Table 4.
Accuracy | Sensitivity | Specificity | Precision | F1-Score | AUC (Test) | |
---|---|---|---|---|---|---|
neg-Han (2020) | ||||||
Logistic-all | 0.643 | 0.500 | 0.750 | 0.600 | 0.545 | 0.578 |
Logistic-step | 0.786 | 0.625 | 1.000 | 1.000 | 0.769 | 0.833 |
RF | 0.929 | 1.000 | 0.800 | 0.900 | 0.947 | 0.900 |
SVM | 0.786 | 0.800 | 0.750 | 0.889 | 0.842 | 0.744 |
XGBoost | 0.714 | 0.889 | 0.400 | 0.727 | 0.800 | 0.644 |
pos-Han (2020) | ||||||
Logistic-all | 0.714 | 0.750 | 0.800 | 0.600 | 0.667 | 0.700 |
Logistic-step | 0.929 | 1.000 | 0.900 | 0.800 | 0.889 | 0.900 |
RF | 0.929 | 1.000 | 0.800 | 0.900 | 0.947 | 0.900 |
SVM | 0.857 | 0.818 | 1.000 | 1.000 | 0.900 | 0.800 |
XGBoost | 0.929 | 1.000 | 0.800 | 0.900 | 0.947 | 0.900 |
AH-Wang (2019) | ||||||
Logistic-all | 0.733 | 0.667 | 0.833 | 0.857 | 0.750 | 0.652 |
Logistic-step | 0.600 | 0.556 | 0.667 | 0.714 | 0.625 | 0.643 |
RF | 0.867 | 0.875 | 0.857 | 0.857 | 0.857 | 0.866 |
SVM | 0.800 | 0.857 | 0.750 | 0.750 | 0.800 | 0.804 |
XGBoost | 0.733 | 0.625 | 0.857 | 0.833 | 0.714 | 0.741 |
Vit-Wang (2019) | ||||||
Logistic-all | 0.556 | 0.600 | 0.500 | 0.600 | 0.600 | 0.525 |
Logistic-step | 0.722 | 0.778 | 0.667 | 0.700 | 0.737 | 0.725 |
RF | 0.833 | 0.750 | 0.900 | 0.857 | 0.800 | 0.825 |
SVM | 0.778 | 0.750 | 0.800 | 0.750 | 0.750 | 0.775 |
XGBoost | 0.778 | 0.750 | 0.800 | 0.750 | 0.750 | 0.775 |
Yun (2020) | ||||||
Logistic-all | 0.811 | 0.909 | 0.333 | 0.870 | 0.889 | 0.478 |
Logistic-step | 0.792 | 0.889 | 0.250 | 0.870 | 0.879 | 0.472 |
RF | 0.792 | 0.429 | 0.848 | 0.300 | 0.353 | 0.638 |
SVM | 0.868 | 0.500 | 0.898 | 0.286 | 0.364 | 0.621 |
XGBoost | 0.792 | 0.571 | 0.826 | 0.333 | 0.421 | 0.699 |
Barca (2020) | ||||||
Logistic-all | 0.667 | 0.600 | 0.778 | 0.818 | 0.692 | 0.671 |
Logistic-step | 0.750 | 0.692 | 0.818 | 0.818 | 0.750 | 0.748 |
RF | 0.667 | 0.538 | 0.818 | 0.778 | 0.636 | 0.678 |
SVM | 0.667 | 0.727 | 0.615 | 0.615 | 0.667 | 0.671 |
XGBoost | 0.792 | 0.692 | 0.909 | 0.900 | 0.783 | 0.801 |