Skip to main content
. 2022 Sep 7;11(18):5274. doi: 10.3390/jcm11185274

Table 2.

Multivariable logistic regression analysis for functional outcome.

Variables Crude OR, 95%CI p-Value Adjust OR, 95%CI p-Value
Age 1.01 (0.99–1.03) 0.304 1.01 (0.95–1.06) 0.908
Gender 1.89 (1.03–3.46) 0.039 0.94 (0.22–4.05) 0.929
Blood Glucose 1.13 (1.02–1.25) 0.015 1.24 (0.98–1.57) 0.075
NIHSS 1.15 (1.1–1.21) <0.001 1.04 (0.95–1.15) 0.354
ASPECTS 0.33 (0.25–0.45) <0.001 0.49 (0.24–1) 0.05
mCTA score 0.27 (0.18–0.42) <0.001 0.44 (0.15–1.23) 0.117
rCBF < 30% 1.09 (1.05–1.12) <0.001 0.97 (0.92–1.01) 0.166
TMax > 6 s 1.02 (1.01–1.02) <0.001 1 (0.99–1.01) 0.955
HIR (per 0.01); 1.3 (1.22–1.4) <0.001 1.32 (1.21–1.45) <0.001

Crude model: no other covariates were adjusted. Adjusted model: we adjusted age, gender, blood glucose, NIHSS, ASPECTS, mCTA score, rCBF < 30%, TMax > 6 s. Abbreviations: NIHSS, National Institutes of Health Stroke Scale; ASPECTS, Alberta Stroke Program Early Computed Tomography Score; mCTA, multiphase CTA; rCBF, relative cerebral blood flow; TMax, the time when the residue function reaches its maximum; HIR, hypoperfusion intensity ratio.