
is similar to the native tissue, provides a moist environment to the wound bed, absorbs
wound exudates due to its porous network, promotes a good gaseous exchange useful in
inhibiting bacterial growth, induces epithelization and cell migration and supports tissue
regeneration, making them useful for wound healing applications [12].

Essential oils are also known as volatile natural mixtures that exhibit anti-inflammatory,
antiviral, antimicrobial, antioxidant, anti-allergic, and regenerative properties (Figure 1) [13].
These oils are commonly extracted from vegetable parts of plants (such as roots, twigs,
barks, seeds, and leaves). The extraction methods that are used for the synthesis of essential
oils include hydrodistillation, microwave-assisted extraction, steam distillation, microwave-
generated hydrodistillation, microwave steam diffusion, and ultrasound-assisted extraction.
Essential oils are normally used in first aid treatment of wounds, abscesses, or burns. Re-
searchers demonstrated that the antimicrobial activity, antioxidant, and wound-healing
promoting properties of essential oils enriched in wound dressings could be ascribed to
their various constituents (such as geraniol, cinnamaldehyde, eucalyptol, thymol, carvacrol,
menthol, etc.) [14]. This review is focused on pre-clinical experiments and outcomes of
polymer-based hydrogels enriched with essential oils for the treatment of wounds.
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2. Phases of Wound Healing Process

Wound healing is defined as a complex process that is commonly divided into four
sequential and sometimes overlapping phases: hemostasis, inflammation, proliferation
(tissue growth), and maturation phase (tissue remodelling) (Figure 2) [15]. In the hemostasis
phase (blood clotting), blood platelets begin to attach to the wound bed immediately after
the wound. Platelets turn into an amorphous shape when they are in contact with collagen,
leading to their aggregation. Thrombin is produced and induces the initiation of the
coagulation cascade, leading to the activation of fibrin that produces mesh, which stops
further bleeding [16,17]. The macrophages and neutrophils are recruited into the injury
during the inflammatory phase, where the macrophages engulf dead cells, bacteria, and
debris. Furthermore, inflammatory cells release various growth factors (e.g., endothelial
growth factors, fibroblast growth factor, etc.) that stimulate the invasion of fibroblast into
the wound bed and trigger angiogenesis [18].
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Figure 2. Sequential phases of the wound healing process.

In the proliferation phase, the fibroblasts are further induced to proliferate in the
wound site. Moreover, they reconstruct the components of dermal tissue by the develop-
ment of granulation tissue and deposition of extracellular matrix proteins, particularly
collagen [19]. In addition, matured angiogenesis stimulates the ingrowth of a new network
of blood vessels inside the granulation tissue to improve the survival of the cells by offering
enough levels of nutrients and oxygen. Then, the process called epithelialization occurs
whereby epithelial cells migrate from the injury edges to cover the defect [20]. The final
phase of the wound healing process is called remodelling, also named the maturation
phase; the numerous fibres of collagen are degraded in the skin with skin contraction. The
healing wound tissue reaches its maximum tensile strength. The final resultant scar will
have 80% of the original strength of the injury [21].
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3. Classification and Properties of Polymers in Wound Healing Applications

Polymers are defined as materials that consist of very large molecules made up of
numerous repeating subunits. A broad variety of polymer-based scaffolds that can be used
in wound dressings have attracted remarkable attention within the healthcare community
for the treatment of chronic wounds. Polymers are usually classified into two groups:
synthetic and biopolymers. Biopolymers are macromolecules that are derived from animal,
plant, and microbial sources [22]. Although biopolymers can nearly mimic the original
extracellular matrix (ECM) and cellular milieus, they are importantly heterogeneous and
may undergo significant biodegradation that can alter their physicochemical features and
their behaviour (e.g., interaction with surrounding cells, release mechanism, etc.) in the
biological environment [23]. Examples of natural polymers include chitosan, cellulose,
alginate, hyaluronic acid (HA), gelatin, collagen, elastin, pectin, etc. (Figure 3) [24,25].
Some properties of natural polymers make them useful in wound dressing applications,
such as their non-toxicity, antigenicity, good biocompatibility and biodegradability, good
mucoadhesive properties, the drug delivery ability of various bioactive agents, strong
attachment to wound tissues, and capability to stimulate blood clotting and wound
healing [26]. Nevertheless, the common limitation of natural polymers is their poor
mechanical performance, which can be minimized by hybridizing them with synthetic
polymers [27].

Polymers 2022, 14, x FOR PEER REVIEW 5 of 19 
 

 

N
H

N
N
H

N
H

N
N
H

O O

OH

O

O

OO

O

Collagen

H
N

N
H

H
N

N
H

O

O

O

O
n

Silk Fibroin

N

H
N

N
H

N
H

H
N

N
H

N

OH

N
H

O

O

O

O

O

O

O

O

O-

O

HN

H2N

Gelatin

NH2
+

O
O

O
O

OH

OH
HO OH

OHHO

Cellulose

O
O

O

OH

HO NH2

OHO
O

H2N
n

NH

O

HO

OH

HO

HO

Chitosan

O
O

O-

HO OH

OHO
O

HO
n

-O

O

Alginate

OO

m

O
O

OH

HO OH

O
O

HO

O

HO

O HN

O n

Hyaluronic acid

O

HO
HO

O

O

HO
HO

O

O

HO
HO

O

HO
HO

O
O

O

OH OH OH OH

Dextran

n

NH
H
N

N
H

H
N

N
H

OH

OO O

O O

Elastin

OO

O

O

O

OH

OH

CH2OOCH3

OH

OH

OH

OH

COOCH3

Pectin

COOH

 

Figure 3. Molecular structures of some natural polymers. 
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A wide variety of synthetic polymers and copolymers that are biodegradable, non-
biodegradable and biocompatible have been developed in recent decades. These polymers
overcome the shortcomings of biopolymers by achieving reproducible and stable phys-
ical and chemical properties [28]. Additionally, most synthetic polymers are insensitive
to enzymatic and biological activities, and hence their biochemical and physicochemical
performance will not vary significantly from patient to patient [29]. Wound dressings that
are formulated from synthetic polymers exhibit excellent mechanical properties, making
them easily used during wound dressing application. Examples of synthetic polymers
include Poly (ethylene glycol) (PEG)/Poly (ethylene oxide) (PEO), Poly (vinyl alcohol)
(PVA), Poly (vinyl pyrrolidone) (PVP), Polyurethanes (PUs), Poly (hydroxyethyl methacry-
late) (PHEMA), Polylactide (PLA), Polyglycolic acid (PGA), Poly (lactic-co-glycolic acid)
(PLGA), and Polycaprolactone (PCL) (Figure 4) [30–33]. Some of the interesting properties
of synthetic polymers include their hydrophilic nature, non-toxicity, non-immunogenicity,
non-carcinogenicity, tissue regeneration and wound healing properties, strong water ab-
sorption and oxygen permeability properties [28].
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4. Different Forms of Hydrogels and Some Reported Progress in the
Design of Hydrogels

Hydrogels are three-dimensional network scaffolds that are composed of hydrophilic
polymers with excellent swelling and absorption capacity of water and other biological
fluids without dissolving (Figure 5) [34]. Hydrogels consist of around 90% water and
10% synthetic or natural polymers; this high water content makes them wound dressings
appropriate for the treatment of necrotic and dry injuries [35]. These scaffolds have been
widely employed in biomedical and pharmaceutical applications because of their ability
to accurately mimic the natural ECM properties. Consequently, in wound dressing appli-
cations, hydrogels not only provide a physical barrier with a good absorption capacity
of excess wound exudate but can also be loaded with bioactive agents and offer a moist
environment that stimulates the process of wound healing [36,37]. Furthermore, injectable
hydrogels can completely cover irregular-shaped injuries and deep bleeding wounds more
effectively [38]. Due to the many benefits of hydrogels, a series of hydrogels that are com-
mercially available for wound treatment have been developed, such as Coseal®, Evicel®,
TegadermTM hydrocolloid dressing, and Algisite M [39]. The novel hydrogel materials
with various properties (e.g., biodegradability, antibacterial ability, promote wound heal-
ing, high porosity, injectability, and responsiveness) have attracted much attention in the
field of wound healing in recent years due to the demand for higher performance wound
dressings [36,39–41]. To improve some of the properties of hydrogel wound dressings,
such as antibacterial or antioxidant activity, they can be enriched with bioactive agents
that include essential oils. The hydrogel loaded with bioactive agents is shown in Figure 5
below. Hydrogel materials are normally categorized into three groups: in situ forming
hydrogels, acellular hydrogels, and hydrogels with integrated sensors.
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In situ forming hydrogels that are called “smart” wound dressing materials are po-
tential materials that overcome shortcomings associated with conventional dressing prod-
ucts that are utilized in clinical applications. These materials can be simply crosslinked
by employing various physical or chemical methods such as ionic-, photo-, or thermal
crosslinking [42,43]. Sprayable hydrogel dressings are among the different kinds of “smart”
hydrogels that are appropriate “in situ” forming dressings to treat lesions. These hydrogels
display many advantages, such as low production costs, improved patient compliance,
simple application without the help of a specialist, reduced frequency of administration,
and extended contact time of drug at the site (thereby enhancing drug bioavailability) [44].
Furthermore, spray delivery can increase the diffusion of the nanocomposite hydrogel
into the wound site, thereby contributing to the enhanced delivery of bioactive agents to
the injury. Nevertheless, the preparation of sprayable hydrogels needs to be cautiously
adjusted to have an ideal viscosity to be applied as a spray-on dressing and uniformly
cover the wound environment [45].

On the other hand, acellular hydrogels are hydrogel materials that are produced in
the form of sheets or films. These materials can be fabricated from biopolymers (natural
polymers) or synthetic crosslinked polymers (e.g., poly (poly-vinylpyrrolidone, methacry-
lates), polyurethane, and polyvinyl alcohol) [46]. There are different types of hydrogel
scaffolds based either on synthetic polymers or natural components. Biopolymer hydrogels
are regularly employed as dermal skin substitutes because of their unique features such
as flexibility, softness, biocompatibility, and high-water content [47]. Synthetic polymer
hydrogels utilized as skin templates represent several benefits when compared with natu-
rally derived polymers. They exhibit controllable and predictable characteristics, such as
low production costs, easy shape control, and stable mechanical properties [48]. Moreover,
synthetic hydrogels are convenient to prepare as stable formulations. However, synthetic
hydrogel materials should be chosen precisely to prevent the risk of transplant rejection
and disease transmission [48]. Lastly, hydrogels with integrated sensors are hydrogel
materials that can offer significant information about the conditions of the wound, such as
its pH, temperature, bacterial density, inflammation level, and degree of oxygenation [49].
Recently, different sensors have been developed to measure various biomarkers, such as
temperature, pH, oxygen level, moisture, electrical and mechanical properties of wound or
skin, and downregulation or upregulation of enzyme levels [50]. All the sensors should
possess some vital characteristics, including proportional flexibility to the hydrogel film
and to body contours, resistance to wound exudate, non-toxicity, and biocompatibility.
Moreover, for biodegradable wound dressing materials, the integrated sensors should be
proportionally degraded with a degradation rate to the hydrogel matrix rate and with
non-toxic degradation debris to the immune system [51]. Furthermore, it is essentially
significant to develop novel dressings with integrated sensors, which can monitor the early
status of the injury [52].

The specific wound healing mechanisms whereby a hydrogel material may cause
the regeneration of skin cells to represent an interesting arena of research are still not
completely understood. A recent research study has tried to show the biological events that
happen at the edges of a chronic injury following the application of various wound dressing
materials [53]. Remarkably, while porous alginate and collagen scaffolds were shown to
hamper re-epithelialization and increase the inflammatory response, alginate hydrogels
did not cause similar responses and seemed to be much more biocompatible. However, the
specific hydrogel–tissue interactions that may lead to tissue regeneration have not been
fully addressed [53–55]. Some of the wound dressing scaffolds showed similar properties
as hydrogel materials. Porous wound dressings such as sponges and bandages possess the
ability to absorb large amounts of wound exudates and other biological fluids, and they
can offer a moist environment for the wound due to their high porosity, swelling profile,
and biodegradability [56]. Furthermore, nanofibrous scaffolds mimic the ECM, a similar
feature of hydrogels, and promote the development of new tissues and the proliferation of
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epithelial cells in the wound site [57]. Nevertheless, hydrogel wound dressings possess
poor mechanical properties when compared to films and membrane wound dressings [57].

5. Hydrogels Enriched with Essential Oils for Wound Healing Applications

Essential oils play a vital role in wound healing, especially in microbial-infected
wounds. Essential oils (specifically those that contain phenolic compounds, e.g., carvacrol
and thymol) possess the potent capability to act in the three phases of the wound healing
process. In the inflammation phase, they induce a modulatory effect of oxidative stress,
inflammatory cytokines, and antimicrobial activity. They also induce angiogenesis, re-
epithelialization, and growth of granulation tissue. In the remodelling phase, they promote
the deposition of collagen and modulate the growth of keratinocytes and fibroblasts [58].
Some research studies discussed the mechanism of action of essential oils against various
bacterial strains that are common in wound infections, (such as staphylococcus aureus,
Escherichia coli, etc.). Essential oils (specifically those that contain phenolic compounds,
e.g., carvacrol and thymol) attack phospholipids and lipids that are present in the bacteria
cell wall and plasma membranes, leading to cytoplasmic outflow, disruption of the cellular
process (such as protein synthesis and DNA transcription, and ATP biosynthesis), and
decreased pH. The most important benefit is that essential oils possess a very small effect
on the development of antimicrobial resistance compared to antibiotics. Nevertheless,
essential oils are needed in high concentrations or via a repeated application for enhanced
therapeutic outcomes. However, the administration of essential oils in high concentrations
can cause some side effects in some patients [59,60].

5.1. Hydrogels Enriched with Lavender Oil

Lavender oil is an essential oil that originates from many species of the lavender
plant. Lavandula angustifolia, Lavandula latifolia, Lavandula intermedia and Lavandula stoechas
are the most common species used for oil production. A picture of a lavender plant is
shown in Figure 6 [61]. This essential oil has been used worldwide in traditional medicine.
Lavender essential oil possesses antifungal, antibacterial, carminative, anti-depressive, and
sedative properties and is effective for insect bites and burns [62]. Lavender oil effectively
hinders the growth of microorganisms that cause infections [63]. The antimicrobial efficacy
of lavender oil is due to its major constituents, linalyl, and linalool, but the antibacterial
activity and chemical composition of lavender oil is mostly dependent on the sample
source of lavender. This essential oil is utilized for the treatment of surface infection in the
form of a topical or prophylactic application [62]. Besides the antifungal and antibacterial
activity, lavender oil also shows a significant role in enhancing phases of the wound healing
process [64]. There are some reported polymer-based hydrogels enriched with lavender oil
that demonstrates interesting properties for the treatment of wounds.
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Mahmood et al. formulated gellan gum hydrogels co-enriched with lavender oil and
ofloxacin for wound healing application [65]. The Fourier transform infrared (FTIR) and
X-ray diffraction (XRD) spectroscope confirmed the successful preparation of hydrogels.
Swelling analysis of hydrogels exhibited excellent swelling behaviour followed by an in-
significant decrease in the swelling index, which is due to polymeric erosion. The in vitro
drug release studies at physiological conditions (pH 7.4, 37 ◦C) displayed sustained drug
release of lavender oil (71%) and ofloxacin (85%) over 48 h; this can help to maintain the
drug level for a prolonged period at wound bed. The antioxidant results showed that
polymeric hydrogels enriched with lavender oil and ofloxacin possess great potential to
scavenge free radicals, which potentiate the wound healing efficacy of hydrogels. Con-
sequently, the in vitro antimicrobial analysis of gellan gum hydrogels co-enriched with
lavender oil and ofloxacin exhibited good antibacterial activity against negative (E. coli) and
Gram-positive (S. aureus) bacteria, suggesting that these hydrogels are effective scaffolds
that can be used for the treatment of bacteria-infected wounds. In addition, the in vivo
wound healing experiments using a full thickness wound model on rats showed an al-
most complete wound closure of 98% in wounds treated with hydrogels co-enriched with
lavender oil and ofloxacin on the 10th day when compared to the blank hydrogels [65].

Tajik et al. formulated keratin/PVP hybrid hydrogels loaded with lavender oil extract
via UV irradiation for bacteria-infected wounds [66]. The physicochemical properties
and successful formulation of hydrogels enriched with lavender oil were confirmed by
FTIR and XRD analysis. The lavender-oil-enriched hybrid hydrogels displayed lower
swelling capability when compared to the plain PVP hydrogel owing to the development
of interpenetrating networks through hydrogen bonding between keratin and PVP. The
in vitro drug release analysis displayed initial burst release that may be associated with the
rapid release of lavender from the swollen hydrogel, followed by the plateau after 8 h that
is mainly related to lavender extract diffusion and disruption of a hydrogel. The in vitro
antibacterial studies of hybrid hydrogels loaded with lavender oil extract using the agar
diffusion method displayed good antibacterial properties against both E. coli and S. aureus,
confirming their effective applications in the treatment of bacteria-infected wounds [66].

5.2. Hydrogels Enriched with Tea Tree Oil

Tea tree oil (TTO) is an essential oil that is obtained from the terminal branches
and leaves of the Melaleuca alternifolia [67]. Melaleuca alternifolia is a well-reputed
plant in traditional and folk remedies and remains of interest in modern medicine be-
cause of its prolonged historic position as a healing agent [68]. TTO consists of a mix-
ture of ~100 various components, mostly sesquiterpenes and monoterpenes, from which
1,8-cineole and terpinen-4-ol are the most active (antibacterial, analgesic, anti-inflammatory,
antifungal, antiprotozoal, antiviral) [69,70]. Currently, the beneficial properties of the TTO
and its constituents have been alternatively integrated into different products, including
dermatological ointments and creams [14]. Low et al. fabricated ionically crosslinked
chitosan hydrogels co-loaded with TTO and Ag+ ions for the treatment of bacteria-infected
wounds. The in vitro antibacterial experiments using a standard well diffusion procedure
showed excellent antimicrobial activity of dual drug-loaded hydrogels when incubated
overnight with the following microbial strains: S. aureus, P. aeruginosa, and C. albicans.
Combining TTO and Ag+ ions into the chitosan-based hydrogels further enhanced the
antimicrobial efficacy by lowering the effective concentrations needed [71].

Flores et al. reported Carbopol® Ultrez hydrogels enriched with TTO nanocapsules
and nanoemulsions for wound management [72]. These hydrogels showed pH values
that range between 5.6 and 5.8, which were close to the pH of the human skin, indicating
that they cannot cause skin irritation. The spreadability analysis of hydrogels displayed
high spreadability that ranges between 4.53 ± 0.22 and 9.06 ± 1.64 mm2/g, indicating that
these hydrogels can deliver an adequate dose of the bioactive agent to the skin during
wound dressing. These hydrogels significantly reduced ear oedema after the exposition
of UVB radiation. A reduction of about 70% was obtained for both hydrogel-enriched
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TTO nanocapsules and nanoemulsions when compared to the untreated group. The
in vivo wound healing experiments using cutaneous wounds in rats showed that the
hydrogels enriched with TTO nanocapsules and nanoemulsions were more effective in
the treatment of wounds. The histological studies revealed that hydrogels containing TTO
nanocapsules and nanoemulsions resulted in faster elimination of crust compared to the
pristine hydrogels, suggesting that the TTO nanostructured systems accelerated the process
of re-epithelialization [72].

Altaf et al. prepared PVA/starch hydrogels containing TTO for wound dressing ap-
plications. The water vapour transmission rate (WVTR) of TTO-enriched hydrogels was
45.63 ± 2.28 g/m2h, indicating the ability of the hydrogels to provide moderate moisture
for the acceleration of the wound healing process. The in vitro antibacterial analysis of TTO-
loaded hydrogels employing the disc diffusion procedure showed good antibacterial activity
against E. coli and multi-resistant staphylococcus aureus (MRSA), although it was not superior
to clove-oil-loaded hydrogels. This may be due to the major component of the TTO (terpinen-
4-ol) that showed resistance against both E. coli and MRSA [73]. The alginate-based hydrogels
loaded with TTO microemulsion reported by Catanzano et al. exhibited excellent antibacterial
efficacy against E. coli, resulting in strong inactivation of bacteria after 6 h already, while a
complete disruption was accomplished after approximately 12 h [70].

5.3. Hydrogels Enriched with Thyme Oil

Thyme oil is an essential that is extracted from fresh leaves and flowers of thyme
(Thymus vulgaris) (Figure 7) [74] through steam distillation [75,76]. This essential oil is well
recognized as a human medicine with antioxidant and antimicrobial properties against
a broad spectrum of Gram-positive and Gram-negative bacteria strains [77]. Thyme oil
consists of more than 60 active components, particularly carvacrol thymol, rosmarinic
acid, and phenols thymol [78]. It hinders the growth of bacteria outside and within the
body, such as bacterial infections in the urethra and genitals, respiratory system, and
intestines as well as external exposure to skin wounds [79]. Therefore, thyme essential oil
is a potential bioactive agent for application in wound healing. The thyme-oil-enriched
cellulose hydrogels formulated by Lu et al. exhibited excellent antibacterial activity against
E. coli and S. aureus, suggesting their effectiveness as wound dressing materials for the
treatment of bacteria-infected wounds [80]. The in vitro drug release from the hydrogel
was an initial burst release of thyme oil for the first 24 h followed by a slow and sustained
drug release, revealing that the thyme-oil-loaded hydrogels possess the ability to kill fast
bacteria and protect wounds from further infections [80].
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Boccalon et al. designed sodium alginate/PVA hybrid hydrogels enriched with thyme
oil [81]. The in vitro antimicrobial experiments were performed using the Kirby–Bauer
disk diffusion method, and their results exhibited good antibacterial activity against both
Gram-negative (P. aeruginosa) and Gram-positive (S. epidermidis and S. aureus) bacteria and
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yeast (Candida albicans). The plain hydrogel did not display any antimicrobial activity [59].
These antimicrobial outcomes demonstrated that the thyme-oil-enriched hybrid hydro-
gels are potential dressings for wound healing of bacteria-infected wounds. Koosehgol
et al. fabricated chitosan/PEG hydrogels enriched with thyme oil [82]. The WVTR of the
hydrogels was 1300 g·m−2·day−1 for the hydrogel loaded with a high content of thymol
(1.8%(v/v)), indicating that these hydrogels can be used in moderate exuding wounds and
that other blend hydrogels with lesser WVTR values are suitable for low exudate ones. The
antibacterial analysis showed that the chitosan/PEG hydrogels against E. coli and S. aureus
increased with increasing amounts of thyme oil [82].

The thyme-oil-enriched chitosan-based hydrogels formulated by Moradi et al. ex-
hibited high cell migration and adhesion of the fibroblasts (L929 cells) with cell viability
that ranged between 69 and 72.5% after 24 h, indicating that these hydrogels are non-toxic
and possess excellent biocompatibility, both of which are properties of ideal wound dress-
ings [83]. Rong et al. prepared chitosan/cellulose hydrogels enriched with thyme oil for
application in wound dressing. The in vitro antibacterial analysis of hydrogels using the
Agar disc diffusion method showed that there were not any zones of inhibition against
S. aureus and E. coli in the blank hybrid hydrogels (used as control), revealing that they
had no antibacterial efficacy, while the thyme-oil-enriched hydrogels produced visible
zones of inhibition of the average radius of not less 2 cm in all, suggesting excellent an-
tibacterial activity [84]. The thyme-oil-loaded gelatin/silk sericin hydrogels formulated by
Chuysinuan et al. showed an initial rapid release of thyme oil in the first hour of in vitro
drug release analysis, followed by a sustained release. The in vitro antimicrobial studies
employing the agar diffusion method revealed that the hydrogels containing thyme essen-
tial oil inhibited bacterial growth of S. epidermidis and S. aureus, demonstrating that the
antibacterial gelatin/silk sericin hydrogels enriched with thyme oil are potential wound
dressings [85]. Singh et al. loaded thyme oil into hydrogel membranes prepared from a
combination of κ-carrageenan and polyethylene glycol [86]. The hydrogels provided a
moist environment for the wound bed to prevent infections and accelerated wound healing.
The antibacterial property of hydrogel was enhanced by loading the essential oil with a 95%
antimicrobial activity against Gram-positive and Gram-negative bacteria. The antibacterial
activity of the hydrogel was influenced by the content of the essential oil in the hydrogel,
with 15% of the essential oil in the hydrogel exerting a significant antibacterial effect. The
hydrogels were non-cytotoxic on HEK293 cells, which were confirmed by 80% cell viability.
The release profile of the oil from the hydrogel was slow and appropriate for long-term
antibacterial effects [86].

5.4. Hydrogels Enriched with Other Essential Oils

Other essential oils demonstrate interesting properties that can be beneficial in the
treatment of wounds, including rosemary oil, oregano oil, St John’s Wort or Hypericum
perforatum [87], Lemongrass, eucalyptus, Cinnamon, Peppermint oil, etc. Several pre-clinical
reports have shown that polymer-based hydrogels encapsulated with these essential oils
are potential scaffolds that can be used in wound treatment. Rosemary oil is an essential
oil that is extracted from the aromatic herb called Rosmarinus officinalis L. (Lamiaceae), a
woody perennial herb, found in the Mediterranean region. R. officinalis has been employed
in folk medicine for the treatment of poor circulation, headaches, mild analgesic, anti-
inflammatory, and epilepsy [88]. Rosemary essential oil exhibits excellent antimicrobial
and antioxidant properties as well as wound healing efficacy [89]. Gavan et al. formulated
carbopol hydrogels loaded with ethanol extract of rosemary oil and their antimicrobial
results showed good antibacterial results against S. aureus and P. aeruginosa, revealing them
as potential wound dressings for the management of bacteria-infected wounds [90].

Eupatorium adenophorum is a plant that belongs to the Asteraceae family, and it has
been employed for a wide range of various medical treatments (blood coagulant, antimi-
crobials, analgesic, antiseptic, and antipyretic) for centuries, mainly in traditional Chinese
medicine [91]. Chuysinuan et al. prepared gelatin-based hydrogels loaded with Eupatorium
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adenophorum essential oil for wound dressing [92]. The mechanical studies showed that
the essential-oil-loaded hydrogels possessed good mechanical properties with Young’s
modulus that ranges between 938.43 ± 150.39 and 1691.21 ± 248.83 MPa, and stress at
maximum load that ranges from 10.16 ± 2.53 to 22.95 ± 9.76 MPa, and percentage strain
at yield ranging between 1.53 ± 0.60 and 2.48 ± 0.42, revealing that they can be easily
used on wounds. The in vitro antimicrobial analysis showed that Eupatorium adenophorum-
oil-enriched hydrogels are more effective against S. epidermidis, S. aureus, E. coli, and B.
cereus, while pristine hydrogels did not show any antibacterial activity [92]. Huerta et al.
formulated cellulose nanofiber hydrogels enriched with clove essential oil emulsion for
application in skin regeneration. The in vitro cytotoxicity studies using the alamarBlue®

assay showed that the hydrogels displayed high cell viability on human gingival fibroblast
cells in the range of 74–100%, suggesting excellent biocompatibility and non-toxicity of
clove-oil-loaded hydrogels, an interesting feature for ideal wound dressings [93].

Some studies reported interesting biological activities that are exhibited by ginger essen-
tial oil, including antibacterial, anti-inflammatory, and antioxidant activities, which are very
important in the treatment of chronic or infected wounds [94,95]. Ngampunwetchakul et al.
formulated Semi-solid PVA-based hydrogels enriched with ginger essential oil loaded in
chitosan nanoparticles for application in wound treatment. The indirect cytotoxicity studies
of the systems showed cell viability that ranges from 83–103% to 81–95% for the Normal
Human Dermal Fibroblasts cell line (NHDF) and NCTC clone 929 cells, respectively, indi-
cating their excellent biocompatibility and non-toxicity [96]. The ginger extract-enriched
gelatin/PVA hydrogels formulated by Khan et al. The hydrogels exhibited similar in vivo
wound-healing efficacy on burn wounds on the backside of the rabbits when compared
to the commercial wound dressing, while much wound-healing activity was observed as
compared to the control group confirmed by the intensive formation of collagen in the
histopathological analysis [97].

Gherman et al. designed gelatin-based hydrogels loaded with Galium verum essential
oil for bacterially infected wounds. The in vitro antibacterial analysis evaluated by the
agar diffusion procedure exhibited excellent antibacterial activity against S. aureus and
E. coli with a ZOI of 17–26 and 18–28, respectively [98]. Zataria multiflora is a thyme-like
plant belonging to the Lamiaceae family that originates from Iran and is broadly employed
as a flavouring ingredient in a broad variety of fields in its native region, The biologi-
cal properties of Zataria multiflora include antioxidative and antimicrobial properties [98].
Kavoosi et al. gelatin–PVA hybrid hydrogels are enriched with Zataria multiflora essential
oil for wound treatment. The antibacterial experiments of Zataria multiflora essential-
oil-enriched hydrogels showed excellent antibacterial efficacy against all bacteria strains
(E. coli, S. aureus, and Bacillus cereus) except P. aeruginosa, which was resistant. These re-
sults revealed that hydrogels loaded with essential oils are potential candidates that can
be used in the treatment of bacteria-infected wounds [99]. Wang et al. loaded selected
essential oils into hydrogels, such as eucalyptus, ginger, and cumin oil. The hydrogels
were prepared by physical crosslinking of carboxymethyl chitosan and carbomer 940. The
hydrogels loaded with eucalyptus oil displayed optimal antibacterial activities against
S. aureus and E. coli (46.26 ± 2.22% and 63.05 ± 0.99%, respectively) with cell viability of
over 92.37%. The hydrogel also enhanced wound healing in mouse burn models in vivo
with a significant formation of dermis and epidermis. The wound repairs were character-
ized by downregulation of interleukin-6 and tumour necrosis factor-αwith an upregulation
of the transforming growth factor-β, vascular endothelial growth factor and epidermal
growth factor [100]. The hydrogel revealed the potential to repair skin burn wounds. The
rough surface of the hydrogel is also a good feature for cell attachment and wound healing.

Cannabis sativa L. (hemp), a plant of the Cannabaceae family, contains cannabinoids,
which have been reported to be effective for treating pain and inflammation associated
with wounds [101]. Wang et al. reported a combination of Cannabis sativa oil with silver
nanoparticles loaded into collagen hydrogels. The hydrogel inhibited 99% of S. aureus and
P. aeruginosa [102]. The mode of action of the main constituent in the oil is via inhibition of
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the peptidoglycan, RNA, synthesis of proteins, DNA, and the disruption of cytoplasmic
membranes in the bacteria. Combining the essential oil with nanoparticles resulted in
synergistic antibacterial effects [103]. A summary of hydrogels loaded with essential oil
for wound dressing is shown in Table 1. There are some commercially available wound
dressings loaded with essential oils (Table 2).

Table 1. A summary of the therapeutic efficacy of polymer-based hydrogels enriched with
essential oils.

Polymers Used Loaded Essential Oils Outcomes References

Gellan gum Lavender oil Excellent antibacterial and antioxidant
activity, and fast wound healing process. [65]

Keratin and PVP Lavender oil Good antibacterial properties [66]

Chitosan TTO Excellent antimicrobial activity. [67]

Carbopol TTO Excellent spreadability and effective
wound healing efficacy. [72]

PVA and starch TTO Moderate WVTR and
good antibacterial activity. [73]

Alginate TTO Excellent antibacterial efficacy [70]

Cellulose Thyme oil Burst drug release followed by sustained
release. Excellent antibacterial activity. [80]

Alginate and PVA Thyme oil Excellent antimicrobial activity. [82]

Chitosan and PEG Thyme oil Moderate WVTR and
good antibacterial efficacy [82]

Chitosan Thyme oil Excellent biocompatibility and non-toxicity. [83]

Chitosan and cellulose Thyme oil Excellent antibacterial activity. [84]

Gelatin and silk sericin Thyme oil
Initial rapid drug release followed by

sustained release. Excellent
antibacterial activity.

[85]

κ-carrageenan and
polyethylene glycol Thyme oil

The hydrogels prevented infections and
accelerated wound healing with 95%

antimicrobial activity against
Gram-positive and Gram-negative bacteria

and non-cytotoxic.

[86]

Carbopol Rosemary oil Good antibacterial activity. [90]

Gelatin Eupatorium adenophorum oil Good mechanical properties and
antibacterial activity. [92]

Cellulose Clove oil Excellent biocompatibility and non-toxicity. [93]

PVA Ginger essential oil Excellent biocompatibility and non-toxicity. [96]

Gelatin and PVA Ginger oil Good wound healing activity. [97]

Gelatin Galium verum essential oil Excellent antibacterial activity. [98]

Gelatin and PVA Zataria multiflora essential oil Excellent antibacterial activity. [99]

carboxymethyl chitosan and
carbomer 940.

Eucalyptus, ginger,
and cumin oil.

Excellent antibacterial activities against
S. aureus and E. coli (46.26 ± 2.22% and
63.05± 0.99%, respectively) with cell

viability of 92.37%.

[100]

Collagen Cannabis sativa oil The hydrogel inhibited 99% of S. aureus
and P. aeruginosa. [102]
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Table 2. Commercially available wound dressings loaded with essential oils.

Wound Dressings Type of Wound Dressings Essential Oils Therapeutic Outcomes References

Camisan® Topical cream Chamomile oil

Accelerated healing,
granulation, and

epithelialization. Effective for
leg varicose ulcers and

decubitus ulcers.

[103]

Hyperoil® oil, gel, cream and gauze gel. Neem oil

Prevent infection, supports
re-epithelialization and offers a

soothing effect. Effective for
diabetic foot ulcers.

[104]

6. Conclusions and Future Perspective

Microbial invasion of the wound bed results in infections and is the main factor that
contributes to chronic wounds. The treatment of chronic wounds using antibiotics is
hampered by drug resistance. Furthermore, some of the commercially available wound
dressing products also suffer from the poor antimicrobial activity and do not protect the
wound from bacterial invasion. Hydrogels have attracted much attention in the biomedical
field due to their promising features. However, some prepared hydrogels exhibit poor
antibacterial effects. The loading of essential oils into hydrogels impart interesting features,
making them ideal for wound dressing, such as moderate WVTR, excellent biocompatibility,
non-cytotoxicity, soothing effects, and good antimicrobial properties. The essential oil-
enriched hydrogels display good antibacterial effects against many clinical bacteria strains
that can cause wound infections. However, most of the essential oil loaded into the hydrogel
displayed selective antibacterial activity against some strains of bacteria. The concentration
of essential oils loaded into the hydrogels also influenced their antibacterial effects. There
are currently few pre-clinical studies on essential-oil-enriched hydrogels and there is a
pressing need to fully understand their mode of action in wound healing. Wound healing
studies using animal models for hydrogels loaded with essential oils are few. Further
studies are also lacking in current literature, such as the stability of the loaded essential oils
in wound dressings, in vivo studies, potential toxic effects, and their antibacterial mode of
action. There is no doubt that more studies on hydrogels loaded with essential oils will
translate to clinical use.
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