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Abstract

Motivation: A single monoclonal broadly neutralizing antibody (bnAb) regimen was recently evaluated in two
randomized trials for prevention efficacy against HIV-1 infection. Subsequent trials will evaluate combination bnAb
regimens (e.g. cocktails, multi-specific antibodies), which demonstrate higher potency and breadth in vitro com-
pared to single bnAbs. Given the large number of potential regimens, methods for down-selecting these regimens
into efficacy trials are of great interest.

Results: We developed Super LeArner Prediction of NAb Panels (SLAPNAP), a software tool for training and evaluat-
ing machine learning models that predict in vitro neutralization sensitivity of HIV Envelope (Env) pseudoviruses to a
given single or combination bnAb regimen, based on Env amino acid sequence features. SLAPNAP also provides
measures of variable importance of sequence features. By predicting bnAb coverage of circulating sequences,
SLAPNAP can improve ranking of bnAb regimens by their potential prevention efficacy. In addition, SLAPNAP can
improve sieve analysis by defining sequence features that impact bnAb prevention efficacy.

Availabilityand implementation: SLAPNAP is a freely available docker image that can be downloaded from
DockerHub (https://hub.docker.com/r/slapnap/slapnap). Source code and documentation are available at GitHub
(https://github.com/benkeser/slapnap and https://benkeser.github.io/slapnap/).

Contact: benkeser@emory.edu

1 Introduction

Extensive research has been conducted on passive administration
of monoclonal broadly neutralizing antibodies (bnAbs) with the
objective of preventing HIV-1 infection (Morris and Mkhize,
2017). BnAbs target epitopes on the HIV-1 envelope (Env) glyco-
protein, and recent work has shown that combination bnAb regi-
mens can neutralize most clinical HIV-1 isolates in genetically
diverse Env panels (e.g. McCoy and Burton, 2017; Sok and
Burton, 2018). BnAb regimens have also been shown to prevent
SHIV infection in non-human primate models (Gautam et al.,
2016; Hessell et al., 2018; Pegu et al., 2019). These develop-
ments position bnAbs as promising tools for the prevention of
HIV-1, as well as other infectious diseases, in the near future
(Karuna and Corey, 2020).

The two harmonized, randomized, placebo-controlled Antibody
Mediated Prevention (AMP) efficacy trials of a single bnAb regimen,
VRC01, have been completed (Corey et al., 2021). These trials
showed modest overall prevention efficacy (�20%) and that VRC01
neutralization sensitivity of the acquired virus (IC80) was a strong
biomarker of prevention efficacy, with zero estimated efficacy
against resistant viruses (IC80 > 3 mg/ml) and 75.4% estimated effi-
cacy (95% confidence interval 45.5–88.9%) against the most sensi-
tive viruses (IC80 < 1 mg/ml). These results highlight the critical need
to develop bnAb regimens with broader neutralization coverage of
circulating strains, an objective that will require understanding of
the neutralization breadth and potency of various candidate bnAb
regimens against representative HIV-1 Env panels (Wagh et al.,
2016, 2018). Several bnAb combinations targeting distinct Env epit-
opes have been identified that exhibit greater neutralization breadth
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and potency than their constituent single bnAbs, with in vitro neu-
tralization coverage rates approaching 100% (Doria-Rose et al.,
2012; Kong et al., 2015; Wagh et al., 2016). Thus, ongoing and fu-
ture clinical trials are focusing on bnAb combination regimens or
multi-specific bnAb regimens (e.g. NCT04212091, NCT03928821).

Analysis of bnAb prevention efficacy trials such as AMP can elu-
cidate the extent to which in vitro markers of neutralization breadth
and sensitivity predict in vivo prevention efficacy. Such analyses may
support validation of a bnAb-based surrogate endpoint for HIV-1 in-
fection, which could accelerate the development of new prevention
modalities, such as new bnAb regimens or novel vaccines that induce
bnAbs (Liao et al., 2013; Moody et al., 2016; Williams et al., 2017;
Zhang et al., 2016). To realize this potential, analyses of randomized
trials will need to be informed by in vitro analyses of bnAb breadth
and potency. For example, in preparation for the viral sequence sieve
analysis of the AMP trials, Magaret et al. developed models predict-
ing VRC01 neutralization sensitivity using Env amino acid (AA) se-
quence features (Magaret et al., 2019), based on HIV-1 gp160
pseudoviruses from the Compile, Analyze and Tally NAb Panels
(CATNAP) database (Yoon et al., 2015). The super learning ensem-
ble machine learning approach (van der Laan et al., 2007) used to
predict right-censored 50% inhibitory concentration titer (IC50) for
each pseudovirus yielded a cross-validated area under the receiver
operating characteristic (ROC) curve (AUC) of 0.881 (95% confi-
dence interval: 0.813–0.948). Magaret et al. also identified import-
ant sequence features for predicting VRC01 sensitivity with the goal
to enable the AMP sieve analysis to focus on top-ranked features,
thereby improving statistical power. Bricault et al. (2019) conducted
similar variable importance signature analyses that generalized to all
bnAbs across four antibody classes.

Given the movement toward combination or multi-specific bnAb
regimens, we developed Super LeArner Prediction of NAb Panels
(SLAPNAP), a publicly available, containerized pipeline that can
perform an end-to-end analysis of in vitro neutralization data for
bnAb combinations. SLAPNAP analyses of in vitro neutralization
data can improve the down-selection of combination or multi-specif-
ic bnAb regimens for future efficacy trials by enabling more accurate
and precise estimates of potential prevention efficacy. While the nor-
mative approach to estimate potential prevention efficacy uses direct
in vitro neutralization data against circulating HIV strains as key in-
put data, SLAPNAP can be used to augment these data with pre-
dicted in vitro neutralization levels of HIV Env sequences for which
neutralization phenotype data are not available. SLAPNAP leverages
all data available in the CATNAP database, and given a user-
selected bnAb combination and neutralization endpoint, performs a
suite of machine learning-based analyses and provides a report that
summarizes the predictive results and highlights important pseudovi-
rus sequence features. The goal of the present work is to introduce
this tool, compare its performance in predicting sensitivity to a single
bnAb to previous approaches, and to validate its performance in pre-
dicting sensitivity to combination bnAb regimens.

2 Materials and methods

2.1 Training data and measures of neutralization

sensitivity
SLAPNAP is based on in vitro neutralization data available in the
CATNAP database. Predictive analysis of neutralization sensitivity
can be done for any single bnAb available in this database, or for
combinations of any number of available single bnAbs. In the latter
case, the neutralization sensitivity of a pseudovirus to the combin-
ation bnAb regimen can be estimated based on either an additive or
Bliss-Hill model (Wagh et al., 2016).

The models created by SLAPNAP will predict one of three con-
tinuous measures of sensitivity [estimated IC50, estimated IC80 and
instantaneous inhibitory potential (IIP) (Shen et al., 2008)] and/or
two binary measures of sensitivity [whether the estimated ICx < a
user-specified cut point (estimated sensitivity), and whether the indi-
vidual-bnAb ICx < the cut point for a user-specified number of

bnAbs in the specified combination (multiple sensitivity), where x
can be either 50 or 80].

The features used to make predictions are generated from de-
scriptor variables, viral geometry variables and the amino acid se-
quence available for each pseudovirus in CATNAP. The descriptor
variables include geographic information (binary indicator variables
describing the region of origin of each pseudovirus), which is
adjusted for as potential confounding variables in all analyses; and
the HIV-1 subtype of the virus. Viral geometry variables describe the
length, the number of sequons and the number of cysteines in each
of the Env, gp120, V2, V3 and V5 regions. Amino acid sequence var-
iables consist of binary indicators of residues containing amino
acids, frameshifts, gaps, stops or sequons at each HXB2-referenced
site in gp160. In total, there are �6000 individual features included
in a given SLAPNAP analysis—the exact number of features depends
on the pseudoviruses available in CATNAP for the chosen bnAbs.

2.2 Predictive modeling
2.2.1 Choice of models

The SLAPNAP tool allows predictive models to be built using ran-
dom forests (Breiman, 2001), boosted regression trees (Friedman,
2001) and the elastic net (Zou and Hastie, 2005). Cross-validation
may also be used to select tuning parameters for each algorithm. The
algorithms can also be combined using the super learner ensemble
framework (van der Laan et al., 2007). A super learner is an ensem-
ble of individual learners with ensemble weights chosen to minimize
a cross-validated measure of risk (mean squared error for continuous
outcomes and negative log likelihood for binary outcomes). Because
SLAPNAP can be used to predict neutralization sensitivity to a vast
array of single, multiple-specific and combination bnAbs, and be-
cause we often lack a priori knowledge as to which algorithm might
provide the best predictions for a given regimen, we generally recom-
mend using the super learner in SLAPNAP. The user may also spe-
cify a threshold x for variable screening based on the variability of
the binary amino acid sequence features that eliminates residues
with fewer than x minority variants.

2.2.2 Measuring predictive performance

SLAPNAP uses V-fold cross-validation to evaluate model perform-
ance, where a user can choose the value of V. All tuning parameter
selection occurs in a cross-validated way, which ensures honest
evaluation of model performance. Because SLAPNAP allows for
building and evaluating predictors of bnAb regimens with potential-
ly few observed sequences in the CATNAP database, cross-validated
performance measures are reported, rather than measures based on
train/test sample splitting. Prior work has demonstrated that this is a
propitious approach in small samples (Benkeser et al., 2020).

2.3 Intrinsic and predictive feature importance
In SLAPNAP, we divide the analyses that quantify feature import-
ance into two goals: learning about the underlying biology and
understanding how a given prediction algorithm makes use of the
features.

We use the population prediction potential of features
(Williamson et al., 2020a,b) to address the first goal; this quantifies
the intrinsic importance of the features. We measure population pre-
diction potential using non-parametric R2 for continuous outcomes
and using the non-parametric AUC for binary outcomes. Two types
of intrinsic feature importance may be measured: conditional im-
portance, which describes the increase in population prediction po-
tential when the feature(s) of interest are added to all other
remaining features; and marginal importance, which describes the
increase in population prediction potential when the feature(s) of
interest are added to the geographic confounding variables. Both
types of intrinsic importance may be estimated for groups of features
or individual features. The feature groups that we consider are: geo-
graphic confounders, viral geometry variables (length), gp120 CD4
binding sites, gp120 V2 sites, gp120 V3 sites, gp41 MPER sites, re-
gion-specific counts of PNG sites (number of sequons) and cysteine
counts. Point estimates and confidence intervals for the difference in
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R2 or AUC, and P-values for a test of the null hypothesis that the dif-
ference in population prediction potential is equal to zero, are com-
puted and displayed for each feature group or individual feature of
interest.

For the second goal, algorithm-specific predictive importance is
defined in the default manner for each type of learner. For random
forests and boosted trees, this is the normalized sum of the decrease
in impurity (i.e. the Gini index for binary outcomes or mean squared
error for continuous outcomes) over all nodes at which a split on
that feature has been conducted; for the elastic net, this is the abso-
lute value of the estimated regression coefficient at the cross-valid-
ation-selected tuning parameter value. These commonly reported
measures of importance can provide some insight into how a given
algorithm makes predictions. If an ensemble is used, the importance
measures for the individual learner with the highest weight in the en-
semble are reported.

3 Usage

3.1 Running SLAPNAP
SLAPNAP is a Docker container hosted on DockerHub (Docker
Inc., 2019). With Docker installed, SLAPNAP can be downloaded
by executing the following at the command line:

docker pull slapnap/slapnap: latest
SLAPNAP is executed using the docker run command. For ex-

ample, the following code will instruct SLAPNAP to create and
evaluate a neutralization predictor for the bnAb combination
VRC07-523-LS and PGT121:

docker run\

-v path/to/local/save/directory:/home/output/\

-e nab¼“VRC07-523-LS; PGT121”\
-e outcomes¼“ic50; estsens”\
-e learners¼“rf; lasso”\
-e importance_grp¼“marg”\
-e importance_ind¼“pred”\
slapnap/slapnap: latest

The –v tag specifies the directory on the user’s computer where
the report will be saved, and path/to/local/save/directory
should be replaced with the desired target directory. Options for the
analysis are passed to the container via the -e tag; these options in-
clude the bnAbs to include in the analysis (nab), the neutralization
outcomes of interest (outcomes), the learners to use in the analysis
(learners) and the types of variable importance to compute (impor-
tance_grp, for groups of variables; importance_ind, for individual
variables). Other output (e.g. the formatted analysis dataset and the
fitted learners) can be requested via the return option. Cross-valid-
ation is used by default both for parameter tuning (cvtune) and
model estimation (cvperf). We recommend the use of both layers
of cross-validation to reduce the potential for biased estimation of
performance (see, e.g. Varma and Simon, 2006). A full list of options
and their syntax are available in the SLAPNAP documentation
(https://benkeser.github.io/slapnap/).

3.2 HTML report and requested output
Following the completion of a SLAPNAP run, an HTML report—
along with any other requested output—will be saved to the output
directory and the SLAPNAP container will shut down. Excerpts
from the report are shown in Figure 1. Each report begins with a sec-
tion summarizing data extraction and key results (Panel A).
Descriptive statistics and plots are provided for each requested bnAb
and for the estimated sensitivity measures for the combined bnAbs
(Panel B). The performance of the learners for predicting binary sen-
sitivity endpoints is estimated using cross-validated ROC curve ana-
lysis (Panel C). Feature importance is determined by a variety of
methods and summarized in tables and figures (Panel D). Full
reports are available in the SLAPNAP documentation (https://ben
keser.github.io/slapnap/6-sec-report.html#example-reports).

4 Results

4.1 SLAPNAP produces accurate predictions of

sensitivity to single bnAbs across epitopes
We compared the performance of SLAPNAP for predicting neutral-
ization sensitivity of HIV-1 viruses to single bnAbs to two other
methods: the support vector machine (SVM)-based method of Hake
and Pfeifer (2017) and the gradient boosted machine-based method
of Rawi et al. (2019). We considered all bnAbs in CATNAP ana-
lyzed by either Hake and Pfeifer (2017) or Rawi et al. (2019) includ-
ing bnAbs targeting the V1/V2 region, the V3 loop, the CD4 binding
site, the fusion peptide, the subunit interface and the membrane
proximal external region.

We ran SLAPNAP for each of these bnAbs with neutralization
sensitivity defined by the binary indicator that IC50 was less than
50mg/mL so that our analysis was harmonized with those of Hake
and Pfeifer (2017) and Rawi et al. (2019). In each case, we used an
ensemble with a library consisting of random forests, lasso regres-
sion and gradient boosted trees implemented in H2O (H20.ai, 2016)
and minimum variability thresholds of zero, four and eight for the
binary amino acid sequence features. To construct our super learner,
we used five-fold cross-validation to determine the optimal convex
combination of these learners and screens that minimized the cross-
validated negative log likelihood. We additionally used an outer
layer of five-fold cross-validation to assess prediction performance.
We compare SLAPNAP to previous results by comparing the
SLAPNAP-estimated cross-validated AUC (CV-AUC) to the reported
AUCs of those works. SLAPNAP is at a disadvantage in these com-
parisons, since the tool adaptively chooses tuning parameters,
whereas both sets of previously reported results optimized tuning
parameters on the CATNAP data before computing their perform-
ance measures. We further analyzed the performance of SLAPNAP
in predicting continuous IC50 and IC80, and for these outcomes re-
port cross-validated R2 (CV-R2) along with 95% confidence inter-
vals; these outcomes were not analyzed by either Hake and Pfeifer
(2017) or Rawi et al. (2019). The full SLAPNAP specification for
each of these analyses is available on GitHub (https://github.com/
benkeser/slapnap_supplemental).

All methods were found to have good classification performance
(all CV-AUC > 0.6) across epitopes (Fig. 2). Additionally, while
there are differences in performance on individual bnAbs, no one
method dominates the others across epitopes (Table 1). The median
estimated CV-AUCs across all bnAbs were 0.71, 0.84 and 0.81 for
Hake and Pfeifer (2017), Rawi et al. (2019) and SLAPNAP,
respectively.

Fig. 1. Example text and plots from a SLAPNAP report. This report analyzed the

combination of bnAbs VRC07-523-LS and PGT121. (A) Executive summary,

including outcome definitions and the number of sequences analyzed; (B) plots of in-

dividual IC50 for each bnAb and estimated combination IC50; (C) cross-validated re-

ceiver operating characteristic curve for predicting the binary endpoint IC50 < 1 mg/

mL; and (D) estimated intrinsic feature importance for the groups of amino acid fea-

tures, measured via the difference in population AUC comparing a feature group to

geographic confounders
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The prediction performance of SLAPNAP for the continuous out-
comes was mixed (Fig. 3). For some bnAbs (e.g. 10-1074 and
8ANC195), SLAPNAP achieves a high CV-R2; for other bnAbs (e.g.
HJ16 and 35O22), the estimated CV-R2 is �0. This variability
reflects both the increased difficulty of predicting continuous out-
comes compared to predicting binary outcomes and the differing
number of sequences with observed IC50 and IC80 values in
CATNAP. In particular, IC80 values are missing for many sequences,
leading to a small sample (fewer than 200 sequences) on which to
train and evaluate SLAPNAP. The cross-validated predicted out-
comes (i.e. each predicted outcome is based on a learner trained on
data excluding the corresponding observed outcome) are moderately
correlated with the observed outcomes: the median correlation over
all bnAbs is 0.65 and 0.52 for IC50 and IC80, respectively. Taken to-
gether, these results suggest modest capability to predict the continu-
ous outcomes.

4.2 SLAPNAP produces accurate predictions of

sensitivity to combinations of bnAbs
To validate the performance of the tool for the purpose of predicting
combination sensitivity, we evaluated all bnAb combinations that are
available in the CATNAP database that satisfied the following criteria:
each bnAb in the combination had individual sensitivity measurements
available, combination sensitivity was measured on at least 100 pseudo-
viruses (to provide sufficient data to evaluate the learners), at least five
pseudoviruses were resistant (defined for this analysis as having IC50 >
1lg/mL) to each of the individual bnAbs (to provide sufficient data to
train the learners), and at least one pseudovirus was resistant to the

combination bnAb (to provide sufficient data to evaluate performance).
For the 16 qualifying bnAbs, we used SLAPNAP to train models using
the single bnAb sensitivity data available in CATNAP, using both pro-
posed measures of estimated combination sensitivity based on an addi-
tive model (described in Section 2.1). The Super Learner ensembles used
in this section were based on a different implementation of boosting
(xgboost; Chen and Guestrin, 2016) than in the previous section, but
otherwise the ensemble was the same; this illustrates the ease of using
different learning algorithms within SLAPNAP, a point that we elabor-
ate on further in the Discussion. We then used the trained models to ob-
tain out-of-sample predictions of sensitivity on the pseudoviruses with
measured sensitivity to the combination bnAb regimen and computed
AUC.

We found that SLAPNAP predictions of combination sensitivity
lead to an AUC > 0.95 for 14 of 16 combinations and an AUC >
0.66 for the remaining two combinations (Fig. 4). We did not ob-
serve a consistent trend in terms of predictive performance across
the two definitions of estimated sensitivity available in SLAPNAP.
The average difference in AUC between the two approaches was -
0.004 with the largest observed difference only 0.038.

We further evaluated the performance of SLAPNAP by estimating pre-
diction performance based on viruses from two studies of the combination
regimen 10-1074þ 3BNC117 that are not available in CATNAP (Bar-
On et al., 2018; Mendoza et al., 2018). We matched the neutralization
values from these two studies (provided in Supplementary Table S4 of
Mendoza et al., 2018 and Supplementary Table S6 of Bar-On et al.,
2018) with the viral sequence data from these studies that are publicly
available on GenBank (details for accessing this information are available
in Mendoza et al., 2018; Bar-On et al., 2018). After restricting to a single
virus per participant, 21 viruses with complete outcome and sequence in-
formation remained, of which 19 were estimated to be sensitive to the
combination (based on the 2mg/mL sensitivity threshold used in Mendoza
et al., 2018 and Bar-On et al., 2018) and 14 were sensitive to at least one
of the bnAbs in the combination. The test-set AUCs for predicting these
outcomes were 0.79 [0.55, 0.92] and 0.86 [0.58, 0.96] for estimated and
multiple sensitivity, respectively; the test-set R2 for predicting continuous
IC50 was 0.13 [0, 0.34].

5 Discussion

Our results indicate that SLAPNAP achieves comparable performance to
existing approaches for predicting single-bnAb sensitivity based on Env
amino acid sequences without pre-optimizing any tuning parameters.

Table 1. MedianCV-AUC for predicting neutralization sensitivity for

single monoclonal bnAbs across epitopes

Epitope Hake and Pfeifer (2017) Rawi et al (2019) SLAPNAP

CD4bs 0.71 0.79 0.79

Fusion peptide NA 0.78 0.81

MPER NA 0.90 0.79

Subunit interface 0.65 0.77 0.80

V1V2 0.69 0.86 0.84

V3 0.80 0.92 0.90

Overall 0.71 0.84 0.81

Fig. 2. Cross-validated performance for predicting neutralization sensitivity across bnAb epitopes for single monoclonal bnAbs. The figure compares SLAPNAP (squares); the

SVM-based method of Hake and Pfeifer (2017; circles); and the gradient boosted machine-based method of Rawi et al. (2019; triangles)
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Moreover, the tool offers the ability to extend prediction of sensitivity to
regimens containing multiple bnAbs, thereby validating its utility as a tool
for various applications including improving down-selection of multiple-
bnAb regimens into future HIV-1 prevention efficacy trials and improving
analytic plans for sieve analysis.

In our test-set data analysis of the combination regimen
3BNC117þ 10-1074, we observed reduced AUC relative to the
cross-validated in-sample performance for this combination (esti-
mated to be greater than 0.95 for both binary outcomes). There
were also several limitations to this analysis. First, there were only
30 participants enrolled in one of the two trials that gave rise to
these data; it is possible that with a larger sample size we could see
improved performance. Second, these participants were chosen
in part due to sensitivity to either bnAb, leading to an imbalance
between the number of sensitive and resistant viruses. Finally,
SLAPNAP currently does not have an option to restrict training to a
specified HIV-1 subtype; the viruses in this test-set analysis were

all subtype B, while the training data were only 30% subtype B
viruses. We will implement such a filter in a future iteration of
SLAPNAP.

SLAPNAP provides information beyond point estimates of neu-
tralization potential, and additional flexibility that make it a gen-
eral-purpose tool. Users can select different combinations of
neutralization outcomes, thresholds for neutralization sensitivity,
learners and variable screens, among other control arguments mak-
ing SLAPNAP useful in a wide variety of contexts. The confidence
interval estimates that are reported provide important context for
how to interpret the neutralization results and can aid in the down-
selection of bnAb regimens into future trials. Variable importance
estimates can be useful in interpreting the results as well.

There are several important limitations of SLAPNAP that we
hope to address in future iterations. First, as the SVM approach of
Hake and Pfeifer (2017) was found to perform nearly as well as our
super learner approach and the gradient boosting approach of Rawi

Fig. 3. Cross-validated performance of SLAPNAP for predicting continuous neutralization outcomes (IC50 and IC80) across bnAb epitopes for single monoclonal bnAbs. The

outcomes are differentiated by color (IC50 is red, while IC80 is teal); the size of the point corresponds to the number of available outcomes, with the largest size denoting a large

number of outcomes. Bars represent 95% confidence intervals for CV-R2

Fig. 4. Out-of-sample AUC of SLAPNAP models trained used single-bnAb neutralization data for predicting measured sensitivity (IC50 < 1 mg/mL) to the combination bnAb

regimen. The out-of-sample AUC is computed based on 125 pseudoviruses for all combinations except BG1 þ BG18 þ NC37, which is computed based on 119 pseudoviruses.

The number of pseudoviruses measured to be resistant (IC50 � 1 mg/mL) to each combination is shown across the bottom

SLAPNAP: predicting combination antibody neutralization sensitivity 4191



et al. (2019) for some bnAbs, we will in future releases build in sup-
port for an implementation of SVM in SLAPNAP. A strength of the
super learner framework is that it is agnostic to its constituent learn-
ers, so addition of an SVM or switching between the two available
boosted machine implementations (Chen and Guestrin, 2016;
H2O.ai, 2016) is quite natural in this context. Second, obtaining
SLAPNAP-based predictions of sensitivity for (pseudo-)viruses not
derived from the CATNAP database requires considerable effort
from the SLAPNAP user. In future iterations, we plan to include na-
tive sequence alignment tools in SLAPNAP, so that the proper for-
matting is done internally and no additional effort is required.
Finally, Docker requires elevated privileges to run and so SLAPNAP
may be inaccessible to some users. In the future, we hope to design a
web-based user interface to ease the use of SLAPNAP.
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