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Abstract: Mass loading of functional particles on the surface of nanofibers is the key to efficient
heavy metal treatment. However, it is still difficult to prepare nanofibers with a large number of
functional particle loads on the surface simply and efficiently, which hinders the further improvement
of performance and increases the cost. Here, a new one-step strategy was developed to maximize the
adhesion of graphene oxide (GO) particle to the surface of polyvinylidene fluoride (PVDF) nanofibers,
which was combined with coaxial surface modification technology and blended electrospinning.
The oxygen content on the as-prepared fiber surface increased from 0.44% to 9.32%, showing the
maximized GO load. The increased adsorption sites and improved hydrophilicity greatly promoted
the adsorption effect of Cr(VI). The adsorption capacity for Cr(VI) was 271 mg/g, and 99% removal
rate could be achieved within 2 h for 20 mL Cr(VI) (100 mg/L), which was highly efficient. After five
adsorption–desorption tests, the adsorption removal efficiency of the Cr(VI) maintained more than
80%, exhibiting excellent recycling performance. This simple method achieved maximum loading of
functional particles on the fiber surface, realizing the efficient adsorption of heavy metal ions, which
may promote the development of heavy-metal-polluted water treatment.

Keywords: coaxial electrospinning; graphene oxide; Cr(VI) adsorption; heavy metal wastewater
treatment

1. Introduction

Heavy metal pollution in water has become an environmental problem attracting
worldwide attention because of its toxicity, harm to human health, and hidden danger
to environmental safety. Among them, Cr(VI) is one of the most concerning pollutants
produced by fuel combustion, tanning, electroplating, and the steel industry, with strong
toxicity and carcinogenicity [1–3]. At present, chemical precipitation, membrane separation,
ion exchange, electrochemical reduction, electrodialysis, photocatalysis, and adsorption
have been used to remove Cr(VI) from an aqueous solution [4,5]. Compared with other
technologies, the adsorption method is simple, is low−cost, uses fewer chemicals, is low-
toxicity, and has been widely researched [6–10]. However, it still has disadvantages such as
weak mechanical strength, possible secondary pollution, being difficult to recycle, and being
easy to agglomerate [11,12]. Electrospun nanofibrous membranes (ENFM), as emerging
adsorption materials, are widely used in the treatment of heavy metal pollution in water
because of their highly specific surface area, simple preparation method, good permeability,
and easy surface functionalization [13,14]. The satisfactory adsorption performance can be
obtained through the optimization of membrane structure and the particle modification of
the fiber surface [15].

Electrospinning blended with functional particles and polymer solutions is a common
and simple method to realize the loading of functional particles. Wang et al. [16] utilized a
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electrpspun polyacrylonitrile (PAN) nanofibrous mat as template to obtain a polyacryloni-
trile/polypyrrole core/shell structure for the Cr(VI) removal from aqueous solution. Wang
et al. [17] used heat treatment to prepare a nanofiber membrane with an amine group-rich
surface and an interconnection porous structure, which could achieve an adsorption ca-
pacity of 206 mg/g for Cr(VI) and remained effective after nine reuse cycles. However,
blended electrospinning causes a large number of functional particles to be wrapped in
the fiber, thus affecting the utilization of particles [18–22]. Coaxial electrospinning is an
easy way to prepare core-shell structures. The sheath fluid can be changed into the dis-
persion of functional particles; thus, it is distributed on the surface of core fibers [23–25].
Our previous research also used the particle dispersion as the shell solution and prepared
the functional electrospun fibrous membrane by coaxial electrospinning [26]. Due to the
concentric spinneret, coaxial electrospinning allows functional materials contained in a
sheath solution to be loaded on the nanofiber surface more directly and uniformly than
electrospraying [27]. Xu et al. [28] fabricated porous polyacrylonitrile nanofibrous mem-
branes through the combination of coaxial electrospinning and post-processing, achieving
a uniform and large-scale distribution of nano-magnesium oxide on the fiber surface and
good adsorption performance for Cu(II). However, there are few studies on the preparation
of nanofibrous membranes for ion adsorption by combining coaxial electrospinning and
blended electrospinning, which makes it possible to realize the fiber-surface loading of
more functional particles in a simple one-step way.

Polyvinylidene fluoride (PVDF) is widely used as a substrate material because of its
excellent electrospinning performance, stable mechanical properties, excellent resistance
to high temperatures, and good chemical resistance [29,30]. Graphene oxide (GO) has
excellent adsorption capacity for various ions due to its rich carboxyl, epoxy, hydroxyl, and
other oxygen-containing functional groups [31,32]. Moreover, the addition of GO can also
effectively improve the hydrophilicity of the ENFM, realizing the change of hydrophobic
ENFM into hydrophilic one, thus improving the osmotic flux [33]. At present, GO has been
well applied in the treatment of heavy metal pollution in water. Ren et al. [34] prepared
PVDF–GO membranes by electrospinning with fixed nanoscale zero-valent iron particles,
which were used to remove Cd-(II) and trichloroethylene pollutants in groundwater accord-
ing to the gravity driven membrane filtration mechanism. Zhang et al. [35] prepared the
PAN/GO solution using a mixture of N,N-dimethylformamide (DMF) and water as solvent
and electrostatically spun it to obtain nanofibers with a Cr(VI) adsorption capacity of 382.5
± 6.2 mg/g. Shraban et al. [36] prepared magnetic polyacrylonitrile-GO hybrid nanofibers
by introducing magnetic Fe3O4 for Cr(VI) treatment in aqueous media, achieving a maxi-
mum adsorption capacity of 124.34 mg/g at pH = 3. Therefore, realizing a large amount
of loading of GO on the surface of PVDF nanofibers will further improve the adsorption
capacity of metal ions.

In this study, coaxial electrospinning and blended electrospinning were combined
to prepare a large number of GO-loaded PVDF (PVDF/GO) nanofibrous membrane by
one-step fabrication and realize the maximum GO loading that could not be achieved
by coaxial electrospinning or hybrid electrospinning alone. The PVDF mixed with GO
solution (PVDF–GO) was selected for the core layer solution, and GO dispersion solution
was used for the shell layer solution, which could increase the GO load and effectively
avoid the problem that the electrospinning process cannot be carried out due to the high
GO concentration of the shell layer solution, achieving efficient metal ion adsorption.
Moreover, the good hydrophilicity of GO particles and the excellent mechanical properties
of PVDF nanofibers enabled the PVDF/GO ENFM to be quickly immersed and reused many
times. Most importantly, this simple one-step strategy enables the low-cost and efficient
preparation of nanofibers with a large number of functional particles on the surface, which
further promotes the development and application of functional membrane materials.
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2. Experimental
2.1. Materials and Chemicals

PVDF (MW = 600,000) was purchased from Sigma-Aldrich (Shanghai, China). GO (the
thickness was about 1 nm, the diameter of the lamella was 0.2–10 µm, the specific surface
area was about 150 m2/g, and the oxidation level was 38%) was sourced from Tanfeng
Tech. Inc. (Suzhou, China). DMF and potassium dichromate (K2Cr2O7) were purchased
from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

2.2. Preparation of Electrospun Nanofibrous Membrane

PVDF/GO nanofibrous membranes were prepared by one-step coaxial electrospinning
(i.e., PVDF@GO) combined with blended electrospinning (i.e., PVDF–GO).

2.2.1. Preparation of PVDF ENFM

As shown in Figure 1a, PVDF powder was dissolved in DMF (10 g) solvent and
stirred magnetic force for 12 h to prepare 12 wt% PVDF, denoted as PVDF. The solution
was transferred to 1 mL syringe, and the flow rates was controlled by injection pump at
500 µL/h. The distance between the spinneret and the grounded collector was set to 15 cm,
and a voltage of 20 kV was generated therebetween by a high-voltage power supply. The
prepared nanofiber membrane was named PVDF.
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Figure 1. Schematic diagram of preparation by different electrospinning strategy: (a) preparation
of original PVDF ENFM, (b) blended electrospinning, (c) coaxial electrospinning, and (d) coaxial
electrospinning combined with blended electrospinning.

2.2.2. Preparation of Blended Electrospinning Nanofibers

As shown in Figure 1b, PVDF powder and GO powder of different qualities (0.1 and
0.2 g) were dissolved in DMF (10 g) solvent and stirred magnetic force for 12 h to prepare
12 wt% PVDF and GO (1, 2 wt%) mixed solution, denoted as PVDF–1GO and PVDF–2GO,
respectively. The solution was transferred to 1 mL syringe, and electrospinning used the
same parameters as PVDF. The prepared nanofiber membranes were named PVDF–1GO
and PVDF–2GO, respectively.
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2.2.3. Preparation of Coaxial Electrospinning Nanofibers

As shown in Figure 1c, GO powder was added in DMF solvent to prepare 1 wt% GO
dispersion and stirred at room temperature for 6 h to obtain uniform GO dispersion as
sheath liquid. The PVDF solution was used as core liquid. The solution was transferred to
two 1 mL syringes with the coaxial spinneret, and the flow rates of the internal and external
liquid were controlled by two injection pumps at 500 µL/h and 8 µL/min, respectively.
Other electrospinning parameters were consistent with the above experiment. The prepared
nanofiber membrane was named PVDF@GO.

2.2.4. Preparation of Coaxial Electrospinning Combined with Blended
Electrospinning Nanofibers

As shown in Figure 1d, the uniform GO dispersion as sheath liquid and the above
mixed solution (PVDF–1GO and PVDF–2GO) were used as core liquid. The solution was
transferred to two 1 mL syringes with the coaxial spinneret, and electrospinning used
the same parameters as PVDF@GO. The prepared nanofiber membranes were named
PVDF–1GO@GO and PVDF–2GO@GO, respectively.

2.3. Morphological and Structural Characterizations

The surface morphology of different ENFM was analyzed by scanning electron mi-
croscopy (SEM, SUPRA 55 SAPPHIRE, Carl Zeiss AG, Jena, Germany) to observe and
discuss the effect of GO loading on the nanofiber surface. The content of different char-
acteristic elements in nanofibers was analyzed by energy dispersive X–ray spectroscopy
(EDS, SUPRA 55 SAPPHIRE, Carl Zeiss AG, Jena, Germany). Fourier transform infrared
(FTIR) spectrometer (NICOLET iS10, Thermo Fisher Scientifific, Waltham, MA, USA) was
used to analyze and identify various functional groups.

2.4. Cr(VI) Adsorption Experiments

The K2Cr2O7 powder was dissolved in deionized water to prepare standard solutions
of Cr(VI) with different concentrations. At 25 ◦C, 0.03 g dry PVDF–2GO@GO ENFM
was directly immersed into 20 mL Cr(VI) solutions and shaken in a thermostatic shaker
bath. The pH of the solution was adjusted by hydrogen chloride (HCl) and sodium
hydroxide (NaOH). After a certain time, the supernatant was taken and the concentration
of Cr(VI) in equilibrium solution was measured by UV spectrophotometer. Batch adsorption
experiments were conducted to study the effects of solution pH, the initial concentration of
Cr(VI), and the adsorption time on the adsorption capacity of ENFM. Adsorption capacity
was determined by the following formula:

qe =
C0 − Ce

M
V (1)

where qe is the adsorption capacity (mg/g), Ce and C0 are the equilibrium concentration
and initial concentration of Cr(VI) solution (mg/L), V is volume of the solution (L), and M
is the mass of ENFM (g).

2.5. Adsorption Kinetics

By controlling the dosage of adsorbent, the initial concentration of solution, and the
adsorption temperature, the relationship between the adsorption capacity of adsorbent
and time was investigated. Pseudo-first-order and pseudo-second-order kinetic models
were used to analyze its adsorption behavior. The linear forms of the two models were
defined as

ln(qe − qt) = ln qe − k1t (2)

t
qt

=
1

k2q2
e
+

t
qe

(3)
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where qe and qt represent the amount of metal ion absorbed (mg/g) at equilibrium
and at time t, respectively. k1 and k2 are the pseudo first-order and second-order rate
constants, respectively.

2.6. Adsorption Isotherm

The results of Cr(VI) ion adsorption by PVDF–2GO@GO ENFM were analyzed using
Langmuir isotherm and Freundlich isotherm, respectively. The expression for the Langmuir
isotherm model was defined as

qe = qm
kLCe

1 + kLCe
(4)

where Ce represents the concentration of Cr(VI) ions (mg/L) at equilibrium, and qe and
qm indicate the capacity at adsorption equilibrium and the maximum adsorption capacity,
respectively. kL represent the Langmuir constant (L/mg).

The expression for the Freundlich isotherm model was defined as

qe = kFC
1
n
e (5)

where Ce is the equilibrium concentration of Cr(VI) solution (mg/L), n is the adsorption
capacity, qe is the adsorption capacity at equilibrium (mg/g), and kF is the Freundlich
adsorption coefficient.

2.7. Desorption Experiment and Reusability

In the desorption studies, NaOH solution was used as a desorption solution. The
PVDF–2GO@GO ENFM was immersed into 30 mL NaOH (0.01 M) solution and shaken
in a thermostatic shaker bath at 25 ◦C for 2 h. Before the next adsorption experiment, the
nanofiber membrane was soaked in 0.1 M HCl solution. Then, the ENFM were washed
repeatedly with deionized water and dried in an oven for 30 min. The experiments were
repeated 5 times to verify the reusability of the prepared nanofiber membrane.

3. Results and Discussion
3.1. Design of Nanofibers to Maximize the Number of Surface Adsorption Sites

The adsorption of Cr(VI) is mainly achieved by the oxygen-containing functional
groups on the surface of the nanofibers [31]. Many studies have adopted the method of
blending to add adsorption functional particles, but only a small number of adsorption sites
appear on the surface, and the utilization rate was insufficient. The coaxial electrospinning
method enables more adsorption sites to be distributed on the surface of the nanofibers [24],
effectively increasing the removal effect of harmful metal ions.

The processes of preparing nanofibrous membranes by different electrospinning strate-
gies are shown in Figure 1. When only PVDF fibers were electrospun, there was no particle
load on the fiber surface, and the fiber image was white, as shown in Figure 1a; when
the mixed solution of PVDF and GO was electrospun, only a small amount of GO was
supported because the excessive GO content would lead to high solution viscosity, and the
membrane began to darken, as shown in Figure 1b [37]; as for the coaxial electrospinning
only, the high content of GO in the shell solution would block the needle, while GO particles
could be more loaded on the fiber surface without being embedded compared to hybrid
electrospinning so that the fiber membrane became further black, as shown in Figure 1c [38];
they were all not conducive to the preparation of nanofibers with maximum GO load on the
nanofiber surface. Thus, PVDF–GO nanofibers were prepared by coaxial electrospinning
combined with hybrid electrospinning to maximize the adsorption sites on the nanofiber
surface based on the experimental verification of the maximum acceptable amount of GO
content in the shell and core layer solutions, which contributed to a highest GO content,
and the membrane was the blackest, as shown in Figure 1d. Moreover, the hydrophilicity
of GO also made it an effective strategy to effectively apply hydrophobic materials with
stronger properties to water treatment.
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3.2. Morphology and Chemical Characterizations of the Nanofibers

Figure 2 showed the FTIR spectra of GO, and the PVDF ENFM with different GO
contents. The peaks at 1728 and 3350 cm−1 corresponded with the C=O and −OH stretching,
respectively, which indicated the presence of carboxyl and hydroxyl functional groups in
GO. The characteristic peak at 1624 cm−1 was due to the stretching of C=C in the phenol
ring derived from the graphene oxide skeleton. For the PVDF membrane, the peaks at 1402
and 1172 cm−1 could arise out of the stretching and deformation vibrations of CH2 as well
as the CF2 stretching vibration, respectively. These peaks also appeared in the spectrum
obtained for the blended membrane. In addition, inside the dashed box is an enlarged view
of the spectrum at 1649 cm−1. A new feature at 1649 cm−1 was seen in the spectrum of the
PVDF and GO hybrid membrane when compared to that of the PVDF membrane, which
was similar to the result of previous experiments [39,40]. The sharp absorption peaks at
602, 742, 838, and 1172 cm−1 can be attributed to the vibration absorption of the α-phase of
PVDF, and the absorption peaks at 838 and 1280 cm−1 can be ascribed to the β-phase of
PVDF. With the increase in GO load, all α-phase peaks decrease in intensity and β-phase
peaks increased in intensity. The above results were similar to those of Chen et al. [20].
These results demonstrated that the large number of graphene oxide particles uniformly
dispersed in PVDF enhances its α-phase to β-phase transition, due to the matching of
the crystal lattice of GO with the β-phase of PVDF [20,41]. These results indicated the
successful preparation of PVDF nanofibers loaded with GO.
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Figure 3 shows the SEM images of the surface morphologies of nanofibers with
different GO contents and different processes. It can be seen from Figure 3a that the
electrospun PVDF nanofibers have a smooth surface. As shown in Figure 3b–f, after
adding GO, the nanofibers exhibited a rough surface; the appearance of GO particles was
observed on the surface of PVDF nanofibers; and the average fiber diameter became larger,
which was due to the increase in solution viscosity caused by the addition of GO—thus
the stretching of electrospinning jet was hindered [35,42,43]. The diameter of the PVDF,
PVDF–1GO, PVDF@GO, PVDF–2GO, PVDF–1GO@GO, and PVDF–2GO@GO fibers were
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337, 396, 490, 498, 444, and 649 nm, respectively. Moreover, as shown in Figure 1, it could
be easily observed that the color of the prepared ENFM surface became darker as the
increase in loading GO contents. Compared with the hybrid electrospinning only, the GO
particles loaded on the surface of the nanofibers were significantly increased by coaxial
electrospinning. This is also an effective way to solve the difficulty of GO wrapping during
the electrospinning process [42].
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As shown in Figure 4a, the content of oxygen element of different nanofibers was
measured by EDS to quantify the adhesion of GO on the fiber surface. The picture
showed the elemental mapping for the oxygen element of PVDF–2GO@GO ENFM.
The oxygen element could be attributed to the existence of GO. With the increasing
content of GO, the content of oxygen element increased from 0.44% to 9.32%; this also
indicated that GO was successfully incorporated into PVDF nanofibers. In addition,
when the same amount of GO was added, the content of oxygen element on the surface
of the nanofibers prepared by coaxial electrospinning was also greatly improved
compared with that of hybrid electrospinning, which reflected the advantages of
coaxial electrospinning. For hybrid electrospinning, GO and PVDF were in a state of
mutual mixing and were uniformly distributed in the nanofibers. After increasing
the content of GO, there would be an increase in GO in the whole fiber (including the
surface and inside of the fiber). After being combined with coaxial electrospinning, the
GO dispersion of the shell layer was directly modified on the surface of the nanofiber
of the core layer under the action of the coaxial spinneret, thereby increasing the GO
content on the fiber surface. When the concentration of GO in the core layer solution
was increased, the GO content on the surface of the nanofibers could be increased
before the GO in the shell layer attaching, so that the GO content on the surface of the
finally obtained nanofibers could be further improved.
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The good wettability and immersing degree of ENFM have positive effects on efficient
water treatment. Therefore, water contact angle tests were performed to explore the effect of
GO content on the wettability and immersion degree of PVDF ENFM. Figure 4b illustrates
the contact angles of different nanofiber membranes. The pristine PVDF ENFM exhibited
higher hydrophobicity (140◦) due to the intrinsic low surface energy of the fluorine in
fluoropolymer [44], which had a weak affinity for water molecules; this prevented the
penetration of water molecules into the ENFM [45,46], hindering immersion in liquid, as
shown in Figure S1. With the increase in GO content, the water contact angle gradually
decreased from 140◦ to 117◦ [39] and the state of immersion in solution became completely
immersed. The full immersion of PVDF–2GO@GO ENFM in solution can make the ad-
sorption site come into full contact with heavy metal ions, thus significantly improving
the removal efficiency of Cr(VI). It was also an effective strategy to apply hydrophobic
materials with excellent mechanical properties to water treatment, which could effectively
improve the problem that the hydrophilic materials are easily damaged and difficult to
treat using secondary treatment, due to long-term soaking in the water-treatment process.

3.3. Effects of Different Nanofibers and pH on Adsorption

Figure 5a showed the Cr(VI) removal effect of PVDF-based ENFM prepared by dif-
ferent GO contents and different methods within 2 h. The pristine PVDF membrane had
a relatively low removal efficiency about 5.8%. With the increase in GO content, the re-
moval rate in the same time also increased significantly. In addition, the PVDF@GO ENFM
prepared by coaxial electrospinning also significantly improved the removal efficiency of
Cr(VI) compared with the PVDF–1GO ENFM prepared by hybrid electrospinning. The
PVDF–1GO@GO ENFM could reach the adsorption equilibrium faster than the PVDF–2GO
nanofiber membrane prepared by hybrid electrospinning only. On this basis, the adsorption
equilibrium of the PVDF–2GO@GO ENFM was reached within 1.5 h, and the removal rate
reached 99%. According to the comparison of the adsorption effect of PVDF–1GO@GO
ENFM and the previous four nanofibers, it could be seen that the combination of coaxial
and hybrid electrospinning was an effective method and could reach the removal rate of
more than 95% within 2 h. In addition, the adsorption time of PVDF–2GO@GO ENFM was
only 1.5 h, indicating that we could accelerate the adsorption of Cr(VI) on the basis of this
process method, to improve the adsorption effect in terms of efficiency. This also verified
the effective increase in adsorption sites on the surface of nanofibers with the significant
enhancement of the Cr(VI) removal ability.
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The pH value of the solution also had a great influence on the adsorption and removal
of Cr(VI) by ENFM [47]. The influence of solution pH value in the range of 1–7 on the
removal of Cr(VI) during the adsorption time of 2 h by using the obtained PVDF–2GO@GO
ENFM is shown in Figure 5b. With the increase in pH value, the adsorption capacity also
decreased gradually. When the initial pH changed from 1 to 7, the removal percentage
decreased from 99% to 1%. When pH values were lower than 6.8, the predominant species
was hydrogen chromate (HCrO4−) coexisting with dichromate ions (Cr2O7

2−). In an
acidic media, more H+ ions accumulated on the adsorbent surface, and the protonated
adsorbent in the PVDF–2GO@GO ENFM resulted in negatively charged Cr(VI) substances
being attracted to the positively charged surface through electrostatic attraction. With more
adsorption sites on the surface, the degree of protonation became higher, and the adsorption
capacity was also significantly improved. The increase in pH led to a relative decrease in
the protonation of the membrane surface, resulting in a weaker electrostatic attraction to the
free oxygen anion and a decrease in the adsorption capacity [48]. When the pH > 6.8, the
dominant species is chromate (CrO4

2−). OH− ions aggregated on the surface of the ENFM,
resulting in its negative charge and electrostatic repulsion with negative Cr(VI) species,
which greatly hindered the adsorption effect. Because PVDF–2GO@GO ENFM had the
highest GO content, it was used in the next test. Generally, the pH values of electroplating
and tanning wastewater are in the range of 2–5 and 7–8, respectively [49]. Among them,
electroplating wastewater usually contains higher concentrations of Cr(VI) [50]. Therefore,
subsequent experiments were carried out at the pH = 2.

3.4. Adsorption Efficiency and Kinetics

Figure 6 indicated the effect of 0.04 g PVDF–2GO@GO nanofibers on the removal of
Cr(VI) from 35 mL of solution (100 mg/L) as a function of time. Obviously, during the
initial time, the adsorption capacity increased more rapidly. After 240 min, the adsorption
gradually reached the equilibrium point, and the adsorption capacity of PVDF–2GO@GO
ENFM did not change significantly. The removal efficiency reached 99%, and the color of
the solution changed from golden yellow to colorless.
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In order to further explain the sorption behavior of Cr(VI) ions by PVDF–2GO@GO
ENFM, the experimental adsorption data were analyzed using two commonly used kinetic
models, namely, the pseudo-first-order and the pseudo-second-order [51]. The results
of Cr(VI) adsorption on PVDF–2GO@GO ENFM fitted by the kinetic model are shown
in Figure 7a,b and Table 1. The behavior of Cr(VI) adsorption is more in line with the
pseudo-second-order model, as evidenced by the significantly lower R2-values of the
pseudo-first-order model. This indicated that the adsorption process was restricted by
chemisorption, which mainly involved sharing and transferring of electrons on the surface
of PVDF–2GO@GO ENFM [52]. In addition, the pseudo-second-order kinetic model was
also highly correlated, indicating the possibility that a certain physical adsorption process
simultaneously exists to promote adsorption. The line graph of the pseudo-first-order
kinetic model was plotted by ln(qe − qt) versus time, so the equilibrium adsorption amount
qe must be obtained first. However, in the actual adsorption process, it took a long time to
reach equilibrium, and the measured value of qe was not accurate enough. Therefore, it
was often only suitable for the kinetic description of the initial stage of adsorption. After a
period of adsorption, there will be a large deviation between the experimental data and the
theoretical data [53].
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Table 1. Comparison of kinetic parameters between the pseudo-first-order and pseudo-second-order
models for Cr(VI) adsorption with PVDF–2GO@GO ENFM.

Model Parameters Values

Pseudo-first-order

qe (mg·g−1) 68.23

k1 (min−1) 0.3830

R2 0.9802

Pseudo-second-order

qe (mg · g−1) 99.21

k2 (g·mg−1·min−1) 1.8314 × 10−4

R2 0.9927

3.5. Adsorption Isotherm

As shown in Figure 8, the adsorption capacity of PVDF–2GO@GO ENFM was also
investigated at different initial concentrations of Cr(VI) in solutions ranging from 25
to 400 mg/L. However, at higher Cr(VI) concentrations, the saturation of the active
sites resulted in a slow increase in adsorption capacity until the insignificant change
of adsorption capacity.

The adsorption isotherm refers to the relationship between the residual ion concen-
tration and the equilibrium adsorption capacity at a certain temperature. In this study,
the Langmuir adsorption isotherm model and Freundlich adsorption isotherm model
were used to further analyze the adsorption behavior of the PVDF–2GO@GO ENFM,
where the Langmuir isotherm represented a single molecular layer adsorption, indicating
that the individual adsorption sites of PVDF–2GO@GO ENFM were independent of each
other and homogeneous. The Freundlich isotherm could be used to explain multilayer
adsorption, where the heat of adsorption and affinity were unevenly distributed on a
non-uniform surface [54].
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Figure 8. Effect of initial concentration of Cr(VI) aqueous solution on the adsorption capacity of
PVDF–2GO@GO nanofibrous membranes.

Figure 9 shows the fitting curve of both the isotherm models, and Table 2 shows the
model parameter values, which were calculated by the linear fitting equation. It could be
seen that the correlation coefficient value of the Freundlich isotherm model equation for
the adsorption of Cr(VI) by PVDF–2GO@GO ENFM was lower than that of the Langmuir
isotherm model equation (0.9925 vs. 0.9808), which proved that the process was more
suitable for analysis using the Langmuir model. Therefore, the adsorption behavior of
the prepared nanofiber membranes for Cr(VI) relied mainly on the monolayer adsorption
mode. There was no interaction between the adsorbates, and adsorption saturation was
achieved when the adsorption sites were all occupied. The PVDF–2GO@GO ENFM had the
characteristics of strong adsorption capacity, simple synthesis, and low cost, which further
indicated its application potential in industrial wastewater treatment.
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Table 2. Comparison of kinetic parameters between the Langmuir and Freundlich models of Cr(VI)
adsorption with PVDF–2GO@GO ENFM.

Model Parameters Values

Langmuir isotherm model

qm (mg·g−1) 172.12

kL (L·g−1) 0.4878

R2 0.9925

Freundlich isotherm model

n 5.7326

kF (mg·g−1) 75.6509

R2 0.9808

3.6. Regeneration Study of PVDF–2GO@GO Nanofibrous Membranes

Since the PVDF–2GO@GO ENFM had the best adsorption effect on Cr(VI) ions at lower
pH values, the desorption of Cr(VI) could be achieved by alkali solution. In order to explore
the recycling ability of PVDF–2GO@GO ENFM to adsorb Cr(VI) ions, five adsorption–
desorption experiments were carried out successively. As shown in Figure 10a, the Cr(VI)
adsorption capacity still remained above 80%.It can also be seen from Figure 10b that the
nanofiber membrane after desorption was relatively well preserved, had good mechanical
strength, and was easy to handle. The results showed that PVDF–2GO@GO ENFM had
good reusability in the process of processing Cr(VI), as well as excellent recyclability. As
shown in Table 3, the performance parameters of Cr(VI) adsorption in different types
of literature were listed. Compared with the existing literature, the as-prepared PVDF–
2GO@GO ENFM showed satisfactory results in terms of adsorption performance, but the
step was simpler, which was beneficial to scale up production.
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Table 3. Comparison of adsorption performance of the PVDF–2GO@GO nanofibrous membranes
with other adsorbents for Cr(VI).

Adsorbent Adsorbent
Quality (g) pH Equilibrium

Time (h)

Maximum
Adsorption Capacity

(mg/g)
Ref.

GO–EDTA composite 0.05 1.8 12 37 [55]

Natural clay/Fe3O4/GO composite 1 g/L 3 1 71 [56]

GO-Fe3O4 0.1 2 1.4 3 [57]

NH2-GO decorated with Fe3O4 nanoparticles 0.2 g/L 2 12 123 [58]

PAN-GO-Fe3O4 composite nanofibers 0.06 3 1.1 124 [36]

PAN-NH2 nanofibers 0.025 2 1.5 137 [59]

Polyaniline-coated PVDF-HFP nanofibrous membranes 0.01 1.5 24 41 [44]

PAN/PPy core–shell structure nanofibers 0.1 2 12 75 [16]

PA 6/CS@FexOy composite nanofibers 0.005 3 24 89 [60]

aminated-EVOH nanofiber membranes 0.05 2 8 d 235 [61]

Amidine PAN nanofibers 0.01 3 4 225 [62]

Chitosan/g-C3N4/TiO2 nanofibers 0.01 2 4 239 [63]

Porous PAN/GO nanofibers 0.05 3 1 382 [35]

PVDF–2GO@GO nanofibrous membranes 0.035 2 2 271 This study

4. Conclusions

In this study, the PVDF–2GO@GO ENFM with maximum adsorption sites on the
surface were obtained with a simple coaxial electrospinning and hybrid electrospinning
synergistic process, which can effectively adsorb Cr(VI) ions in aqueous solution. The
loaded GO nanoparticles obviously increased the oxygen content on the nanofiber surface
from 0.44% to 9.32% and promoted the immersion process of the nanofiber membrane,
which endowed the PVDF–2GO@GO ENFM with excellent adsorption capacity for Cr(VI)
ions, reaching 271 mg/g. Moreover, the 99% removal rate for 20 mL Cr(VI) solution could
be achieved within 2 h, and the used ENFM could effectively recover Cr(VI) for reusability.
Thus, the coaxial electrospinning combined with the hybrid electrospinning process could
effectively maximize the adsorption site content and utilization rate on the nanofiber
surface, which greatly improved the water treatment effect. This strategy will further
promote the application of functional particles on electrospun nanofibrous membranes and
promote the development of water treatment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12183115/s1, Figure S1: immersion of different nanofibers
(left to right: PVDF; PVDF–GO; PVDF@GO; PVDF–2GO; PVDF–1GO@GO; PVDF–2GO@GO).
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