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Abstract

Motivation: For immune system monitoring in large-scale studies at the single-cell resolution using CyTOF, (semi-)auto-
mated computational methods are applied for annotating live cells of mixed cell types. Here, we show that the live cell
pool can be highly enriched with undefined heterogeneous cells, i.e. ‘ungated’ cells, and that current semi-automated
approaches ignore their modeling resulting in misclassified annotations.

Result: We introduce ‘CyAnno’, a novel semi-automated approach for deconvoluting the unlabeled cytometry
dataset based on a machine learning framework utilizing manually gated training data that allows the integrative
modeling of ‘gated’ cell types and the ‘ungated’ cells. By applying this framework on several CyTOF datasets, we
demonstrated that including the ‘ungated’ cells can lead to a significant increase in the precision of the ‘gated’ cell
types prediction. CyAnno can be used to identify even a single cell type, including rare cells, with higher efficacy
than current state-of-the-art semi-automated approaches.

Availability and implementation: The CyAnno is available as a python script with a user-manual and sample dataset
at https://github.com/abbioinfo/CyAnno.

Contact: sandra.andorf@cchmc.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

For many decades, flow cytometry has been used as a conventional
technique for both qualitative and quantitative analysis of single
cells in a complex cellular system of heterogeneous cell types (Adan
et al., 2017; McKinnon, 2018). In recent years, the advancement in
the field of single-cell technologies has shifted the paradigm to un-
ravel more complex cell mixtures at a single-cell resolution (Hwang
et al., 2018; Pan, 2015). One such recent technique for single cell
profiling at high-throughput level is Cytometry by Time Of Flight
(CyTOF) or Mass cytometry (Bandura et al., 2009). In CyTOF,
heavy metal ion tagged antibodies are bound to single cells, which
allow the detection of 40 or more protein cellular markers in mil-
lions of cells per sample with much higher sensitivity and reduced
‘spillover’ than traditional flow cytometery (Maecker and Harari,
2015). However, the multi-dimensional and complex nature of
CyTOF proposes the new computational challenge of deconvoluting
the heterogeneous mixture of closely related cell types (Palit et al.,
2019; Stanley et al., 2020).

Conventionally, the deconvolution of a pool of live, single cells
into distinct cell types is done by drawing ‘manual gates’ on a hierar-
chal series of bi-axial plots, wherein the expression profiles of two
defined markers are used in a series of sub-setting events to summar-
ize a desired cell population (aka a cell type) with a defined marker
expression profile (Supplementary Fig. S1) (Staats et al., 2019). The
cells that lie inside the defined boundaries of ‘manual gates’ are
selected for further sub-selection, whereas the remaining proportion
of cells that remain outside the drawn gates for all cell types are not
used in the downstream analysis, i.e. ungated cells (among the non-
debris, single, live cells). Here, the choice of gate boundaries is based
on expert knowledge by visual inspection and the hierarchical depth
of a gating schema depends upon the number of protein markers
used in the cytometry panel. For traditional flow cytometry, this pro-
cess of manual gating is less laborious due to a small number of
available parameters (Gadalla et al., 2019). However, as the number
of available parameters in CyTOF datasets increases, a deeper inter-
rogation of the cell sub-types can be performed by increasing the
hierarchical depth and complexity of the gating schema to reveal
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previously undiscovered cell sub-type (Lee et al., 2019). This in-
crease in the hierarchical complexity makes manual gating extremely
time consuming and laborious, which further increases for large-
scale studies (Becht et al., 2019; Mair et al., 2016). In addition to
manual gating, unsupervised clustering is routinely performed, but
suffers from numerous drawbacks, for instance, information loss
due to random sub-sampling (Nowicka et al., 2017), especially dur-
ing the identification of non-canonical and/or rare cell type(s)
(Bhaduri et al., 2018) and cluster reproducibility after multiple
resampling iterations (Melchiotti et al., 2017). Therefore, as an al-
ternative, semi-automated approaches were proposed that use ‘prior’
knowledge or ‘ground truth’ about the marker expression in each of
the given cell types to annotate every cell of the unlabeled dataset
with biologically relevant labels (Liu et al., 2019). Currently, only a
few semi-automated approaches for cell label predictions are avail-
able, viz. Automated Cell-type Discovery and Classification (ACDC)
(Lee et al., 2017), Semi-supervised Category Identification and
Assignment (SCINA) (Zhang et al., 2019), DeepCyTOF (Li et al.,
2017) and Linear Discriminant Analysis (LDA) (Abdelaal et al.,
2019). Both ACDC and SCINA, use a list of pre-defined markers for
a given cell type to annotate the unsupervised cell cluster(s) that
expresses these signature markers. However, these methods assume
that the expression of target markers are binary (expressed or not
expressed), which restricts their ability to classify highly similar cell
subsets, especially non-canonical cell types, that cannot be separated
linearly (Abdelaal et al., 2019; Liu et al., 2019). Instead of defined
marker lists, DeepCyTOF and LDA use pre-defined cell clusters (e.g.
manually gated cell types) in form of a marker expression matrix as
training set to build a Machine Learning (ML) model for cell type
prediction. In fact, semi-automated methods like LDA were found to
show much higher precision than ACDC and unsupervised methods
in correctly predicting non-canonical cell types in the pool of gated
cell populations (Liu et al., 2019). However, these methods also suf-
fer from elementary limitations, e.g. when used to predict manually
gated cell labels, these methods are built toward the identification of
gated cell types only and lack a systematic way of considering the
cells that cannot be classified under any of the desired (gated) cell
types, i.e. ungated cells.

In this work, we have shown that the cells that are not assigned
to any cell type after manual gating (i.e. ungated cells) are an implicit
part of the live cell pool generated by the cytometer and represent a
heterogeneous cell population. Such cells are difficult to classify as
they cannot be explained by the pre-defined set of gating events.
Nevertheless, ungated cells may include cells with unknown pheno-
type and biological relevance, e.g. cells in their transitional immune
state, and thus must not be misclassified as other desired (gated) cell
population. However, the currently published semi-automated meth-
ods lack the systematic means for incorporating ungated live cells
for training, testing and optimizing cell type prediction models. As a
result, these methods misclassify a large proportion of ungated cell
population as one of the closely related gated cell types.

To address these limitations, we developed a novel semi-auto-
mated ML-based computational framework, i.e. CyAnno (CyTOF
Annotator; Fig. 1), that can effectively classify each live cell to one
of the gated cell types or ungated otherwise, by learning the marker
expression profile of each gated cell population, assuming ‘manual
gating’ as the ground truth for cell type identification. The unique
approach provides a systematic way for incorporating the marker
expression level features of ungated cells for building an optimized
ML classification model. Our algorithm demonstrated higher F1
scores and precision rates while differentiating gated populations
from each other as well as from ungated populations in CyTOF
datasets.

2 Materials and methods

The proposed algorithm aims to classify live cells (non-debris; non-
doublets) to one of the gated cell types (Fig. 1 and Supplementary
Fig. S1) by learning the marker-level features expressed by the
ungated cells and gated cell populations and building independent
‘one-vs-rest’ classification models, one for each cell type.

2.1 CyAnno workflow
CyAnno is implemented as a 3-steps serial framework:

2.1.1 Data generation and transformation

Each CyTOF sample Si represents a pre-gated set of live single cells

belonging to multiple cell types, in which each cell j has expression

values of p markers. A prior is the manually gated cell population of
n live cells (labeled dataset, e.g. using FlowJo) from randomly

selected m training samples, together represented as n-by-p expres-

sion matrix. Each training sample also contains cells not assigned to

any of the cell types, i.e. ungated. Here, in the absence of gold-stand-
ard, we hypothesized ‘manual-gating’ as the ground truth of cell

type identification. The marker expression profile of all live cells is

first transformed using arcsinh transformation (co-factor set to de-

fault value of 5; user-defined). The transformation provides neces-
sary scaling to build efficient ML models subsequently and helps in

minimizing the inherent noise associated with marker expression

values.

2.1.2 Building the ML models

The following details the three sub-steps performed on each of the

mutually exclusive gated cell types:

2.1.2.1 Landmark cell identification. Within each cell type, we iden-

tify a small set of characteristic cells called LandMark cells (LM

cells). The essential feature of the LM cells is their ability to effect-
ively retrieve the cells of its respective cell type as Nearest Neighbors

(NN) in a population of mixed cell types and ungated cells. Here,

the NN of the LM cells within a mixed cell population are expected

to include most (or all) of the cells from their respective cell type (i.e.
True Positive fTPg cells) along with cells of closely related cell types,

i.e. False Positive (FP) cells. The following stringent approach is

applied to identify LM cells for each cell type that can recall max-
imum number of TP cells:

Fig. 1. CyAnno workflow. For details see methods. Briefly, the entire workflow is

divided into three steps: (i) FCS gating: The first step requires the generation of a

training set, which is a collection of FCS/CSV files, one for each cell type manually

gated per samples. (ii) Model building: For each cell type a unique ML model is

build. The step is divided into two sub-steps: (a) LandMark identification. For each

cell type, landmark (LM) cells are identified by computing the kernel densities of

each cell in the bi-axial PC plots of its marker expression profile. Candidate LM cells

are evaluated using greedy search algorithm to retain only high-confidence represen-

tative LM cells (asterisks *). (b) Cell type specific data modeling. In the training set

with a mixed pool of manually gated cell types, each set of LM cells (one set per cell

type) is used to compute their approximated nearest neighbors to create Cell Type

Specific Training Dataset. The latter is then used to build a ‘one-vs-rest’ binary ML

classification model (methods: XGboost, SVM and MLP) for each cell type, i.e. Cell

Type Specific Model (CTSM). (iii) Prediction: The steps used for CTSD building are

applied to the unknown/unlabeled cytometry data. Afterwards, for each cell type, a

unique unlabeled Cell Type Specific Training Dataset is generated. The final cell

labels are predicted by comparing the posterior probabilities of a cell to belong to

one of the gated cell types. Cell not belonging to any of the gated cell type are classi-

fied as ‘ungated’ (UG)
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2.1.2.1.1 Decomposition into Principal Components (PCs). The manually
gated multi-dimensional k-by-p expression matrix is decomposed
into its first two Principal Components (PCs), i.e. PC1 and PC2,
where k is the number of cells in a given cell type.

2.1.2.1.2 Kernel Density Estimation. Kernel densities within the first two
PCs are then estimated in PCs biaxial plots. The kernel density val-
ues smooth out the contribution of each data point over its nearest
neighborhood, where the estimated density at each point can be rep-
resented as:

f xð Þ ¼ 1

k

Xk

i¼1

K
x� xi

h

� �

where estimate of f(x) is the convolution of Gaussian Kernel K
(mean value of 0) with the 2D histogram of PCs. The kernel band-
width h is estimated from data points using the automated fastKDE
method (O’Brien et al., 2016).

2.1.2.1.3 Landmark candidates shortlisting. The estimated kernel den-
sities are then stratified into five quantile ranges and 10 cells are ran-
domly selected from each of the quantiles as LM candidates. In
addition, LM candidate cells that form the edges in the PCs biaxial
plots are estimated by computing the alpha shapes (method: concave
hall; alpha ¼ 0.80) of a set of points. Together, these LM candidate
cells represent a highly diverse set of cells (Supplementary Fig. S2A)
from which the final set of LM cells will be selected in the next step.

2.1.2.1.4 Landmark cell selection via nearest neighborhood approxima-

tion. Using the Nearest Neighborhood Approximation (NNA) via
Facebook’s similarity search and clustering algorithm, viz faiss
(https://github.com/facebookresearch/faiss; method: brute-force
index with L2 distances), NN of each LM candidate within all live
cells (n-by-p matrix) are identified. Here, the number of NN is equal
to the proportion of the given cell type population in the total live
cells. However, if the live cell population contains highly similar or
ambiguous cell types, each LM candidate can produce lower than
the expected proportion of TP cells and higher FP neighbors.
Therefore, greedy search algorithm is used to enumerate LM cells
with highest number of TP cells. Starting with LM candidate cells
with the highest kernel density, the total number of LM candidates
required to capture 100% of TP cells as NN are selected, such that
no two LM cells share more than 20% of the same TP cells. In the
latter case, the LM cell with the higher number of TP cells is selected.
However, if the total number of cells in a given cell type is �100 (de-
fault value, user defined in CyAnno wrapper) then all cells for that
given cell type are considered as LM cells.

2.1.2.2 Cell Type Specific Training Dataset. For each cell type, the
LM associated NN cell sub-set is composed of TP cells along with
FP cells. We call this cell subset of NN a ‘Cell Type Specific Training
Dataset’.

2.1.2.3 Building a Binary Cell Type Specific Model (CTSM). Next,
each ‘Cell Type Specific Training Dataset’ is used to build the ML-
based binary classifier(s). CyAnno uses three different ML algo-
rithms for building prediction models, i.e. extreme gradient boosting
(XGboost) (Chen and Guestrin, 2016), Multi-Layer Perceptron
(MLP) (Rumelhart et al., 1986) and Support Vector Machine (SVM)
(Cortes and Vapnik, 1995), for which the hyper-parameters are opti-
mized using random grid search with cross validation analysis,
wherein a large search space is defined for different parameter
options for each ML algorithm. With the CyAnno wrapper, these
algorithms can be called independently or they all can be used to-
gether for predicting cell labels using an ensemble model, which
combines the results of multiple base estimators and provides con-
sensus results by majority voting approach. For the subsequent ana-
lysis in this work, ensemble of ML models was used for predicting
cell labels. The complete details of the hyper-parameters

optimization, learning rate, error rate estimation and evaluation of
different ML classifier are available as Supplementary Text.

2.1.3 Cell type classification with a CTSM

To annotate a new unlabeled dataset (e.g. validation dataset) of live
cells, the following steps are performed per cell type: First, NNA is
computed using the previously predicted LM cells for the cell type c.
The resulting ‘cell type specific dataset’ is then applied to its corre-
sponding CTSM built previously (from Section 2.1.2). This results in
a posterior probability q of each of the cell j belonging to the given
cell type c, such that

qc
j ¼

qj

0

; ifqj � f
; ifqj < f

�

Thus, posterior probability of a cell j in cell type c becomes 0 if it
is less than the threshold, i.e. f (default 0.5; user-defined). The
posterior probability matrix n-by-C contains the probability
score of each cell j of belonging to each of the cell type c, where
c � C. Finally, label l for each cell j from n-by-C probability ma-
trix is defined as:

lj ¼
ungated

c

; if
PC
1

qj ¼ 0

;whereqc
j ¼ qmax

j

8><
>:

where label for a given cell j is cell type c having the maximum pos-
terior probability as compared to the other cell types.

2.2 Performance evaluation
Performance matrices and methods used for comparing CyAnno
with existing methods are available as Supplementary Text.

2.3 Software implementation
All codes were compiled with Python programming language (ver-
sion 3.0 or above). A Lenovo P400 workstation running on 2 X
Intel-Xeon processor with 20 cores and 64 GB of RAM was used.
For the end-users, the CyAnno algorithm is wrapped as an easy-to-
use cross-platform python script that can be executed via command
line interface.

3 Results

3.1 Characterization of ungated cell population
The analyses of four publicly available cytometry datasets (Table 1;
see Supplementary Text, Supplementary Section S1) revealed that a
large proportion (�20–60%) of all live cells remains ungated after
manual gating (Supplementary Fig. S3). Since every gating event can
populate the ungated class of cells, it is expected that together these
cells represent a heterogeneous cell population. Therefore, in tSNE
plots (Zhou et al., 2018), these ungated cells are visualized as ran-
domly scattered over the gated cell population (Fig. 2A). This is fur-
ther evident by analyzing the silhouette width of each cell type
cluster per sample, wherein the cluster of ungated cells with very low
or negative width indicates their lower clustering potential than any
of the gated cell types (Fig. 2B). Here we emphasize that these
ungated cells can represent a large cell pool with multi-faceted, het-
erogeneous and undefined marker expression profiles, making their
filtration difficult with typical ML approaches.

To understand the influence of ungated cells on ML model effi-
cacy, we applied multi-class LDA and deep learning (DeepCyTOF)
approaches on the Samusik (Samusik et al., 2016) and Multi Center
(Nassar et al., 2015) CyTOF datasets (see Supplementary Text). As
expected, both LDA and DeepCyTOF predicted cell labels with high
F1 scores in the absence of ungated cells in the training and test sets,
however, the observed efficiency of both models dropped significant-
ly when the complete pool of live cells, i.e. gated as well as ungated
cell populations were used in test sets (Fig. 3A and B and
Supplementary Fig. S4A and B). Next, we analyzed the posterior
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probabilities of ungated cells, predicted by LDA or DeepCyTOF, to
belong to one of the gated cell types (Fig. 4). A large proportion of
ungated cells had a posterior probability > 0.4, a fixed threshold
used by these methods below which all cells are considered as un-
known/ungated, leading to their misclassification as one of the gated
cell types. Alternatively, using a high posterior probability threshold
(e.g. 0.7), as suggested by Abdelaal et al. (2019), to retain high-con-
fidence prediction may increase False Negative (FN) prediction. For
instance, the predicted posterior probability distribution of many
manually gated cell types (e.g. CMP, CLP and plasma cells in the
Samusik dataset) was largely centered around a value of less than
0.5 (Supplementary Fig. S5A and B) and if a high posterior probabil-
ity threshold is used, these cells would get misclassified to the
ungated/unknown class of cells. Therefore, increasing the posterior
probability threshold might not provide a viable solution to effect-
ively filtering out the ungated cells in the unlabeled live cell dataset.
Since the inclusion of ungated cells represent a real-world scenario
in which both gated cell type and ungated cells are required to be
correctly labeled, we developed CyAnno for predicting the gated cell
types while considering the marker expression profile of ungated cell
labels.

Table 1. Datasets description

Dataset No. of samples No. of markers Mean cell count No. of cell types Stimulation No. of batches Reference

Levine 13 dim 1 13 167K 24 No 1 Levine et al.

(2015)

Levine 32 dim 2 32 132K 14 No 1 Levine et al.

(2015)

Samusik 10 39 84K 24 No 1 Samusik et al.

(2016)

Multi-center 16 8 58K 4 No 2 Nassar et al.

(2015)

POISED 30 39 139K 25 2 7 N/A

Note: For details, see Supplementary Text.

Fig. 2. Distribution of ungated cells. (A) tSNE visualization to show the unclustered (or random) distribution of ungated cells compared to the gated cell types. (B) Average sil-

houette width to show the clustering tendency of different cell types (see materials and methods). In all datasets, ungated cells tend to cluster weaker than any of the gated popu-

lations, despite having a large population size in the pool of live cells

Fig. 3. (A) Comparison of per sample F1 score without ungated live cells versus with

ungated live cells in the test set after applying DeepCyTOF and LDA to two datasets

(Multi Center and Samusik). For estimating F1 score for all live cells, TP ungated

cells were excluded (see Supplementary Methods). (B) Mean F1 score comparison

for each gated cell type (using DeepCyTOF and LDA), with and without including

ungated live cells in the test set. (see Supplementary Text, Supplementary Sections

S5 and S6). P-values were calculated using paired Wilcoxon Rank Sum test
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3.2 Comparison of CyAnno with existing methods
We tested CyAnno and compared its performance with
DeepCyTOF and LDA using five-fold cross validation analysis
(see Supplementary Text, Supplementary Section S5). For both
DeepCyTOF and LDA, any prediction with posterior probabil-
ity less than 0.4 was labeled as unknown/ungated cells, as used
in their original publications. The number and proportion of
LM cells shortlisted by CyAnno to retrieve the maximum num-
ber of TP cells from training dataset as NNs is available in
Supplementary Figure S2B.

Overall, the analysis of F1 scores suggested that CyAnno outper-
formed both DeepCyTOF and LDA when labels of all live cells (i.e.
not just the gated population) were used for model evaluation (Fig.
5A and B). Moreover, CyAnno classified gated populations with

higher precision (Fig. 5C) while simultaneously filtering out the
ungated class of cells from the dataset with higher recall rate (Fig.
5D). However, we observed a significant drop in the prediction ac-
curacy of CyAnno when ungated cells were excluded from training
set while keeping them in the test set (Fig. 5E), confirming their es-
sential role in model performance. In addition, we also observed that
CyAnno precision scores were less impacted by the population size
with higher observed precision (minimum precision > 0.75 across all
the five runs for any cell type) than DeepCyTOF or LDA in spite of
class label imbalance in the training and test sets (Fig. 6). Moreover,
the limited variability in the F1 score (across five runs) further sug-
gests the ability of CyAnno in reproducing similar results
(Supplementary Fig. S6). Next, we evaluated the composition and
proportion of TP and FP cell labels predicted by the three different
algorithms. CyAnno outperformed both of the other methods in pre-
dicting the highest percentage of TP cells and most of the FP predic-
tions were associated with the ungated class of cells (Supplementary
Fig. S7A and B). Whereas, for DeepCyTOF and LDA, the predicted
FP cells were composed of numerous gated cell type populations.
For instance, in the Samusik dataset, for NK cell type, CyAnno pre-
dicted FP cells were composed of ungated and macrophages only,
unlike LDA and DeepCyTOF where FP predicted labels were com-
posed of >13 different cell types, excluding ungated cells in the case
of LDA. Similarly, in the Multi Center dataset, LDA failed to iden-
tify any of the ungated cell correctly and classified all ungated cells
as one of the four gated populations (Supplementary Fig. S7B).

3.3 Evaluation with independent benchmark dataset
We also evaluated the performance of CyAnno with an original
dataset composed of 15 peanut-stimulated and 15 unstimulated sam-
ples [viz. POISED dataset (Chinthrajah et al., 2019); see
Supplementary Text], which contains 15–40% of ungated class of
live cells (Fig. 7A). The mean F1 score, across the five runs, per sam-
ple as well as cell type, in the validation set was compared and
we found that CyAnno outperformed both DeepCyTOF and LDA
(Fig. 7B and C). Wherein, CyAnno’s performance was found to be
less impacted by the cell type population size than DeepCyTOF or
LDA (Fig. 7D). To ascertain the prediction, we randomly shuffled

Fig. 5. Results evaluation with three methods. (A) Mean F1 score comparison (all live cells per sample in test set) with different cell annotation methods tested across two data-

sets. Mean F1 represents the average of the F1 scores per sample after five iterations of variable training sets. See Supplementary Text, Supplementary Section S5. (B)

Comparison of mean F1 score for each cell type in a given dataset predicted with different methods. (C) The heatmap of precision of prediction associated with each cell type.

The HSC cell type (in Samusik dataset) was found to have very small cell count (<10) in the training set and, thus, was not used in CyAnno for model training. (D) Precision-

versus-recall rate estimated for ungated cells using three different methods. Recall rate for ungated cells with CyAnno were significantly higher than for the other two methods.

(E) Pairwise sample F1 score comparison of CyAnno when ungated cells were included (all live cells) in model training versus when they were excluded from model training

(without ungated cells). P-values reflect the statistical significance of difference in outcome when ungated cells were not considered for model training. P-values were computed

with paired Wilcoxon Rank Sum test

Fig. 4. Posterior probability distribution, per sample, of ungated cells predicted by

DeepCyTOF (top) and LDA (bottom) to belong to one of the gated populations.

Red dotted line shows the probability threshold (0.4) below which cells are classified

as ungated by default by DeepCyTOF and LDA
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the cell labels in the validation set and re-executed CyAnno 1000
times (see Supplementary Text). In all samples, we observed P-value
< 0.001 of randomly predicting the observed F1 score with
CyAnno.

Furthermore, we investigated the ability of the different methods
to identify CD4þ and CD8þ peanut-reactive cells, which repre-
sented <2% of total live cell population (mean cell count of 114.17
and 298.78 cells per sample respectively) and shared similar marker
expression profile with many other cell types included in the dataset
(Supplementary Fig. S8A). The precision-versus-recall scatter plot
analysis revealed the high precision of CyAnno in detecting these
rare cells (Fig. 7E), whereas DeepCyTOF failed to predict these cells
while LDA predicted these cells with lower precision than CyAnno.
We also evaluated the composition of FP cell type labels predicted
for each cell type (Supplementary Fig. S7C) which suggests that most
of the CyAnno predicted FP labels were composed of ungated class
of cells, unlike LDA and DeepCyTOF. For instance, the FP cells for
the CD4þ peanut reactive cell type predicted with CyAnno mainly
included the ungated class of cells (total three cell types), whereas
with LDA and DeepCyTOF �10 different cell types were falsely pre-
dicted as CD4þ peanut reactive cells. Overall, CyAnno had a higher
precision of prediction than LDA and DeepCyTOF for most of the
cell types (Fig. 7F), whereas the ungated class of cells was filtered
out with a higher recall rate (Fig. 7G).

Furthermore, we trained the three different methods using only a
single cell type, i.e. the CD4þ peanut reactive or CD8þ peanut re-
active cell type (sample size ¼ 3) and predicted these cells in the 20
samples from the independent test set (Fig. 8). We found that
CyAnno can be used for training and predicting even a single cell
types with significantly higher accuracy than LDA and DeepCyTOF.

Next, for estimating sample size effect, we re-executed CyAnno
with varying number of sample size (n¼ 1, . . ., 10) in the training
set. The analysis showed no drastic change in F1 scores, however,
for larger sample sizes (e.g. n¼ 10) we observed large F1 scores for
all samples in the validation set (Supplementary Fig. S9). We further
tested if CyAnno predicts biased results for samples that are proc-
essed only for a given stimulation, by training the models with seven

Fig. 7. POISED dataset results evaluation. (A) The percentage of ungated cells per (n¼ 20) FCS file after hand-gating in the POISED dataset. (B) The mean F1 score observed

with different methods when all live cells are used in POISED training set. (C) The mean F1 score computed for each cell type across all the samples in each dataset after five in-

dependent runs. (D) The precision scores (X-axis) are plotted with cell population size (Y-axis) of the given cell type in all samples of the given dataset. Here, the precision score

for each cell type was computed using three different methods, each executed five times, with varying and independent training sets per run. Each circle represents the predicted

precision score for a cell type per sample per run, colored by the F1 score for that cell type during the respective run. (E) Precision and Recall rate observed for two different pea-

nut reactive cell types with different methods across five different runs with varying training sets. Each colored dot represents a predicted score (precision and recall value)

observed for the CD4þ/CD8þ peanut reactive cell type by three different methods (colored) in the five different runs in validation set. CyAnno predicted labels were found to

have better precision than LDA and DeepCyTOF. (F) The heatmap of precision of prediction associated with each cell type. (G) Precision-versus-recall rate estimated for

ungated cells in POISED dataset using three different methods. The recall rate for ungated cells with CyAnno was significantly higher than for the other two methods

Fig. 6. The precision scores (X-axis) are plotted with gated cell population size (Y-

axis; % live cells) of the given cell type in all the samples of the given dataset. Here,

the precision score for each cell type was computed using three different methods,

each executed five times, with varying and independent training dataset in each run.

Each circle represents the predicted precision score for a cell type per sample in one

run, colored by the F1 score for that gated cell type during the respective run. The

cell type HSC had a very small cell count (<10 cells) in the overall training set,

which did not provide sufficient information for its training, and was thus not

included in the training set. The red line marks the minimum precision score

observed with CyAnno for the Samusik (0.75; HSC excluded) and Multi Center

(0.87) datasets
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peanut stimulated samples and tested its performance on the 20 in-
dependent samples (Supplementary Fig. S10). The results suggested
that the unstimulated samples were found to have comparatively
high F1 score (F1: 0.89-0.99) even though only peanut stimulated
samples were used in the training set, and that the CyAnno results
were not biased for the weak stimulations.

4 Discussion

CyAnno is a new tool aimed to label the single cells in large-scale
cytometry datasets by modeling the marker expression profiles
through the use of machine learning approaches on manually gated
and ungated cell populations. We have shown that ungated cells are
present in a substantially large number, yet they are largely ignored
by the existing cell label prediction approaches. Theoretically, an
ungated cell can represent a cell just outside the manually drawn
gate or an ‘unknown’ but biologically relevant cell type or simply a
cell from a cell type not considered during manual gating. As a re-
sult, the ambiguous marker expression profile of ungated cells makes
their identification challenging. Therefore, CyAnno offers a system-
atic approach to train and predict the ungated as well as the manual-
ly gated cells with overall higher accuracy. For the other semi-
automated methods, using the heterogeneous ungated cells for mod-
eling cell type(s) is a technical challenge, as these cells cannot be
used as single class of cells. CyAnno overcomes this problem by
building a cell type specific ‘one-vs-rest’ binary model, in which the
predicted posterior probability for a TP cell to be assigned to its cell
type by the respective model should be >0.50 and it is independent
of the other cell types as well as ungated cells. To achieve this,
CyAnno expects a user-defined list of lineage or discriminant
markers. The choice of lineage markers is critical and in theory,
should be based on the markers used for manual gating and expert
knowledge. For example, in the POISED dataset we excluded PD-1
for classification, but in another study it was used as a lineage mark-
er (Thommen et al., 2018).

In addition, CyAnno also performed exceptionally good in the
identification of rare cell types, e.g. CD4þ and CD8þ peanut-react-
ive cell types, which are not captured effectively by the other semi-
supervised approaches used in this study. In fact, CyAnno allows to
train and predict such rare single cell type independently which can
be useful for a broad range of studies in which a specific cell type
[e.g. CD45þ Linlo cells in (Hamers et al., 2019)] is manually gated
for downstream analysis. This can save efforts and time during man-
ual gating for large-scale studies and can assist focused research
without compromising on overall accuracy. Moreover, CyAnno can

be used to predict any predefined cell subset (e.g. novel cell subset
predicted via unsupervised clustering) in the unlabeled dataset.

One of the known limitations of CyAnno is its higher computa-
tional cost than DeepCyTOF and LDA (Supplementary Fig. S11, see
Supplementary Text, Supplementary Section S7), as hyper-parameter
optimization (for all of the ML algorithms) consumes the majority
of the computational time, wherein XGboost performed better than
other classifiers, in terms of computational cost and prediction ac-
curacy. Since the hyper-parameter optimization is the most time con-
suming yet unavoidable part of CyAnno, the future plan is to
incorporate Bayesian hyper-parameter optimization that can evalu-
ate much a larger combination of hyper-parameters with lower com-
putational cost.

In summary, we have shown the overall size and impact of
ungated cells in guiding the process cell type prediction and pro-
posed a novel approach to learn their features for the classification
of gated cell types. CyAnno aims to assist large-scale cytometry stud-
ies where hand-gating can be time consuming and vulnerable to
human subjectivity.
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