Skip to main content
. 2022 Sep 16;22(18):7020. doi: 10.3390/s22187020
Algorithm 1 Gradient Boosting Algorithm
Inputs: (i) {xi,yi}, (ii) loss function, L(y,F(x)), (iii) No. of trees M
Procedure:
(1) Initialize Model with Constant Value
F0(x)=argminγ(i=1nL(y,γ)) (1)
(2) Iterate m=1 to M
  (i) Compute Pseudo-residuals
γim=L(yiF(xi))F(xi)F(x)=Fm1(x)i=1,...,n (2)
  (ii) Fit a Base-Learner hm(x), input {(xi,γim)}
  (iii)
γm=argminγi=1nL(yi,Fm1(xi)+fl) (3)
  (iv) Update Model,
Fm(x)=Fm1(x)+γmhm(x) (4)