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Abstract

Automated construction of surface geometries of cardiac structures from volumetric medical 

images is important for a number of clinical applications. While deep-learning-based approaches 

have demonstrated promising reconstruction precision, these approaches have mostly focused 

on voxel-wise segmentation followed by surface reconstruction and post-processing techniques. 

However, such approaches suffer from a number of limitations including disconnected regions or 

incorrect surface topology due to erroneous segmentation and stair-case artifacts due to limited 

segmentation resolution. We propose a novel deep-learning-based approach that directly predicts 

whole heart surface meshes from volumetric CT and MR image data. Our approach leverages a 

graph convolutional neural network to predict deformation on mesh vertices from a pre-defined 

mesh template to reconstruct multiple anatomical structures in a 3D image volume. Our method 

demonstrated promising performance of generating whole heart reconstructions with as good or 

better accuracy than prior deep-learning-based methods on both CT and MR data. Furthermore, 

by deforming a template mesh, our method can generate whole heart geometries with better 

anatomical consistency and produce high-resolution geometries from lower resolution input image 

data. Our method was also able to produce temporally-consistent surface mesh predictions for 

heart motion from CT or MR cine sequences, and therefore can potentially be applied for 

efficiently constructing 4D whole heart dynamics. Our code and pre-trained networks are available 

at https://github.com/fkong7/MeshDeformNet
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1. Introduction

Three-dimensional (3D) geometries of anatomical structures reconstructed from volumetric 

medical images are increasingly used for a number of clinical applications, such as 

patient-specific visualization (González Izard et al., 2020), physics-based simulation, virtual 

surgery planning and morphology assessment (Prakosa et al., 2018; Bucioli et al., 2017). 

As cardiovascular diseases are the leading causes of mortality, one area of research that 

currently receives considerable attention is computational modeling and visualization of 

the heart from patient-specific image data (Prakosa et al., 2018; Chnafa et al., 2016; 

Khalafvand et al., 2012). Creating accurate patient-specific models of the whole heart 

from image data has traditionally required significant time and human effort, limiting 

clinical applications and high-throughput, large-cohort analyses of patient-specific cardiac 

functions (Mittal et al., 2015). While surface representation of the whole heart is important 

for the aforementioned applications, most studies have focused on image segmentation 

rather than direct surface reconstruction (Payer et al., 2018; Bai et al., 2015; Ye et al., 

2019). Nevertheless, accurate and reliable automatic whole heart segmentation remains an 

ongoing challenge and an active research direction (Zhuang et al., 2019; Zhuang, 2013; 

Peng et al., 2016). Much of the challenge is related to the complex geometries of the heart, 

large structural deformation over the cardiac cycle, difficulties in differentiating individual 

cardiac structures from each other and the surrounding tissue, as well as variations across 

individuals, different imaging modalities, systems, and centers.

Prior cardiac model construction efforts have typically adopted a multistage approach 

whereby 3D segmentations of cardiac structures are first obtained from image volumes, 

meshes of the segmented regions are then generated using marching cube algorithms, 

and finally manual surface post-processing or editing is performed (Lorensen and Cline, 

1987; Kong and Shadden, 2020; Maher et al., 2019; Augustin et al., 2016). The quality of 

reconstructed surfaces highly depends on the quality of segmentation and the complexity of 

the anatomical structures. Automatic heart segmentation has been a popular research topic 

and previously published algorithms have been summarized in detail (Zhuang, 2013; Zhuang 

et al., 2019; Peng et al., 2016; Habijan et al., 2020). Generally, there are two common 

approaches to whole heart segmentation: multi-atlas segmentation (MAS) (Bai et al., 

2015; Zhuang et al., 2015; Zhuang and Shen, 2016) and deep-learning-based segmentation 

(Ronneberger et al., 2015; Çiçek et al., 2016). Compared with MAS, deep-learning-based 

approaches have become more popular as they have demonstrated higher segmentation 

precision (Zhuang et al., 2019; Payer et al., 2018) and are much faster in practice. While 

a couple of recent studies have reduced the processing time of MAS approaches down 

to a couple of minutes (Bui et al., 2020; Bui et al., 2020), deep-learning-based approach 

can generally process a whole heart segmentation within a couple of seconds. However, 

while deep-learning-based methods may produce segmentations that achieve high average 

voxel-wise accuracy, they can contain extraneous regions and other nonphysical artifacts. 

Correcting such artifacts would require a number of carefully designed post-processing steps 

and sometimes manual efforts (Kong and Shadden, 2020). Indeed, since the CNN-based 

segmentation methods are based on classification of each image voxel to a particular tissue 

class, the neural networks are often trained to reduce voxel-wise discrepancy between 

Kong et al. Page 2

Med Image Anal. Author manuscript; available in PMC 2022 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the predicted segmentation and the ground truth and therefore lack awareness of the 

overall anatomy and topology of the target organs. Moreover, CNN-based 3D segmentation 

methods are memory intensive and therefore require downsampling of the data to fit within 

memory and thus can only generate segmentation with limited resolution. However, high-

resolution geometries are often required for down-stream applications such as computational 

simulations, and direct or low-resolution segmentation will often produce surfaces with 

staircase artifacts that require additional post-processing (Wei et al., 2018; 2013; Updegrove 

et al., 2016).

Compared with representing whole heart geometries as segmentations on a dense voxel 

grid, representing the geometries as meshes is a more compact representation, as only point 

coordinates on the organ boundaries need to be stored. This advantage may enable efficient 

reconstruction of high-resolution surface meshes on a limited memory budget and avoid the 

stair-case artifacts of surfaces constructed from low-resolution 3D segmentation. Moreover, 

for low-resolution input images, voxel-wise segmentation would be a coarse representation 

of the underlying cardiac structures, but a surface mesh representation can still function as a 

smoother and more realistic representation of the shapes as the mesh vertices are defined in 

a continuous coordinate space and do not have to align with the input voxel grid.

Some studies have adopted a model-based approach to directly fit surfaces meshes of the 

heart to target images (Ecabert et al., 2008; Ecabert et al., 2011; Peters et al., 2010). 

Such approaches deform a template mesh using local optimization to match with tissue 

boundaries on input images. However, they are often sensitive to initialization and require 

complicated steps and manual efforts to construct a mean template of the heart. A recent 

study by Zhang et al. (2020) proposed deep learning to learn the initialization of the active 

contour method–a model-based approach–to help solve for the contours of the target tissues. 

Alternatively, others have turned to pure deep learning methods that do not require test-time 

optimization. Ye et al. (2021) proposed a deep learning approach to jointly predict the 

segmentation and the geometry of the left ventricle in the form of a point cloud from the 

image data.

Recent progress on geometric deep learning has extended the concepts of convolutional 

neural network on irregular graphs (Defferrard et al., 2016; Bronstein et al., 2017). Recent 

deep-learning-based approaches have shown promise in reconstructing shapes as surface 

meshes from image data using graph convolutional neural networks (Wang et al., 2020a; 

Wen et al., 2019; Pontes et al., 2019). However, these approaches have focused on 

reconstructing a single shape from a 2D camera image and thus cannot be directly applied to 

reconstructing multiple anatomical structures from volumetric medical image data. A recent 

study from Wickramasinghe et al. (2020) extended the work of Wang et al. (2020a) to 3D 

volumetric medical image data and demonstrated improved segmentation results. However, 

their method demonstrated success only on simple geometries such the liver, hippocampus 

and synaptic junction but not on the whole heart that involves multiple cardiac structures 

with widely varying shapes.

To overcome these shortcomings, we explore the problem of using a deep-learning-based 

approach to directly predict surface meshes of multiple cardiac structures from volumetric 
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image data. Our approach leverages a graph convolutional neural network to predict 

deformation on mesh vertices from a pre-defined mesh template to fit multiple anatomical 

structures in a 3D image volume. The mesh deformation is conditioned on image features 

extracted by a CNN-based image encoder. Since cardiac structures such as heart chambers 

are homeomorphic to a sphere, we use spheres as our initial mesh templates, which can 

be considered as a topological prior of the cardiac structures. Compared with classification-

based approaches, our approach can reduce extraneous regions that are anatomically 

inconsistent. Using a generic initial mesh also enables our approach to be easily adapted 

to other anatomical structures.

The key contributions of our work are as follows:

1. We propose the first end-to-end deep-learning-based approach of predicting 

multiple anatomical structures in the form of surfaces meshes from 3D image 

data. We show that our method was able to better produce whole-heart 

geometries from both CT and MR images compared to classification-based 

approaches.

2. We investigate and compare the impact of dataset size and variability on whole-

heart reconstruction performance to different methods. When having trained on 

both small and larger training datasets, our method demonstrated better Dice 

scores for most of the cardiac structures reconstructed than prior approaches.

3. As cardiac MR image data often have large variation across different data 

sources, we compare different methods and demonstrate the advantage of our 

approach on MR images with varying through-plane resolution as well as on 

low-resolution MR images that differ significantly from our training datasets.

4. Since our approach predicts deformation from a template mesh, we show that our 

reconstructions generally have point correspondence across different time frames 

and different patients by consistently mapping mesh vertices on the templates to 

similar structural regions of the heart. We demonstrate the potential application 

of our method on efficiently constructing 4D whole heart dynamics that captures 

the motion of a beating heart from a time-series of images.

2. Methods

2.1. Dataset information

Since cardiac medical image data is sensitive to a number of factors, including differences 

in vendors, modalities and acquisition protocols across clinical centers, deep-learning-based 

methods can be easily biased to these factors. Therefore, we aimed to develop our models 

using whole heart image data collected from different sources, vendors and imaging 

modalities. We included data from four existing public datasets that contain contrast-

enhanced CT images or MR images that cover the whole heart. These four datasets are from 

the multi-modality whole heart segmentation challenge (MMWHS) Zhuang et al. (2019), 

orCalScore challenge (Wolterink et al., 2016), left atrial wall thickness challenge (SLAWT) 

(Karim et al., 2018) and left atrial segmentation challenge (LASC) (Tobon-Gomez et al., 

2015). The use of such diverse data enables us to not only better evaluate the reconstruction 
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accuracy of our trained model but also evaluate the impact of dataset size and variability on 

model performance.

Additional time-series CT and MR images were collected to evaluate the performance of 

our trained neural network models on time-series image data acquired from different data 

sources from the training data. The time-series CT data were from 10 patients with left 

ventricular diastolic dysfunction. The 9 sets of cine cardic MR data were from 5 healthy 

subjects and 4 patients with cardiac diseases. All data was de-identified and previously 

collected for other purposes. The details of the datasets used and collected are described 

in the following sub-sections and summarized in Table 1. We followed the same method 

of Zhuang et al. (2019) to manually delineate seven cardiac structures: LV, LA, RA, RV, 

myocardium, aorta and pulmonary artery for the collected image data that did not have 

ground truth annotations of the whole heart.

2.2. Geometry reconstruction from volumetric images

Our framework consists of three components to predict the whole-heart meshes from a 

volumetric input image: (1) an image encoding module that extracts and encodes image 

features, (2) a mesh deformation module that combines features from images and meshes to 

predict deformation of mesh vertices, and (3) a segmentation module that predicts a binary 

segmentation map to allow additional supervision using ground truth annotations. Fig. 1 

shows the overall architecture.

2.2.1. Image encoding module—For an input image data, the image encoding module 

uses a series of 3D convolutional layers to extract volumetric image feature maps at multiple 

resolutions. These feature maps are required by the following mesh deformation module 

to predict whole-heart geometries. Therefore, the image encoder should both be effective 

for better geometric reconstruction and be memory-efficient to process a 128 × 128 × 

128 volumetric input image in a single pass. Our image feature encoder is based on an 

improved 3D UNet architecture that was designed to work effectively for large volumetric 

image data (Isensee et al., 2018). Briefly, the feature encoder architecture consists of 

multiple levels of residual blocks that encode increasingly abstract representations of the 

input. Residual connections are known to facilitate gradient propagation during training 

and improve generalization (He et al., 2016). Each residual block contains two 3 × 3 × 3 

convolutional layers and a dropout layer before the last convolutional layer. The input to the 

first convolutional layer is then added to the output of the last one. After each residual block, 

we use a 3 × 3 × 3 convolutional layer with input stride 2 to reduce the resolution of the 

feature maps.

2.2.2. Segmentation module—While our purpose is to reconstruct surface meshes 

directly from image data, the ground truth segmentation can function as an additional 

supervision to the network to further facilitate training. From our experiments, including 

the segmentation module helped avoid non-manifold geometries due to local minimums 

and thus improve reconstruction accuracy. Since the ground truth mesh is a sparse 

representation of the cardiac structures compared with a volumetric segmentation, including 

the segmentation as a dense supervision with skip connections to the image feature encoder 
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can improve gradient propagation to the image encoding module to better interpret the 

full volumetric input data. However, since we are only interested in reconstructing meshes, 

rather than predicting segmentations for all cardiac structure, our segmentation module is 

trained to predict only a binary segmentation representing the occupancy of the heart in the 

input image. The adopted network architecture is simplified from the decoder architecture 

of Isensee et al. (2018) with only a small number of filters in the convolutional layers. 

Briefly, the segmentation module contains multiple levels of decoder convolutional blocks 

that correspond to the residual blocks from the image encoding module to reconstruct 

segmentation from extracted features. Following a 3 × 3 × 3 convolution of the up-sampled 

intermediate output, a decoder convolutional block concatenates the current output with the 

corresponding output from the residual blocks of the image encoding module and then uses 

a 1 × 1 × 1 convolutional layer to process the concatenated features. Binary segmentation 

predictions were generated from three different levels of the segmentation module and added 

together to form the final prediction.

2.2.3. Graph convolution on mesh—Our neural network uses graph convolutions on 

a template mesh to predict deformation vectors on its vertices. Unlike for structured data 

such as images, convolution in the spatial domain is not well defined for manifold structures 

such as meshes. Therefore, we apply graph convolution in the frequency domain following 

recent process in graph convolutional neural networks (Bronstein et al., 2017; Defferrard 

et al., 2016). Briefly, our template mesh is represented by a graph ℳ = ( V , ℰ ), where 

V = vi i = 1
N  is the set of N vertices and ℰ = ei i = 1

E  is the set of E edges that define the 

connections among mesh vertices. The graph adjacency matrix A ∈ {0, 1}N×N is a sparse 

matrix that defines the connection between each pair of vertices, with Aij = 0 if vertices vi 

and vj are not connected and Aij = 1 if the two vertices are connected. The degree matrix D 
is a diagonal matrix that represents the degree of each vertex, with Dii = ∑jAji. Therefore, 

the graph Laplacian matrix is a real and symmetric matrix defined as L = D − A, which 

can then be normalized as Lnorm = I − D−1/2AD−1/2. The normalized Laplacian matrix 

can be diagonalized by the Fourier basis on graph U ∈ ℝN × N as Lnorm = U ΛUT. The 

columns of U are the orthogonal eigenvectors of L and Λ is a diagonal matrix containing the 

corresponding eigenvalues. The Fourier transform of a function defined on mesh vertices, 

f ∈ L2( V ), is thus described by f = UTf and the inverse Fourier transform is f = Uf . 

Therefore, convolution between f and g ∈ L2( V ) is described as f * g = U ((UT f) ⊙ (UT g). 

If we parameterize g with learnable weights, a graph convolution layer can then be defined 

as fout = σ(Ugθ (Λ)UT fin), where fin and fout are the input and output and σ is the ReLU 

activation function.

The above expression is computationally expensive for meshes with a large number of 

vertices, since U is not sparse and the number of parameters required can be as many as 

the number of vertices. Therefore, we followed Defferrard et al. (2016) to approximate 

gθ (Λ) using Chebyshev polynomials so that Ugθ(Λ)UT = ∑k = 0
K θkTk(L), where L is 

the scaled sparse Laplacian matrix L = 2Lnorm /λmax − I, where λmax is the maximum 

eigenvalue of Lnorm. θk is the parameter for the kth order Chebyshev polynomial and 

Tk is the kth order polynomial that can be computed recursively as T0 = I, T1 = L and 
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Tk(L) = 2LTk − 1(L) − Tk − 2(L). We chose K = 1 since a lower order polynomial can 

effectively avoid fitting the noise on our ground truth surfaces and reduce the amount 

of parameters to learn. Therefore, the graph convolution on the mesh using a first-order 

Chebyshev polynomial approximation is described as fout = σ θ0fin + θ1finL , where θ0, 

θ1 ∈ ℝdout × din are trainable weights. fout ∈ ℝdout × N and fin ∈ ℝdin × N are, respectively, the 

input and output feature matrices, where din and dout are, respectively, the input and output 

dimensions of the mesh features.

2.2.4. Mesh initialization—Our method uses a single network to simultaneously 

deform multiple sphere templates to corresponding cardiac structures on the input image. 

Since the relative locations and scales of different cardiac structures of the heart are 

generally consistent across a population, we leverage this prior knowledge into our neural 

network by scaling and positioning the corresponding initial sphere mesh template based on 

the relative sizes and locations of the cardiac structures. We then used a graph convolution 

layer to augment the coordinates of the initial meshes such that they have comparable 

contribution as the image features, in terms of the length of feature vectors, to the following 

deformation block. Namely, after pre-processing the volumetric training data and obtaining 

the corresponding ground truth meshes as described in detail in Appendix A.1.1, we 

computed the corresponding image coordinates of the vertices of the surface meshes in the 

volumetric training image data. For each cardiac structure, we then computed the average 

centroid location and the average length between surface and centroid, across all the ground 

truth meshes in the training data. For each input image, we then used this approximated 

center and radius to initialize each sphere. By having a closer initialization compared with 

using centered unit spheres as in prior approaches (Wickramasinghe et al., 2020; Wang et 

al., 2020a), our network can have reduced distance between predictions and ground truths 

and thus avoid large deformation during the early phase of training. From our experiments, 

this is an important and effective technique to avoid getting stuck in local minimums and 

achieve faster convergence.

2.2.5. Mesh deformation module—Our proposed mesh deformation module consists 

of three deformation blocks with graph convolutional layers that progressively deform our 

initial template meshes based on both existing mesh vertex features and image features 

extracted from the image encoding module. Meshes of all different cardiac structures 

are deformed simultaneously by these shared mesh deformation blocks. The volumetric 

feature maps have increasing level of abstraction but decreasing spatial resolution as we 

progress deeper in the image encoding module. Therefore, as shown in Fig. 1, we used 

more abstracted, high-level image feature maps for the initial mesh deformation blocks to 

learn the general shapes of cardiac structures while using low-level, high-resolution feature 

maps for the later mesh deformation blocks to produce more accurate predictions with 

detailed features. For each mesh deformation block, we project image features from the 

image encoding module to the mesh vertices and then concatenate the extracted image 

feature vector with the existing vertex feature vector. As we deform the mesh through 

multiple deformation blocks, we decrease the size of the graph convolutional filters to 

reduce the dimension of mesh feature vectors to match with the reduced number of 
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filters used in upper levels of the image encoding module. Within each mesh deformation 

block, the concatenated feature vectors are processed by three graph residual blocks, 

which contains two graph convolutional layers with residual connections. We then use 

an additional graph convolutional layer to predict deformation as 3D feature vectors on 

mesh vertices and add those with the vertex coordinates of the initial mesh or the mesh 

from the previous deformation block to obtain the current predicted vertex coordinates. To 

project corresponding image features onto mesh vertices, from the vertex locations of the 

initial or previously deformed mesh, we compute the corresponding image coordinates in 

the volumetric image feature maps. We then tri-linearly interpolate the feature vectors that 

correspond to the 8 neighboring voxels of the computed image coordinates in the volumetric 

feature maps.

2.3. Loss functions

The training of our networks was supervised by 3D ground truth meshes of the whole 

heart as well as a binary segmentation indicating occupancy of the heart on the voxel 

grid that corresponds to the input image volume. The whole heart meshes were extracted 

from segmentation of cardiac structures using the marching cube algorithm and the binary 

segmentation was also obtained from segmentation by setting all non-background voxels to 

1 and the rest to 0. We used two categories of loss functions, geometry consistency losses 

and regularization losses in the training process. The geometry consistency losses include 

point and normal consistency losses while the regularization losses include edge length and 

Laplacian losses.

2.3.1. Segmentation loss—We used a hybrid loss function that contained both 

cross-entropy and dice-score losses. This loss has been used in training UNets and has 

demonstrated promising results on various medical image segmentation tasks (Isensee et al., 

2021). Namely, let Loccupancy (Ip, Ig) denote the loss of between the predicted occupancy 

probability map IP and the ground truth binary segmentation of the whole heart IG. The 

hybrid loss function was

ℒoccupancy IP , IG = − ∑
x ∈ IG

IG(x)log IP(x) + 1 − IG(x) log 1 − IP(x)

−
2∑x ∈ I IG(x)IP(x)

∑x ∈ I IG(x) + ∑x ∈ I IP(x)
(1)

where x denotes the pixel in the input image I.

2.3.2. Point loss—We used Chamfer loss to regulate the accuracy of the vertex locations 

on predicted meshes. For a point from the predicted mesh or the ground truth mesh, Chamfer 

loss finds the nearest vertex in the other point set and adds up all pair-wise distances. The 

point loss is defined by,

ℒpoint Pi, Gi = ∑
p ∈ Pi

min
g ∈ Gi

‖p − g‖2
2 + ∑

g ∈ Gi
min

p ∈ Pi
‖p − g‖2

2
(2)
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where p and g are, respectively, points from the vertex sets of the predicted mesh Pi and the 

ground truth mesh Gi of cardiac structure i.

2.3.3. Normal loss—We used a normal consistency loss to regulate the accuracy of the 

surface normal on the predicted meshes. For each point, the surface normal is estimated by 

the cross product between two edges of a face connected to the point. The predicted surface 

normal is then compared with the ground truth surface normal at the nearest vertex. Namely,

ℒnormal Pi, Gi = ∑
p ∈ Pi; g = arg min

g ∈ Gi
‖p − g‖2

2
‖ p1 − p × p2 − p − ng‖2

2

(3)

where p1 and p2 are the two vertices sharing the same face with vertex p.

2.3.4. Edge length loss—We used an edge length loss to encourage a more uniform 

mesh density on the predictions. That is, we regularize the difference between each edge 

length and an estimated average edge length μi of the corresponding cardiac structure Gi. 

Namely, we compute the average surface area of our ground truth mesh for each cardiac 

structure and estimate the average edge length based on the surface area ratio between the 

template and ground truth meshes, leading to

ℒedge Pi = ∑
p ∈ Pi

∑
kp ∈ N (p)

‖p − kp‖2
2 − μi2 ,

(4)

where N (p) represents the neighborhood of vertex p.

2.3.5. Laplacian loss—To encourage a smoother mesh prediction, we used a Laplacian 

loss to regularize the difference between a vertex location p and the mean location of its 

neighboring vertices kp as

ℒlap Pi = ∑
p ∈ Pi

p − ∑
kp ∈ N (p)

1
‖ N (p)‖kp

2

2
. (5)

2.3.6. Total loss—Prior approaches of mesh reconstruction from images commonly 

formulated the total loss function as a weighted sum of multiple loss functions (Wang 

et al., 2020a; Wickramasinghe et al., 2020). However, for multi-loss regression problems, 

different loss functions are different in scales. Manually tuning the weight assigned to each 

loss function is difficult and expensive since losses can differ by orders of magnitude. 

Therefore, we express the total loss on predicted meshes as a weighted geometric mean of 

the individual losses so that the gradient for an individual loss function can be invariant to its 

scale relative to other loss functions (Chennupati et al., 2019). Thus, for predicted meshes G 
and ground truth meshes P with N cardiac structures, the total mesh loss is expressed as,
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ℒmesℎ (P, G)

= ∑
i

N
ℒpoint Pi, Gi

λ1 ℒnormal Pi, Gi
λ2 ℒedge Pi

λ3 ℒlap Pi
λ4, (6)

where each λ is a hyperparameter to weight each individual loss based on its importance 

without being affected by its scale. We can thus choose hyperparameters from a consistent 

range for all the losses. We generated 8 sets of random numbers ranging from 0 to 1 and 

chose the best out of the 8 sets of hyperparameters that produced the smallest point loss on 

the validation data. The chosen hyperparameters are λ1 = 0.3, λ2 = 0.46, λ3 = 0.16 and λ4 

= 0.05. For total loss, we added up losses from all three deformation blocks as well as the 

binary segmentation loss:

ℒtotal = ℒmesℎ PB1, G + ℒmesℎ PB2, G + ℒmesℎ PB3, G
+ ℒoccupancy Ip, Ig . (7)

The network parameters were computed by minimizing the total loss function using the 

Adam stochastic gradient descent algorithm (Kingma and Ba, 2014).

3. Experiments and results

3.1. Baselines

We considered the following three baselines to compare our method against: 2D UNet 

(Ronneberger et al., 2015), a residual 3D UNet (Isensee et al., 2018) and Voxel2Mesh 

(Wickramasinghe et al., 2020). The UNets are arguably the most successful architecture for 

medical image segmentation and thus can function as strong baselines. In particular, the 

2D UNet is a part of the whole-heart segmentation framework implemented in Kong and 

Shadden (2020) that recently demonstrated state-of-the-art performance on the MMWHS 

challenge dataset. The residual 3D UNet has demonstrated improved performance than a 

regular 3D UNet and won the KiTS2019 Challenge (Isensee and Maier-Hein, 2019; Heller 

et al., 2021). To ensure a fair comparison, the same network architecture and convolutional 

filter numbers were used for the image encoding module between our method and the 

residual 3D UNet and the same image pre-processing and augmentation methods were 

applied during the training of all methods. For Voxel2Mesh, we reduced the resolution of 

the template mesh such that the total memory consumption during training can fit within 

the memory available on our Nvidia GeForce GTX 1080 Ti GPU (11 GB). The final mesh 

resolution is thus halved compared to the original implementation (Wickramasinghe et al., 

2020) and contains 3663 vertices for each cardiac structures. In contrast, our method can 

process a template mesh with 11,494 mesh vertices for each cardiac structures within the 

available GPU memory.

3.2. Whole heart reconstruction for CT and MR images

We first compare the performance of whole-heart reconstruction from our method against 

our baselines. In this experiment, we trained and validated our method using both CT and 

MR images collected from existing public datasets except for the held-out test dataset of the 

Kong et al. Page 10

Med Image Anal. Author manuscript; available in PMC 2022 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MMWHS challenge, which we used for test-time evaluation. Our training set thus contained 

87 CT images and 41 MR images and the validation set contained 15 CT images and 

6 MR images. The MMWHS held-out test dataset contained 40 CT images and 40 MR 

images. We analyzed the performance of our method against baselines in terms of both the 

accuracy and the quality of the surface reconstructions. We converted the surface predictions 

of our method and those of Voxel2Mesh to segmentations at the spatial resolution of the 

input image data, which is the same as the resolution of the segmentations produced by 2D 

UNet and 3D UNet. This allowed us to evaluate the accuracy of different methods at the 

same resolution against the ground truth segmentation using the executable provided by the 

MMWHS challenge organizers. We also manually labeled the testing images and compared 

this with the ground truth segmentation of the MMWHS challenge to provide a comparison 

between the evaluated reconstruction accuracy of our deep-learning-based method and the 

inter-observer variability in manual delineations. The surface quality was evaluated in terms 

of surface smoothness, normal consistency and topological correctness.

Table 2 shows the average Dice and Jaccard scores, average symmetric surface distance 

(ASSD) and Hausdorff distance (HD) of the reconstruction results of both the whole heart 

and individual cardiac structures for the MMWHS test dataset. For both CT and MR data, 

our method consistently outperformed our baselines in terms of Dice and Jaccard scores 

for both whole heart and all individual cardiac structures. In terms of surface ASSD and 

HD measures for the whole heart or individual cardiac structures, our method was the best 

or the second among the four deep-learning-based methods compared. To provide further 

details on segmentation accuracy, Figure B14 gives the distribution of different segmentation 

accuracy metrics for whole heart and individual cardiac structures. Overall, our method 

demonstrated advantages of whole heart reconstruction for both CT and MR images, and 

2D UNet was the closest to ours compared with 3D UNet or Voxel2Mesh. All methods 

produced better reconstruction for CT images than for MR images. Furthermore, there are 

no significant differences between the evaluated Dice scores of our methods and those of 

our manual labeling, except for left ventricle epicardium (p < 0.05). That is, the discrepancy 

between our predicted whole-heart reconstruction and the ground truths provided by the 

MMWHS challenge is comparable to the inter-observer variability of manual whole-heart 

segmentation.

Fig. 2 displays two examples of the reconstruction results for CT and MR from the 

MMWHS test dataset, including the surface meshes of individual cardiac structures. Despite 

starting from a generic template, our method is able to accurately map a template sphere 

to various cardiac structures with disparate shapes such as the left ventricle epicardium and 

the pulmonary artery. Moreover, we are able to generate smooth surface reconstruction with 

consistent normal while capturing the details of individual cardiac structures such as mitral 

annulus on the left ventricle epicardium, aortic outlet of the left ventricle and the aortic 

sinus.

Figs. 3 and 4 visualize the median and worst results from the different methods for CT 

and MR images, respectively, from the MMWHS test dataset. The surface meshes of 2D 

UNet and 3D UNet were extracted from the segmentation results using the marching cube 

algorithm. As shown, our method is able to construct smooth geometries while segmentation 
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based methods, such as 2D UNet or 3D UNet, produced surfaces with staircase artifacts. 

Such artifacts require surface post-processing techniques such as Laplacian smoothing that 

often also degrade true features. Generally, all four methods are able to produce reasonable 

median cases from CT data. For MR data, our method produced reasonable reconstructions, 

while the 2D UNet and 3D UNet produced reconstructions with disconnected regions that 

would require post-processing to remove or connect. Voxel2Mesh was unable to capture 

detailed shapes of some structures such as the bifurcation of the pulmonary artery branches. 

In the worst cases for both CT and MR, our method nonetheless produced realistic shapes. 

However, 2D UNet and 3D UNet predicted geometries with missing parts, noisy surfaces, 

incorrect classifications and/or disconnected regions that would require significant post-

processing. Voxel2Mesh predicted worst-case geometries that deviated largely from ground 

truths and had major surface artifacts. To provide quantitative comparison on the surface 

quality produced by different methods, Table 3 displays average normal error (ANE), 

average normalized Laplacian distance (ANLD), and percentage mesh self-intersection of 

the reconstruction results. The average normal error measures the discrepancy between 

the point normals on the reconstruction and the ground truth. The ANLD measures 

the local smoothness of the meshes. The percentage self-intersection measures the local 

topological correctness of the meshes. Detailed definitions of these metrics can be found 

in Appendix A.1.3. Overall, our method demonstrated the best surface smoothness and 

normal consistency for all cardiac structures for CT data and for most cardiac structures for 

MR data. For topology correctness, our method produced meshes with a small number of 

self-intersections. In contrast, the segmentation-based approaches apply the Marching Cube 

algorithm to generate uniform and watertight surface meshes without self-intersection.

Figs. 5 and 6 provide further qualitative comparisons of the results from the different 

methods. As shown in Fig. 6, our method was able to generate smoother reconstruction than 

the ground truth segmentation on MR images that have relatively large voxel spacing. In 

contrast, 2D UNet that produces segmentation on a slice-by-slice manner along the sagittal 

view, may suffer from inconsistency between adjacent slices, leading to coarse segmentation 

when looking from the axial view that the 2D UNet was not trained on. 3D UNet, limited 

by the memory constrain of GPU, can only produce coarse segmentation on a down-sampled 

voxel grid of 128 × 128 × 128 for high-resolution CT image data. Although Voxel2Mesh can 

also produce smooth surface meshes, it tends to predict surfaces that lack shape details and 

do not match well with the true boundary of many cardiac structures.

Fig. 7 shows reconstruction results for the 10 most challenging CT and MR images 

for which 2D UNet (the method that demonstrated closest performance to our method) 

predicted less accurate segmentations in terms of Dice scores compared with the rest images 

in the test datasets. For all the 10 MR images and 8 out of the 10 CT images, our method 

produced whole-heart reconstructions with improved Dice scores. For all these CT cases, 

we were able to generate accurate reconstruction with Dice scores above 0.87 and smooth 

surfaces without obvious artifacts. However, for the 10 MR cases, although we demonstrated 

improvement against 2D UNet predictions, we observed buckling and bumpiness on mesh 

surfaces of one or more cardiac structures for 5 out of 10 cases.
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Interestingly, as indicated by the point-correspondence color maps in Fig. 7, although we 

did not explicitly train our method to generate feature-corresponding meshes across different 

input images, our method was generally able to consistently deform template meshes to map 

mesh vertices to similar structural features of the heart for different images. This behavior 

allowed convenient generation of the mean whole heart shapes from the test dataset by 

computing the average coordinates of each vertex. Fig. 8 demonstrates the mean whole 

heart shapes for MR and CT images from the MMWHS test dataset, respectively, and the 

distribution of the average surface distance errors on the whole heart compared with manual 

ground truths. For both CT and MR data, locations that suffer from higher surface errors 

include the ends of the aorta and pulmonary arteries, boundaries between the right ventricle 

and the pulmonary artery, boundaries between the right atrium and the ventricle, and the 

inferior vena cava region on the right atrium. We note that several of the locations of largest 

error are artificial boundaries, or arbitrary truncations of vessels extending away form the 

heart.

3.3. Generalization to low-Resolution MR images

Cardiac MR image data are often acquired in a slice-by-slice manner and thus often vary 

in through-plane resolution due to the use of different acquisition protocols and vendors. 

For MR images with low through-plane resolution, accurately constructing smooth surface 

geometries is challenging since a method would need to complete the cardiac structures that 

are not captured between the slices. Therefore, having trained our method on MR images 

with high through-plane resolution to produce detailed whole heart geometries, we evaluate 

the performance of our method on MR images with lower through-plane resolution and 

compare it with our baselines. To disentangle the effect of through-plane resolution from 

the effect of other variations of MR images, we first generate low-resolution MR images 

from our validation data by down-sampling the images to various slice thicknesses. We then 

evaluate the robustness of different methods to challenging real low-resolution MR images 

that significantly differ from our training datasets. Namely, we used data from our cine MR 

images, which were acquired with large slice thicknesses (8–10 mm), different acquisition 

planes, and from a different clinical center.

3.3.1. Synthetic low-resolution MR data—Fig. 9 displays an example of down-

sampling an input image dataset along the longitudinal direction of the left ventricle to 

various slice thickness of 1 mm, 6 mm, and 10 mm, as well as the corresponding predictions 

from our method, 2D UNet and 3D UNet, respectively. For low through-plane resolution 

images, the same linear resampling method was applied as before to interpolate the 3D 

image volume to the sizes required by the neural network models. As the slice thickness 

was increased to up to 10 mm, while 2DUNet can generally produce consistent segmentation 

on 2D slices, it produces uneven 3D geometries due to poor inter-slice consistency. In 

contrast, the 3D UNet is able to produce smoother surfaces by accounting for inter-slice 

information. However, as slice thickness increases, the 3D UNet produces less accurate 

segmentation, such as incorrectly classifying a part of the RV into the RA and a part of the 

PA into the aorta, as shown by the arrows in Fig. 9. Our method, however, for all different 

slice thicknesses, produces consistent reconstructions that closely resembles the ground truth 

surfaces and are free of any major artifacts. Fig. 10 displays quantitative evaluations of 
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the reconstruction performance on various image resolutions. Regardless of slice thickness 

values considered, our method out-performed 2D UNet and 3D UNet both in terms of Dice 

and ASSD. Moreover, as slice thickness increases from 1 mm to 10 mm, in general, we 

observed increasing improvement of our method compared with 2D UNet or 3D UNet. 

Furthermore, by taking a 3D image volume as the input, our method and 3D UNet are more 

robust to additional in-plane resolution changes than the 2D UNet. Both our method and the 

3D UNet demonstrated a smaller reduction in accuracy with 4 times reduction of in-plane 

resolution.

3.3.2. Real low-resolution MR data—We evaluated the robustness of our method 

on the challenging cine MR dataset, which significantly differs from our training datasets 

in terms of the through-plane resolution, imaging plane orientation and coverage of the 

heart. To generate ground truth segmentation and meshes from low-resolution MR data, 

we resampled such 3D image volume and linearly interpolated between the slices to have 

an isotropic spacing of 1 mm along all three axes. The ground truth segmentations were 

obtained by manually segmenting the interpolated image data and manually correcting 

artifacts due to low through-plane resolution based on prior human expert knowledge 

of the heart to obtain smooth and physiologically plausible geometries that match with 

the low-resolution image data as much as possible. Table 4 compares the reconstruction 

accuracy between our method and the baselines. The reconstruction accuracy was evaluated 

at two time frames, end diastole and end systole, for each patient. Overall, our method 

demonstrated high reconstruction accuracy and outperformed the other methods for most 

cardiac structures in terms of average Dice score and ASSD.

Fig. 11 compares the whole-heart geometries reconstructed by our method with others for 

one example of cine cardiac MR images. Our method was able to produce clean surface 

meshes while at the same capture most of the cardiac structures with reasonable accuracy. 

In contrast, since these images were acquired on imaging planes that were different from 

those used in acquiring the training data, 2D UNet produced inaccurate reconstruction 

and disconnected surfaces. 3D UNet produces more complete reconstruction of the cardiac 

structures but often produced many disconnected false positive regions. Voxel2Mesh is 

able to produce clean surface meshes with generally correct topology but the predictions 

are not accurate. Furthermore, as changes in input images over different time frames are 

small, our method produced consistent reconstruction over different time phases. However, 

segentation-based methods, 2D UNet or 3D UNet, often produce inconsistent reconstruction 

with significant shape or topology changes, despite small changes in input images over 

different time frames.

3.4. Construction of whole-heart 4D models from motion image data

We further tested our method on time-series CT datasets. Table 5 compares the 

reconstruction accuracy between our method and the other baseline methods. Similar to 

above, the reconstruction accuracy was evaluated at two time frames, end diastole and end 

systole, for each patient. Overall, our method demonstrated high reconstruction accuracy and 

outperformed the other methods for most cardiac structures in terms of average Dice score 

and ASSD.
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Furthermore, we explore the potential capability of our method to reconstruct dynamic 4D 

whole-heart models to capture the motion of the heart from time-series image data. Fig. 

12 displays example whole-heart reconstruction results of our methods on time-series CT 

data that consisted of images from 10 time frames over the cardiac cycle for each patient. 

Although our model predicts mesh reconstructions independently from each time frame, 

it is able to consistently deform the template meshes such that the same mesh vertices 

on the template meshes are generally mapped to the same region of the reconstructed 

geometries across different time frames, as shown by the color maps of vertex IDs in Fig. 

12. Moreover, as demonstrated by the segmentation in Fig. 12, our method is able to capture 

the minor changes between time frames. Therefore, our method can potentially be applied 

to efficiently construct 4D dynamic whole-heart models to capture the motion of a beating 

heart.

3.5. Impact of post-processing on reconstruction performance

Post processing techniques have been commonly applied to correct prediction artifacts from 

segmentation-based deep-learning methods. Therefore, we investigated how the performance 

of our method compare with that of the 2D UNet and 3D UNet after post-processing. 

Namely, for each cardiac structure, we applied a median filter with a kernel size of 5 × 5 × 

5 voxels to fill any small gaps within the segmentation and smooth segmentation boundaries. 

We then removed any disconnected regions from the segmentation by computing the largest 

connected component for each cardiac structure. To correct for gaps between the predicted 

cardiac structures we leveraged the ability of our method to consistently map the same 

vertices to the similar regions of the heart. Thus, we can readily identify the vertices on the 

adjacent surfaces between the cardiac structures from our training data. For test cases, we 

can then project each of these vertices to the closest vertex on the adjacent surface.

Table 6 compares the reconstruction accuracy for our method, 2D UNet, and 3D UNet 

after the above post-processing steps as well as the accuracy differences before and after 

post-processing for each method. For both CT and MR data, our method consistently 

outperformed the baselines for all cardiac structures in terms of Dice and Jaccard scores, 

and for most cardiac structures in terms of ASSD and HD measures, respectively. In general, 

post-processing techniques did not bring major improvements in Dice, Jaccard or ASSD 

measures for all the methods. Indeed, these post-processing techniques are designed to 

correct artifacts small in size and thus do not significantly contribute to the improvements 

in global accuracy measures. In contrast, for local accuracy measure HD, post-processing 

techniques brought a major improvement in HD measure for 3D UNet for MR data due to 

the removal of disconnected regions from the predictions. Fig. 13 displays the segmentation 

and reconstruction results for a challenging MR case before and after post-processing. 

Segmentation-based approaches, 2D and 3D UNets, predicted topological incorrect LV 

myocardium geometries with large holes, whereas our template-based method predicted 

topological-correct geometries. Post-processing techniques were able to reduce, but not fully 

close these holes. For this MR case, our method produced a small gap between the LV and 

myocardium as these two structures are represented by individual surfaces. However, our 

post-processing method on the mesh was able to automatically seal this gap.
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3.6. Impact of limited training data on reconstruction performance

We investigate how well our method can reconstruct whole-heart geometries using only a 

small number of training data. In this experiment, our neural network model was trained 

using only the training set of MMWHS challenge, which consists of 20 CT images and 20 

MR images. 16 out of 20 image volumes from each modality were used for training and the 

rest were used for validation. We compared our method against the baseline methods for the 

same MMWHS test set described above. The baseline methods were trained using the same 

training and validation splits.

Table 7 compares the Dice and Jaccard scores, ASSD and HD of the reconstruction results 

for the methods trained with the reduced training set, as well as the accuracy differences 

compared with training models using more data, as described above. For CT data, our 

method consistently outperformed others in terms of Dice and Jaccard scores for the whole 

heart and individual cardiac structures except for pulmonary arteries. In terms of ASSD and 

HD, our method outperformed 3D UNet and Voxel2Mesh and was comparable to 2D UNet. 

For MR data, our method demonstrated better performance than others in terms of whole 

heart Dice and Jaccard scores, as well as surface HD of whole heart. 2D UNet demonstrated 

the best whole heart ASSD performance. For individual cardiac structures, our method 

showed better Dice and Jaccard scores for Epi, LV, RA and RV, smaller ASSD values for 

Epi, LV, RA and smaller surface HD values for most of the cardiac structures except for LA 

and Ao. Figure B15 shows the distribution of different segmentation accuracy metrics for 

whole heart and individual cardiac structures among the MMWHS test dataset.

As shown in Table 7, when trained with a smaller training dataset, the methods generally 

showed reduced Dice or Jaccard scores and increased ASSD and HD values for both whole 

heart and individual cardiac structures compared with when trained with a larger dataset, as 

summarized in Table 2. Exceptions include the smaller HD values of Epi, LA, LV, RV and 

PA from our method for CT data and the better LV and aorta segmentation from 3D UNet 

for MR data in terms of all four metrics. Compared with CT data, all methods generally 

demonstrated more significant reduction of segmentation accuracy for MR data, in terms of 

average values of reduction for all four metrics. While performance drops due to reduced 

size of training data is consistent, the actually amount of performance drop is minor for our 

method, 2D UNet and 3D UNet. For example, although the number of CT training data was 

reduced from 87 to 16, we only observed a small average reduction (0.01–0.02) of whole 

heart Dice scores for 2D UNet, 3D UNet and our method. However, the performance drop 

for Voxel2Mesh in relation to the number of training data was much more significant, with a 

0.27–0.28 reduction of whole-heart Dice scores for CT and MR data. Among all the cardiac 

structures, our method had the most significant performance reduction of PA reconstruction 

for both CT and MR data while segmentation based approaches, 2D UNet and 3D UNet, 

demonstrated a more uniform performance drop across all cardiac structures. Indeed, the 

shapes of the PA differ significantly from our initial sphere template mesh and therefore 

accurately capturing the shapes of PA might require more training data for our method.
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4. Discussion

Image-based reconstruction of cardiac anatomy and the concomitant geometric 

representation using unstructured meshes is important to a number of applications, including 

visualization of patient-specific heart morphology and computational simulations of cardiac 

function. Prior deep-learning-based approaches have shown great promise in automatic 

whole heart segmentation (Zhuang et al., 2019), however converting the segmentation 

results to topologically valid mesh structures requires additional, and often manual, post-

processing, and is highly-dependent on the resolution of the image data. In this work, 

we present a novel deep-learning-based approach that uses graph convolutional neural 

networks to directly generate meshes of multiple cardiac structures of the whole heart 

from volumetric medial image data. Our approach generally demonstrated improved 

whole heart reconstruction performance compared with the baseline methods in terms 

of accuracy measures, Dice and Jaccard scores, ASSD and HD. Furthermore, our 

method demonstrated advantages in generating high-resolution, anatomically and temporally 

consistent geometries, which are not reflected by the accuracy measures.

Our method reconstructs cardiac structures by predicting the deformation of mesh vertices 

from sphere mesh templates. We have demonstrated the advantages of this approach over 

segmentation-based approaches in terms of both precision and surface quality. Namely, 

the use of a template mesh can introduce topological constraints so that predicted cardiac 

structure are homeomorphic to the template. Thus, our template based approach enables one 

to eliminate disconnected regions and greatly reduce erroneous topological artifacts often 

encountered with existing deep-learning-based segmentation methods. While the cardiac 

structures of interest were homeomorphic to spheres, the presented method has the potential 

to be generalized to organs with different topology, by using a different template mesh with 

the required surface topology.

When trained on a relatively large dataset with 87 CT and 41 MR images, our method was 

able to achieve comparable accuracy to manual delineations, which is considered the gold 

standard. Furthermore, since we explicitly regularized the surface smoothness and normal 

consistency, our method produced smooth and quality meshes while capturing the detailed 

features of the cardiac structures. Namely, these factors along with the use of a template 

enable our method to generate realistic cardiac structures even when image quality was poor 

and segmentation methods struggled to provide realistic topology. From our observations, 

the locations on the heart that our neural network models produced high surface errors are 

consistent with the locations that could suffer from high inter- or intra-observer variations, 

such as the arbitrary length of aorta and pulmonary arteries, boundaries between atria and 

ventricles and between the right atrium and the inferior vena cava. Indeed, these boundaries 

are not distinguishable by voxel intensity differences and are often subject to uncertainties 

even for human observers.

Compared with segmentation-based approaches, our method predicts whole heart surfaces 

directly in the physical space rather than on a voxel grid of the input image. The whole 

heart geometries are represented using surface meshes rather than a dense voxel grid. 

Hence, our method is able to generate high-resolution reconstructions (10K mesh vertices 
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for each cardiac structure) efficiently on a limited memory budget and within a shorter 

or comparable run-time (table B10). Prior 3D segmentation-based approaches have sought 

to increase the segmentation resolution by training separate neural networks to first locate 

the region of interest or generate low resolution segmentations, and then generate refined 

segmentations within the localized region (Payer et al., 2018; Isensee et al., 2021). Our 

method does not require training multiple neural networks and can make predictions directly 

from the entire down-sampled cardiac image volume. As we used a cascade of three mesh 

deformation blocks, we observed that the first deformation block can already effectively 

position and deform the meshes to the correct locations and the subsequent deformation 

blocks can further refine the predicted mesh vertex locations. High resolution segmentation 

may also be obtained by recent methods that represent geometries using implicit surfaces 

(Kirillov et al., 2019). Namely, for each point in the physical space, this approach predicts 

the probability of this point belonging to a certain tissue class. Therefore, by sampling a 

large number of points in the physical space, these methods can also achieve high-resolution 

reconstruction that are not constrained by the voxel resolution of the input image or GPU 

memory. However, the inference process for such methods is computationally expensive 

(Gupta and Chandraker, 2020) as it requires prediction on a large number of points. In 

contrast, our method represents the mesh as a graph (i.e., a sparse matrix) and takes less than 

a second to predict a high resolution whole heart mesh.

Compared with prior deep-learning-based mesh reconstruction methods from image 

data (Wang et al., 2020a; Wickramasinghe et al., 2020), our method used a shared 

graph neural network to simultaneously predict surface meshes of multiple cardiac 

structures. This is made possible by initializing the template meshes at various scales and 

locations corresponding to individual cardiac structures. We observed that proper template 

initialization is essential to avoid local minimums due to large mesh deformation at the 

beginning stage of training. In contrast, prior approaches are designed for predicting a single 

geometry from image data and require training a separate graph neural network for each 

anatomical structure and thus do not easily scale to reconstruct multiple cardiac structures 

at a high-resolution from a single image volume. Furthermore, while prior approaches 

proposed various upsampling scheme to construct a dense mesh from a coarse template 

(Wickramasinghe et al., 2020; Wang et al., 2020a), we directly deformed a high resolution 

template. Since the majority of weights is in the image feature encoder to process a dense 

volumetric input image, more mesh vertices can provide more effective gradient propagation 

to the image feature encoder. Indeed, using a coarse mesh with 3K mesh vertices for each 

cardiac structures, we observed a 2% reduction of whole heart dice score as shown in 

our supplemental materials (table B8). However, our method was still able to outperform 

Voxel2Mesh by 3% and 10% for CT and MR data using a coarse mesh template with a 

similar amount of mesh vertices. These design choices allowed our method to demonstrate 

promising generalization capabilities to unseen MR images and maintain good performance 

when trained with a smaller number of samples. In contrast, Voxel2mesh suffered from a 

large performance drop when trained on a smaller dataset.

When applied to time-resolved images, our method consistently deformed the template mesh 

such that mesh vertices were mapped to the similar regions of the heart across different 

time frames. Learning such semantic correspondence is purely a consequence of our model 
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architecture and did not require any explicit training. This behavior of producing semantic 

corresponding predictions was also observed in DeepOrganNet, which reconstructed lung 

shapes from single-view X-ray images by deforming lung templates (Wang et al., 2020b). 

Point-corresponded meshes across different input images are required for numerous 

applications, such as building statistical shape models, constructing 4D dynamic whole-heart 

models for motion analysis and deriving boundary conditions for deforming-domain CFD 

simulations. Current approaches that construct feature corresponding meshes for the heart 

mostly use surface or image registration methods to deform a reference mesh so that its 

boundary is consistent with the target surfaces or image segmentation (Ordas et al., 2007; 

Khalafvand et al., 2018; Kong and Shadden, 2020). However, registration algorithms are 

often very computationally expensive to align high-resolution meshes and they often suffer 

from inaccuracies for complex whole heart geometries due to local minimums during the 

optimization process. In the case of time-series image data, our method naturally produces 

point corresponding meshes with high resolution (10K mesh vertices per cardiac structure) 

across time frames within a couple of seconds, while prior methods could require hours to 

generate a 4D dynamic whole-heart model at a similar resolution. Although not considered 

here, it is possible to include another loss function that minimizes the point distances 

between the vertex locations on the predicted meshes and ground truth landmarks when 

available to further enhance feature correspondence.

Limitations of the proposed method include a lack of diffeomorphic constraints to establish 

a differentiable mapping from the initial spheres and the predicted surfaces. While we used 

the Laplacian loss to regularize the smoothness of the meshes, a diffeomorphic constraints 

may help to further prevent face intersections. Recently, Gupta and Chandraker (2020) 

proposed to learn neural ordinary differential equations to predict a diffeomorphic flow 

that maps a sphere mesh template to the target shapes, thus implicitly preserving the 

manifoldness of the template mesh without explicit regularizations. This approach could 

be combined with our image-based whole-heart mesh prediction framework in the future to 

deform the whole heart geometry while preserving the manifoldness of the meshes so that 

they could be directly used in applications such as numerical simulations and 3D printing. 

Furthermore, while our method can simultaneously predict multiple structures from image 

data, those structures are not coupled to each other. Small intersections or gaps could appear 

between adjacent cardiac structures. While we have demonstrated that simple projection can 

generally correct such artifacts, future work could include more explicitly constraining the 

coupling of cardiac structures within the learning framework.

5. Conclusions

We have developed a deep-learning-based method to directly predict surface mesh 

reconstructions of the whole heart from volumetric image data. The approach leverages 

a graph convolutional neural network to predict deformation on mesh vertices from a 

predefined mesh template to fit multiple anatomical structures in a 3D image volume. 

The mesh deformation is conditioned on image features extracted by a CNN-based 

image encoder. The method demonstrated promising performance of generating accurate 

high-resolution and high-quality whole heart reconstructions and out-performed prior deep-

learning-based methods on both CT and MR data. It also demonstrated robust performance 
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when evaluated on MR or CT images from new data sources that differ from our the 

training datasets. Furthermore, the method produced temporally consistent predictions and 

feature-corresponding predictions by consistently mapping mesh vertices on the templates 

to similar structural regions of the heart. Therefore, this method can potentially be applied 

for efficiently constructing 4D dynamics whole heart model that captures the motion of a 

beating heart from time-series images data.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix A

A1. Implementation details

A1.1. Image pre-Processing

Intensity normalization and resizing were applied to all 3D image volumes to obtain 

consistent image dimensions and pixel intensity range. We followed the procedures in Kong 

and Shadden (2020) to normalize pixel intensity values of each CT or MR image volume 

such that they ranged from −1 to 1. The 3D image volumes were then resized using linear 

interpolation to a dimension of 128 × 128 × 128, which maintained image resolution with 

a manageable computational cost. The ground truth meshes were generated by applying the 

Marching Cube algorithm (Lorensen and Cline, 1987) on the segmentations, followed by 50 

iterations of Laplacian smoothing.

A1.2. Image augmentation

Data augmentation techniques were applied during training to improve the robustness of the 

neural network models to the variations of input images. Specifically, we applied random 

scaling (−5% to 5%), random rotation (−5° to 5°), random shearing (−10° to 10°) as well 

as elastic deformations (Simard et al., 2003) on the input images. For elastic deformations, 

16 control points were placed along each dimension of the 3D image volume and were 

randomly perturbed. The input images are then warped according to the displacements of the 

control points using the B-spline interpolation.

A1.3. Training

The model parameters were computed by minimizing the total loss function using the Adam 

stochastic gradient descent algorithm (Kingma and Ba, 2014). The initial learning rate 

was set to be 0.001, while β1 and β2 for the Adam algorithm were set to 0.9 and 0.999, 

respectively. Point losses were evaluated on the validation data after each training epoch 

and the model was saved after one epoch only if the validation point loss had improved. 

We adopted a learning rate schedule where the learning rate was reduced by 20% if the 
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validation point losses had not improved for 10 epochs. The minimum learning rate was 5 

× 10−6. The network was implemented in TensorFlow and the training was conducted on 

a Nvidia GeForce GTX 1080 Ti graphics processing unit (GPU) until the validation loss 

converged.

A1.4. Evaluation metrics

We used Dice, Jaccard scores as well as average symmetric surface distance (ASSD) and 

Hausdorff distance (HD) to evaluate the accuracy of our reconstructions. Dice and Jaccard 

scores are similarity indices that range from 0 to 1 as given by

Dice IP , IG = 2 IP ∩ IG
IP + IG

(8)

Jaccard IP , IG = IP ∩ IG
IP ∪ IG

(9)

The ASSD and HD measure the average and the largest inconsistency in terms of 

Euclidean distance between the reconstruction result and the ground truth, respectively. For 

reconstructed meshes P and the ground truth meshes G, the ASSD and HD are given by

ASSD(P, G) = ∑
p ∈ P

min
g ∈ G

‖p − g‖2
P + ∑

g ∈ G
min
p ∈ P

‖p − g‖2
G (10)

HD(P, G) = max max
p ∈ P

min
g ∈ G

‖p − g‖2, max
g ∈ G

min
p ∈ P

‖p − g‖2 (11)

Normal discrepancy between the reconstruction result and the ground truth was evaluated by 

an average normal error (ANE). Namely, for nx, ny being the vertex normals at points x and 

y, respectively,

ANE(P, G) = ∑
p ∈ P; g = arg min

g ∈ G
‖p − g‖2

1 − np, ng
P (12)

Surface smoothness was evaluated by the average normalized Laplacian distance (ANLD). 

ANLD measures the Euclidean distances between the coordinates of mesh vertices and the 

mean coordinates of their neighbours, normalized by the average edge length between the 

mesh vertices and their neighbours. Namely,

ANLD(P) = ∑
p ∈ P

p − ∑kp ∈ N(p)
1

N (p) kp 2
P

N (p) ∑kp ∈ N(p)‖p − kp‖2
. (13)
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The percentage mesh self-intersection was calculated as the percentage of intersected mesh 

facets among all mesh facets. The intersected mesh facets were detected by TetGen Si 

(2015).
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Fig. 1. 
Diagram of the proposed automatic whole heart reconstruction approach. The framework 

uses 3D convolutional layers (shown in blue) to encode image features and predict a binary 

segmentation map from an input image volume. The corresponding image features are 

sampled by pooling layers (shown in orange) based on the vertex coordinates of the template 

mesh. From the combined image and mesh features, graph convolutional layers (shown in 

green) are then used to predict the deformation of mesh vertices to generate the final mesh 

predictions.
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Fig. 2. 
Example reconstructions from our method for CT (left) and MR (right) data selected from 

MMWHS test dataset. Our method reconstructs the whole heart consisting of seven cardiac 

structures, including the four heart chambers, left ventricle epicardium, aorta and pulmonary 

arteries. Geometry of each reconstructed cardiac structure is demonstrated in two different 

views, with the bottom view also displaying the meshes.
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Fig. 3. 
Visualizations of the median and worst reconstruction results among the MMWHS CT test 

dataset in terms of whole-heart Dice scores for all compared methods.
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Fig. 4. 
Visualizations of the median and worst reconstruction results among the MMWHS MR test 

dataset in terms of whole-heart Dice scores for all compared methods.
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Fig. 5. 
Comparison of the predicted whole heart surfaces from different methods for CT test cases. 

Different rows demonstrated the zoomed-in axial view of the images and predictions from 

different test cases with the 10th, 50th, 90th percentiles of Dice scores based on our method.
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Fig. 6. 
Comparison of the predicted whole heart surfaces from different methods for MR test cases. 

Different rows demonstrated the zoomed-in axial view of the images and predictions from 

different test cases with the 10th, 50th, 90th percentiles of Dice scores based on our method.
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Fig. 7. 
Whole heart reconstruction results from the 10 most challenging CT and MR images for 

which 2D UNet predicted less accurate segmentations in terms of Dice scores compared 

with the rest images in the MMWHS test datasets. On top of each case is the whole-heart 

Dice score of our result and the difference in whole-heart Dice score compared with 2D 

UNet reconstruction. The color map denotes the indices of mesh vertices and demonstrates 

the correspondence of mesh vertices across reconstructed meshes from different images.
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Fig. 8. 
Distribution of the average surface distance errors on mean whole heart shapes from the CT 

and MR data in MMWHS test dataset.
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Fig. 9. 
Robustness of different methods to through-plane resolution changes of MR images. Left 

panel shows the front and back views of the ground truth surfaces; top panel shows example 

slices along the down-sampling axis of images down-sampled to varying slice thicknesses, 

and bottom panel shows front and back views of predicted whole-heart surfaces from 

different methods corresponding to different slice thickness values.
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Fig. 10. 
Relation of Dice and ASSD values of whole-heart surfaces to through-plane resolution of 

MR images. Comparison between different methods and different in-plane resolutions are 

indicated by lines with different color and different styles, respectively. The bottom panel 

shows the average percentage differences of Dice or ASSD values between our method and 

2D UNet or 3D UNet across all validation images.
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Fig. 11. 
Short axis and long axis slices at different time frames for an example cine cardic MR data 

and the corresponding reconstructed whole heart surfaces from different methods.
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Fig. 12. 
Whole-heart reconstruction results for time-series CT data. From left to right, each column 

displays results at one time frame from middle diastole to early diastole. The top row 

shows predicted segmentation overlaid with CT images and the bottom row shows the 

correspondence maps of mesh vertices across reconstructed meshes from different time 

frames, with same color denoting the same mesh vertices on reconstructed meshes.
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Fig. 13. 
Example of whole heart segmentation and surface reconstruction results before and after 

post-processing.
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