Table 3.
Treatments | Conditions | Effects | Reference |
---|---|---|---|
Micropropagation | In vitro of plants from young germinated plantlets by axillary shoots. | Wild plants showed the highest phenolic content (13.06 mg EGA g−1). The antioxidant capacity was higher in vitro (369.84 µmol TE g−1 DW) than in normal ex vitro conditions (184.13 µmol TE g−1 DW) and with ex vitro irrigation (143.38 µmol TE g−1 DW) and than in wild conditions (130.39 μmol TE g−1 DW). Glycosylated flavanols were detected in plants with ex vitro irrigation (quercetin) and under normal ex vitro conditions (kaempferol). Saponins were detected: hecogenin (0.418–5.227 mg EHe g−1), tigogenin (18.821–31 mg EHe g−1), mannogenin (0.288–0.861 mg EHe g−1), and chlorogenin (0.339–2.042 mg EHe g−1). |
[47] |
Micropropagation was from axillary shoots. Leaf tissue samples were taken from the in vitro plants, ex vitro acclimated plants obtained from open environment conditions, and plants obtained from a natural population. | The total phenolic acids were 35 and 40% higher in plants propagated in vitro (11.8 mg GAE g−1 DW) and ex vitro (10.8 mg GAE g−1 DW), compared with the wild type (7 mg GAE g−1 DW). The saponin content of plants in vitro (77.1 mg PE g−1 DW) and ex vitro (63.3 mg PE g−1 DW) were higher than those of wild type plants (2.1 mg PE g−1 DW). The antioxidant capacity (ORAC) of the plants in vitro (369 μmol TE g−1 DW) was higher compared to ex vitro and wild type (184 and 146 μmol TE g−1 DW, respectively). |
[45] | |
Hydrometanolic extraction was applied to the foliar tissues and the content of flavonols and saponins was analyzed. | The plants propagated in vitro presented a higher concentration of flavonols and saponins, quantifying 7 flavanols and 5 saponins. Herbacetin (most abundant flavonol found): wild plants (14.7 mg 100 g−1 DW), in vitro (16.3 mg 100 g−1 DW), in an open environment (38.4 mg 100 g−1). Tigogenin (most abundant saponin found and only detected in plants propagated): in vitro with 6895.2 mgPE 100 g−1 DW and 4997.8 mgPE 100 g−1 DW. |
[48] | |
In vitro drought stress effect, generated by polyethylene glycol. | Stress medium: Murashige and Skoog (4.4 g L−1, pH 5.8, 30 g L−1 sucrose, and L2 vitamins) with polyethylene-glycol (0, 10, 20, 30%, 27 °C, photoperiod of 12:12 h light:dark, 60 days). |
Plants grown with polyethylene glycol (30%) showed the lowest flavonol content, but the highest saponin content (tigogenin glycoside, 163 mg PE g−1 DW) and the highest antioxidant capacity (ORAC) (≈1000 mmol TE g−1 DW). | [49] |
Ultrasonically-assisted supercritical fluid extraction (USFE). | Bagasse of Agave salmiana (part not indicated; 10 g). Process factors were pressure (150–450 bar), temperature (40–60 °C), and amount of co-solvent (5–10%). | Increased antioxidant capacity (FRAP) with the use of multiplate (US) transducer geometry of extracts at 20.91 μmol TE g−1 and saponin content at 61.59 μg g−1; comparing with the cylinder geometry (with 12.18 TE g−1 and 19.05 μg g−1, respectively). | [46] |