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Abstract

Automated construction of surface geometries of cardiac structures from volumetric medical
images is important for a number of clinical applications. While deep-learning-based approaches
have demonstrated promising reconstruction precision, these approaches have mostly focused

on voxel-wise segmentation followed by surface reconstruction and post-processing techniques.
However, such approaches suffer from a number of limitations including disconnected regions or
incorrect surface topology due to erroneous segmentation and stair-case artifacts due to limited
segmentation resolution. We propose a novel deep-learning-based approach that directly predicts
whole heart surface meshes from volumetric CT and MR image data. Our approach leverages a
graph convolutional neural network to predict deformation on mesh vertices from a pre-defined
mesh template to reconstruct multiple anatomical structures in a 3D image volume. Our method
demonstrated promising performance of generating whole heart reconstructions with as good or
better accuracy than prior deep-learning-based methods on both CT and MR data. Furthermore,
by deforming a template mesh, our method can generate whole heart geometries with better
anatomical consistency and produce high-resolution geometries from lower resolution input image
data. Our method was also able to produce temporally-consistent surface mesh predictions for
heart motion from CT or MR cine sequences, and therefore can potentially be applied for
efficiently constructing 4D whole heart dynamics. Our code and pre-trained networks are available
at https://github.com/fkong7/MeshDeformNet

Keywords

Whole heart segmentation; Surface mesh reconstruction; Graph convolutional networks; Deep
learning

"Corresponding authors. fanwei_kong@berkeley.edu (F. Kong), shadden@berkeley.edu (S. Shadden).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

CRediT authorship contribution statement

Fanwei Kong: Conceptualization, Methodology, Software, Data curation, Formal analysis, Investigation, Visualization, Writing —
original draft. Nathan Wilson: Writing — review & editing, Supervision. Shawn Shadden: Conceptualization, Resources, Writing —
review & editing, Supervision, Project administration, Funding acquisition.

Supplementary material
Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.media.2021.102222.


https://github.com/fkong7/MeshDeformNet

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Page 2

Introduction

Three-dimensional (3D) geometries of anatomical structures reconstructed from volumetric
medical images are increasingly used for a number of clinical applications, such as
patient-specific visualization (Gonzélez lzard et al., 2020), physics-based simulation, virtual
surgery planning and morphology assessment (Prakosa et al., 2018; Bucioli et al., 2017).
As cardiovascular diseases are the leading causes of mortality, one area of research that
currently receives considerable attention is computational modeling and visualization of
the heart from patient-specific image data (Prakosa et al., 2018; Chnafa et al., 2016;
Khalafvand et al., 2012). Creating accurate patient-specific models of the whole heart

from image data has traditionally required significant time and human effort, limiting
clinical applications and high-throughput, large-cohort analyses of patient-specific cardiac
functions (Mittal et al., 2015). While surface representation of the whole heart is important
for the aforementioned applications, most studies have focused on image segmentation
rather than direct surface reconstruction (Payer et al., 2018; Bai et al., 2015; Ye et al.,
2019). Nevertheless, accurate and reliable automatic whole heart segmentation remains an
ongoing challenge and an active research direction (Zhuang et al., 2019; Zhuang, 2013;
Peng et al., 2016). Much of the challenge is related to the complex geometries of the heart,
large structural deformation over the cardiac cycle, difficulties in differentiating individual
cardiac structures from each other and the surrounding tissue, as well as variations across
individuals, different imaging modalities, systems, and centers.

Prior cardiac model construction efforts have typically adopted a multistage approach
whereby 3D segmentations of cardiac structures are first obtained from image volumes,
meshes of the segmented regions are then generated using marching cube algorithms,

and finally manual surface post-processing or editing is performed (Lorensen and Cline,
1987; Kong and Shadden, 2020; Maher et al., 2019; Augustin et al., 2016). The quality of
reconstructed surfaces highly depends on the quality of segmentation and the complexity of
the anatomical structures. Automatic heart segmentation has been a popular research topic
and previously published algorithms have been summarized in detail (Zhuang, 2013; Zhuang
etal., 2019; Peng et al., 2016; Habijan et al., 2020). Generally, there are two common
approaches to whole heart segmentation: multi-atlas segmentation (MAS) (Bai et al.,

2015; Zhuang et al., 2015; Zhuang and Shen, 2016) and deep-learning-based segmentation
(Ronneberger et al., 2015; Cicek et al., 2016). Compared with MAS, deep-learning-based
approaches have become more popular as they have demonstrated higher segmentation
precision (Zhuang et al., 2019; Payer et al., 2018) and are much faster in practice. While

a couple of recent studies have reduced the processing time of MAS approaches down

to a couple of minutes (Bui et al., 2020; Bui et al., 2020), deep-learning-based approach
can generally process a whole heart segmentation within a couple of seconds. However,
while deep-learning-based methods may produce segmentations that achieve high average
voxel-wise accuracy, they can contain extraneous regions and other nonphysical artifacts.
Correcting such artifacts would require a number of carefully designed post-processing steps
and sometimes manual efforts (Kong and Shadden, 2020). Indeed, since the CNN-based
segmentation methods are based on classification of each image voxel to a particular tissue
class, the neural networks are often trained to reduce voxel-wise discrepancy between
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the predicted segmentation and the ground truth and therefore lack awareness of the

overall anatomy and topology of the target organs. Moreover, CNN-based 3D segmentation
methods are memory intensive and therefore require downsampling of the data to fit within
memory and thus can only generate segmentation with limited resolution. However, high-
resolution geometries are often required for down-stream applications such as computational
simulations, and direct or low-resolution segmentation will often produce surfaces with
staircase artifacts that require additional post-processing (Wei et al., 2018; 2013; Updegrove
etal., 2016).

Compared with representing whole heart geometries as segmentations on a dense voxel
grid, representing the geometries as meshes is a more compact representation, as only point
coordinates on the organ boundaries need to be stored. This advantage may enable efficient
reconstruction of high-resolution surface meshes on a limited memory budget and avoid the
stair-case artifacts of surfaces constructed from low-resolution 3D segmentation. Moreover,
for low-resolution input images, voxel-wise segmentation would be a coarse representation
of the underlying cardiac structures, but a surface mesh representation can still function as a
smoother and more realistic representation of the shapes as the mesh vertices are defined in
a continuous coordinate space and do not have to align with the input voxel grid.

Some studies have adopted a model-based approach to directly fit surfaces meshes of the
heart to target images (Ecabert et al., 2008; Ecabert et al., 2011; Peters et al., 2010).

Such approaches deform a template mesh using local optimization to match with tissue
boundaries on input images. However, they are often sensitive to initialization and require
complicated steps and manual efforts to construct a mean template of the heart. A recent
study by Zhang et al. (2020) proposed deep learning to learn the initialization of the active
contour method—a model-based approach-to help solve for the contours of the target tissues.
Alternatively, others have turned to pure deep learning methods that do not require test-time
optimization. Ye et al. (2021) proposed a deep learning approach to jointly predict the
segmentation and the geometry of the left ventricle in the form of a point cloud from the
image data.

Recent progress on geometric deep learning has extended the concepts of convolutional
neural network on irregular graphs (Defferrard et al., 2016; Bronstein et al., 2017). Recent
deep-learning-based approaches have shown promise in reconstructing shapes as surface
meshes from image data using graph convolutional neural networks (Wang et al., 2020a;
Wen et al., 2019; Pontes et al., 2019). However, these approaches have focused on
reconstructing a single shape from a 2D camera image and thus cannot be directly applied to
reconstructing multiple anatomical structures from volumetric medical image data. A recent
study from Wickramasinghe et al. (2020) extended the work of Wang et al. (2020a) to 3D
volumetric medical image data and demonstrated improved segmentation results. However,
their method demonstrated success only on simple geometries such the liver, hippocampus
and synaptic junction but not on the whole heart that involves multiple cardiac structures
with widely varying shapes.

To overcome these shortcomings, we explore the problem of using a deep-learning-based
approach to directly predict surface meshes of multiple cardiac structures from volumetric
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image data. Our approach leverages a graph convolutional neural network to predict
deformation on mesh vertices from a pre-defined mesh template to fit multiple anatomical
structures in a 3D image volume. The mesh deformation is conditioned on image features
extracted by a CNN-based image encoder. Since cardiac structures such as heart chambers
are homeomorphic to a sphere, we use spheres as our initial mesh templates, which can

be considered as a topological prior of the cardiac structures. Compared with classification-
based approaches, our approach can reduce extraneous regions that are anatomically
inconsistent. Using a generic initial mesh also enables our approach to be easily adapted

to other anatomical structures.

The key contributions of our work are as follows:

1. We propose the first end-to-end deep-learning-based approach of predicting
multiple anatomical structures in the form of surfaces meshes from 3D image
data. We show that our method was able to better produce whole-heart
geometries from both CT and MR images compared to classification-based
approaches.

2. We investigate and compare the impact of dataset size and variability on whole-
heart reconstruction performance to different methods. When having trained on
both small and larger training datasets, our method demonstrated better Dice
scores for most of the cardiac structures reconstructed than prior approaches.

3. As cardiac MR image data often have large variation across different data
sources, we compare different methods and demonstrate the advantage of our
approach on MR images with varying through-plane resolution as well as on
low-resolution MR images that differ significantly from our training datasets.

4, Since our approach predicts deformation from a template mesh, we show that our
reconstructions generally have point correspondence across different time frames
and different patients by consistently mapping mesh vertices on the templates to
similar structural regions of the heart. We demonstrate the potential application
of our method on efficiently constructing 4D whole heart dynamics that captures
the motion of a beating heart from a time-series of images.

Methods

Dataset information

Since cardiac medical image data is sensitive to a number of factors, including differences
in vendors, modalities and acquisition protocols across clinical centers, deep-learning-based
methods can be easily biased to these factors. Therefore, we aimed to develop our models
using whole heart image data collected from different sources, vendors and imaging
modalities. We included data from four existing public datasets that contain contrast-
enhanced CT images or MR images that cover the whole heart. These four datasets are from
the multi-modality whole heart segmentation challenge (MMWHS) Zhuang et al. (2019),
orCalScore challenge (Wolterink et al., 2016), left atrial wall thickness challenge (SLAWT)
(Karim et al., 2018) and left atrial segmentation challenge (LASC) (Tobon-Gomez et al.,
2015). The use of such diverse data enables us to not only better evaluate the reconstruction
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accuracy of our trained model but also evaluate the impact of dataset size and variability on
model performance.

Additional time-series CT and MR images were collected to evaluate the performance of
our trained neural network models on time-series image data acquired from different data
sources from the training data. The time-series CT data were from 10 patients with left
ventricular diastolic dysfunction. The 9 sets of cine cardic MR data were from 5 healthy
subjects and 4 patients with cardiac diseases. All data was de-identified and previously
collected for other purposes. The details of the datasets used and collected are described
in the following sub-sections and summarized in Table 1. We followed the same method
of Zhuang et al. (2019) to manually delineate seven cardiac structures: LV, LA, RA, RV,
myocardium, aorta and pulmonary artery for the collected image data that did not have
ground truth annotations of the whole heart.

2.2. Geometry reconstruction from volumetric images

Our framework consists of three components to predict the whole-heart meshes from a
volumetric input image: (1) an image encoding module that extracts and encodes image
features, (2) a mesh deformation module that combines features from images and meshes to
predict deformation of mesh vertices, and (3) a segmentation module that predicts a binary
segmentation map to allow additional supervision using ground truth annotations. Fig. 1
shows the overall architecture.

2.2.1. Image encoding module—For an input image data, the image encoding module
uses a series of 3D convolutional layers to extract volumetric image feature maps at multiple
resolutions. These feature maps are required by the following mesh deformation module

to predict whole-heart geometries. Therefore, the image encoder should both be effective
for better geometric reconstruction and be memory-efficient to process a 128 x 128 x

128 volumetric input image in a single pass. Our image feature encoder is based on an
improved 3D UNet architecture that was designed to work effectively for large volumetric
image data (Isensee et al., 2018). Briefly, the feature encoder architecture consists of
multiple levels of residual blocks that encode increasingly abstract representations of the
input. Residual connections are known to facilitate gradient propagation during training

and improve generalization (He et al., 2016). Each residual block contains two 3 x 3 x 3
convolutional layers and a dropout layer before the last convolutional layer. The input to the
first convolutional layer is then added to the output of the last one. After each residual block,
we use a 3 x 3 x 3 convolutional layer with input stride 2 to reduce the resolution of the
feature maps.

2.2.2. Segmentation module—While our purpose is to reconstruct surface meshes
directly from image data, the ground truth segmentation can function as an additional
supervision to the network to further facilitate training. From our experiments, including
the segmentation module helped avoid non-manifold geometries due to local minimums
and thus improve reconstruction accuracy. Since the ground truth mesh is a sparse
representation of the cardiac structures compared with a volumetric segmentation, including
the segmentation as a dense supervision with skip connections to the image feature encoder
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can improve gradient propagation to the image encoding module to better interpret the

full volumetric input data. However, since we are only interested in reconstructing meshes,
rather than predicting segmentations for all cardiac structure, our segmentation module is
trained to predict only a binary segmentation representing the occupancy of the heart in the
input image. The adopted network architecture is simplified from the decoder architecture
of Isensee et al. (2018) with only a small number of filters in the convolutional layers.
Briefly, the segmentation module contains multiple levels of decoder convolutional blocks
that correspond to the residual blocks from the image encoding module to reconstruct
segmentation from extracted features. Following a 3 x 3 x 3 convolution of the up-sampled
intermediate output, a decoder convolutional block concatenates the current output with the
corresponding output from the residual blocks of the image encoding module and then uses
alx1x1convolutional layer to process the concatenated features. Binary segmentation
predictions were generated from three different levels of the segmentation module and added
together to form the final prediction.

2.2.3. Graph convolution on mesh—Our neural network uses graph convolutions on
a template mesh to predict deformation vectors on its vertices. Unlike for structured data
such as images, convolution in the spatial domain is not well defined for manifold structures
such as meshes. Therefore, we apply graph convolution in the frequency domain following
recent process in graph convolutional neural networks (Bronstein et al., 2017; Defferrard

et al., 2016). Briefly, our template mesh is represented by a graph .# = (7, &), where

7 = {v;}] | is the set of N vertices and & = {¢;} £ | is the set of £edges that define the

connections among mesh vertices. The graph adjacency matrix A € {0, 1}V is a sparse
matrix that defines the connection between each pair of vertices, with A;;= 0 if vertices v;
and v;are not connected and Aj;= 1 if the two vertices are connected. The degree matrix D
is a diagonal matrix that represents the degree of each vertex, with D;; = ¥,;A;;. Therefore,
the graph Laplacian matrix is a real and symmetric matrix defined as L = D - A, which

can then be normalized as L oy, = /- D"Y2ADY2. The normalized Laplacian matrix

can be diagonalized by the Fourier basis on graph U € R * N as £ ,,p,m= UAUT. The
columns of Uare the orthogonal eigenvectors of L and A is a diagonal matrix containing the
corresponding eigenvalues. The Fourier transform of a function defined on mesh vertices,
fe L3 7)), is thus described by f = U’ r and the inverse Fourier transform is f = U .
Therefore, convolution between fand g € L% 7 ) is described as £* g= U ((UT  © (UT g).
If we parameterize g with learnable weights, a graph convolution layer can then be defined
as fy= o(Uge (AU fyy), where £, and £, are the input and output and o is the ReLU
activation function.

The above expression is computationally expensive for meshes with a large number of
vertices, since Uis not sparse and the number of parameters required can be as many as
the number of vertices. Therefore, we followed Defferrard et al. (2016) to approximate

9o (A) using Chebyshev polynomials so that Ugg(A)UT = Zsz 00kT(L), where L is
the scaled sparse Laplacian matrix L = 2L,y / Amax — I, Where Amax is the maximum

eigenvalue of L,y Gk is the parameter for the Ath order Chebyshev polynomial and
Tk is the Ath order polynomial that can be computed recursively as 75 =/, T; = L and
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Ty(L) = 2LTy _ 1(L) — Ty — »(L). We chose K = 1 since a lower order polynomial can
effectively avoid fitting the noise on our ground truth surfaces and reduce the amount

of parameters to learn. Therefore, the graph convolution on the mesh using a first-order
Chebyshev polynomial approximation is described as fo,; = o(60fin + 61.finL), Where &,

g) € R%ut *din gre trainable weights. f,,, € R%u XN dinx N

and fi, €R
input and output feature matrices, where dj, and dj,;are, respectively, the input and output

dimensions of the mesh features.

are, respectively, the

2.2.4. Mesh initialization—Our method uses a single network to simultaneously
deform multiple sphere templates to corresponding cardiac structures on the input image.
Since the relative locations and scales of different cardiac structures of the heart are
generally consistent across a population, we leverage this prior knowledge into our neural
network by scaling and positioning the corresponding initial sphere mesh template based on
the relative sizes and locations of the cardiac structures. We then used a graph convolution
layer to augment the coordinates of the initial meshes such that they have comparable
contribution as the image features, in terms of the length of feature vectors, to the following
deformation block. Namely, after pre-processing the volumetric training data and obtaining
the corresponding ground truth meshes as described in detail in Appendix A.1.1, we
computed the corresponding image coordinates of the vertices of the surface meshes in the
volumetric training image data. For each cardiac structure, we then computed the average
centroid location and the average length between surface and centroid, across all the ground
truth meshes in the training data. For each input image, we then used this approximated
center and radius to initialize each sphere. By having a closer initialization compared with
using centered unit spheres as in prior approaches (Wickramasinghe et al., 2020; Wang et
al., 2020a), our network can have reduced distance between predictions and ground truths
and thus avoid large deformation during the early phase of training. From our experiments,
this is an important and effective technique to avoid getting stuck in local minimums and
achieve faster convergence.

2.2.5. Mesh deformation module—Our proposed mesh deformation module consists
of three deformation blocks with graph convolutional layers that progressively deform our
initial template meshes based on both existing mesh vertex features and image features
extracted from the image encoding module. Meshes of all different cardiac structures

are deformed simultaneously by these shared mesh deformation blocks. The volumetric
feature maps have increasing level of abstraction but decreasing spatial resolution as we
progress deeper in the image encoding module. Therefore, as shown in Fig. 1, we used
more abstracted, high-level image feature maps for the initial mesh deformation blocks to
learn the general shapes of cardiac structures while using low-level, high-resolution feature
maps for the later mesh deformation blocks to produce more accurate predictions with
detailed features. For each mesh deformation block, we project image features from the
image encoding module to the mesh vertices and then concatenate the extracted image
feature vector with the existing vertex feature vector. As we deform the mesh through
multiple deformation blocks, we decrease the size of the graph convolutional filters to
reduce the dimension of mesh feature vectors to match with the reduced number of
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filters used in upper levels of the image encoding module. Within each mesh deformation
block, the concatenated feature vectors are processed by three graph residual blocks,
which contains two graph convolutional layers with residual connections. We then use

an additional graph convolutional layer to predict deformation as 3D feature vectors on
mesh vertices and add those with the vertex coordinates of the initial mesh or the mesh
from the previous deformation block to obtain the current predicted vertex coordinates. To
project corresponding image features onto mesh vertices, from the vertex locations of the
initial or previously deformed mesh, we compute the corresponding image coordinates in
the volumetric image feature maps. We then tri-linearly interpolate the feature vectors that
correspond to the 8 neighboring voxels of the computed image coordinates in the volumetric
feature maps.

2.3. Loss functions

The training of our networks was supervised by 3D ground truth meshes of the whole

heart as well as a binary segmentation indicating occupancy of the heart on the voxel

grid that corresponds to the input image volume. The whole heart meshes were extracted
from segmentation of cardiac structures using the marching cube algorithm and the binary
segmentation was also obtained from segmentation by setting all non-background voxels to
1 and the rest to 0. We used two categories of loss functions, geometry consistency losses
and regularization losses in the training process. The geometry consistency losses include
point and normal consistency losses while the regularization losses include edge length and
Laplacian losses.

2.3.1. Segmentation loss—We used a hybrid loss function that contained both
cross-entropy and dice-score losses. This loss has been used in training UNets and has
demonstrated promising results on various medical image segmentation tasks (Isensee et al.,
2021). Namely, let Loceypancy (1p 1g) denote the loss of between the predicted occupancy
probability map /pand the ground truth binary segmentation of the whole heart /5. The
hybrid loss function was

goccupancy ([Ps IG) = - Z (IG(x)log(IP(x)) +(1- [G(x))log(] - [P(x)))
x€lg

B 2% e 1) p(x) @
er rlg(x) + er 1 1p(x)

where x denotes the pixel in the input image /.

2.3.2. Point loss—We used Chamfer loss to regulate the accuracy of the vertex locations
on predicted meshes. For a point from the predicted mesh or the ground truth mesh, Chamfer
loss finds the nearest vertex in the other point set and adds up all pair-wise distances. The
point loss is defined by,

3 oin (I aG) - E min ||p g”Z z min “p g||2 2
point 1 1
pEPigEGi gEGiPeIi ()
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where p and g are, respectively, points from the vertex sets of the predicted mesh P;and the
ground truth mesh G; of cardiac structure i.

2.3.3. Normal loss—We used a normal consistency loss to regulate the accuracy of the
surface normal on the predicted meshes. For each point, the surface normal is estimated by
the cross product between two edges of a face connected to the point. The predicted surface
normal is then compared with the ground truth surface normal at the nearest vertex. Namely,

2
Zrormal (P Gy) = D l(P1 —P) X (P2 — P) — Mgl

. 2
p € P;; g = argmin||p — g[|3
geG;

®

where p; and p, are the two vertices sharing the same face with vertex p.

2.3.4. Edge length loss—We used an edge length loss to encourage a more uniform
mesh density on the predictions. That is, we regularize the difference between each edge
length and an estimated average edge length y; of the corresponding cardiac structure G,.
Namely, we compute the average surface area of our ground truth mesh for each cardiac
structure and estimate the average edge length based on the surface area ratio between the
template and ground truth meshes, leading to

gedge (Pi) = Z Z |”p - kP”% - M12|’ (@)
pEP[kPE N (p)

where ./ (p) represents the neighborhood of vertex p.

2.3.5. Laplacian loss—To encourage a smoother mesh prediction, we used a Laplacian
loss to regularize the difference between a vertex location p and the mean location of its
neighboring vertices ky, as

1 2

- 3 e
oy 17 @2

glap (Pi) = Z . 5)
pEP;

2.3.6. Total loss—Prior approaches of mesh reconstruction from images commonly
formulated the total loss function as a weighted sum of multiple loss functions (Wang

et al., 2020a; Wickramasinghe et al., 2020). However, for multi-loss regression problems,
different loss functions are different in scales. Manually tuning the weight assigned to each
loss function is difficult and expensive since losses can differ by orders of magnitude.
Therefore, we express the total loss on predicted meshes as a weighted geometric mean of
the individual losses so that the gradient for an individual loss function can be invariant to its
scale relative to other loss functions (Chennupati et al., 2019). Thus, for predicted meshes G
and ground truth meshes P with A cardiac structures, the total mesh loss is expressed as,
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gmesh P, G)

N
A A A A 6
= Z gpoint (Pi’ Gi) ! Z normal (Pi’ Gi) 2 gedge (Pi) 3 ‘glap (Pi) 4’ ©
i

where each A is a hyperparameter to weight each individual loss based on its importance
without being affected by its scale. We can thus choose hyperparameters from a consistent
range for all the losses. We generated 8 sets of random numbers ranging from 0 to 1 and
chose the best out of the 8 sets of hyperparameters that produced the smallest point loss on
the validation data. The chosen hyperparameters are A1 = 0.3, A, = 0.46, A3 =0.16 and A4
= 0.05. For total loss, we added up losses from all three deformation blocks as well as the
binary segmentation loss:

Zrotal = Lmesh (PBI’ G) + PLiesh (PBZ7 G) + ZLoesh (PB3, G)

O]
+ goccupancy (Ip’ Ig)-

The network parameters were computed by minimizing the total loss function using the
Adam stochastic gradient descent algorithm (Kingma and Ba, 2014).

3. Experiments and results

3.1. Baselines

We considered the following three baselines to compare our method against: 2D UNet
(Ronneberger et al., 2015), a residual 3D UNet (Isensee et al., 2018) and Voxel2Mesh
(Wickramasinghe et al., 2020). The UNets are arguably the most successful architecture for
medical image segmentation and thus can function as strong baselines. In particular, the
2D UNet is a part of the whole-heart segmentation framework implemented in Kong and
Shadden (2020) that recently demonstrated state-of-the-art performance on the MMWHS
challenge dataset. The residual 3D UNet has demonstrated improved performance than a
regular 3D UNet and won the KiTS2019 Challenge (Isensee and Maier-Hein, 2019; Heller
et al., 2021). To ensure a fair comparison, the same network architecture and convolutional
filter numbers were used for the image encoding module between our method and the
residual 3D UNet and the same image pre-processing and augmentation methods were
applied during the training of all methods. For Voxel2Mesh, we reduced the resolution of
the template mesh such that the total memory consumption during training can fit within
the memory available on our Nvidia GeForce GTX 1080 Ti GPU (11 GB). The final mesh
resolution is thus halved compared to the original implementation (Wickramasinghe et al.,
2020) and contains 3663 vertices for each cardiac structures. In contrast, our method can
process a template mesh with 11,494 mesh vertices for each cardiac structures within the
available GPU memory.

3.2. Whole heart reconstruction for CT and MR images

We first compare the performance of whole-heart reconstruction from our method against
our baselines. In this experiment, we trained and validated our method using both CT and
MR images collected from existing public datasets except for the held-out test dataset of the
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MMWHS challenge, which we used for test-time evaluation. Our training set thus contained
87 CT images and 41 MR images and the validation set contained 15 CT images and

6 MR images. The MMWHS held-out test dataset contained 40 CT images and 40 MR
images. We analyzed the performance of our method against baselines in terms of both the
accuracy and the quality of the surface reconstructions. We converted the surface predictions
of our method and those of Voxel2Mesh to segmentations at the spatial resolution of the
input image data, which is the same as the resolution of the segmentations produced by 2D
UNet and 3D UNet. This allowed us to evaluate the accuracy of different methods at the
same resolution against the ground truth segmentation using the executable provided by the
MMWHS challenge organizers. We also manually labeled the testing images and compared
this with the ground truth segmentation of the MMWHS challenge to provide a comparison
between the evaluated reconstruction accuracy of our deep-learning-based method and the
inter-observer variability in manual delineations. The surface quality was evaluated in terms
of surface smoothness, normal consistency and topological correctness.

Table 2 shows the average Dice and Jaccard scores, average symmetric surface distance
(ASSD) and Hausdorff distance (HD) of the reconstruction results of both the whole heart
and individual cardiac structures for the MMWHS test dataset. For both CT and MR data,
our method consistently outperformed our baselines in terms of Dice and Jaccard scores

for both whole heart and all individual cardiac structures. In terms of surface ASSD and

HD measures for the whole heart or individual cardiac structures, our method was the best
or the second among the four deep-learning-based methods compared. To provide further
details on segmentation accuracy, Figure B14 gives the distribution of different segmentation
accuracy metrics for whole heart and individual cardiac structures. Overall, our method
demonstrated advantages of whole heart reconstruction for both CT and MR images, and
2D UNet was the closest to ours compared with 3D UNet or Voxel2Mesh. All methods
produced better reconstruction for CT images than for MR images. Furthermore, there are
no significant differences between the evaluated Dice scores of our methods and those of
our manual labeling, except for left ventricle epicardium (p < 0.05). That is, the discrepancy
between our predicted whole-heart reconstruction and the ground truths provided by the
MMWHS challenge is comparable to the inter-observer variability of manual whole-heart
segmentation.

Fig. 2 displays two examples of the reconstruction results for CT and MR from the
MMWHS test dataset, including the surface meshes of individual cardiac structures. Despite
starting from a generic template, our method is able to accurately map a template sphere

to various cardiac structures with disparate shapes such as the left ventricle epicardium and
the pulmonary artery. Moreover, we are able to generate smooth surface reconstruction with
consistent normal while capturing the details of individual cardiac structures such as mitral
annulus on the left ventricle epicardium, aortic outlet of the left ventricle and the aortic
sinus.

Figs. 3 and 4 visualize the median and worst results from the different methods for CT

and MR images, respectively, from the MMWHS test dataset. The surface meshes of 2D
UNet and 3D UNet were extracted from the segmentation results using the marching cube
algorithm. As shown, our method is able to construct smooth geometries while segmentation
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based methods, such as 2D UNet or 3D UNet, produced surfaces with staircase artifacts.
Such artifacts require surface post-processing techniques such as Laplacian smoothing that
often also degrade true features. Generally, all four methods are able to produce reasonable
median cases from CT data. For MR data, our method produced reasonable reconstructions,
while the 2D UNet and 3D UNet produced reconstructions with disconnected regions that
would require post-processing to remove or connect. Voxel2Mesh was unable to capture
detailed shapes of some structures such as the bifurcation of the pulmonary artery branches.
In the worst cases for both CT and MR, our method nonetheless produced realistic shapes.
However, 2D UNet and 3D UNet predicted geometries with missing parts, noisy surfaces,
incorrect classifications and/or disconnected regions that would require significant post-
processing. Voxel2Mesh predicted worst-case geometries that deviated largely from ground
truths and had major surface artifacts. To provide quantitative comparison on the surface
quality produced by different methods, Table 3 displays average normal error (ANE),
average normalized Laplacian distance (ANLD), and percentage mesh self-intersection of
the reconstruction results. The average normal error measures the discrepancy between

the point normals on the reconstruction and the ground truth. The ANLD measures

the local smoothness of the meshes. The percentage self-intersection measures the local
topological correctness of the meshes. Detailed definitions of these metrics can be found

in Appendix A.1.3. Overall, our method demonstrated the best surface smoothness and
normal consistency for all cardiac structures for CT data and for most cardiac structures for
MR data. For topology correctness, our method produced meshes with a small number of
self-intersections. In contrast, the segmentation-based approaches apply the Marching Cube
algorithm to generate uniform and watertight surface meshes without self-intersection.

Figs. 5 and 6 provide further qualitative comparisons of the results from the different
methods. As shown in Fig. 6, our method was able to generate smoother reconstruction than
the ground truth segmentation on MR images that have relatively large voxel spacing. In
contrast, 2D UNet that produces segmentation on a slice-by-slice manner along the sagittal
view, may suffer from inconsistency between adjacent slices, leading to coarse segmentation
when looking from the axial view that the 2D UNet was not trained on. 3D UNet, limited

by the memory constrain of GPU, can only produce coarse segmentation on a down-sampled
voxel grid of 128 x 128 x 128 for high-resolution CT image data. Although Voxel2Mesh can
also produce smooth surface meshes, it tends to predict surfaces that lack shape details and
do not match well with the true boundary of many cardiac structures.

Fig. 7 shows reconstruction results for the 10 most challenging CT and MR images

for which 2D UNet (the method that demonstrated closest performance to our method)
predicted less accurate segmentations in terms of Dice scores compared with the rest images
in the test datasets. For all the 10 MR images and 8 out of the 10 CT images, our method
produced whole-heart reconstructions with improved Dice scores. For all these CT cases,

we were able to generate accurate reconstruction with Dice scores above 0.87 and smooth
surfaces without obvious artifacts. However, for the 10 MR cases, although we demonstrated
improvement against 2D UNet predictions, we observed buckling and bumpiness on mesh
surfaces of one or more cardiac structures for 5 out of 10 cases.
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Interestingly, as indicated by the point-correspondence color maps in Fig. 7, although we
did not explicitly train our method to generate feature-corresponding meshes across different
input images, our method was generally able to consistently deform template meshes to map
mesh vertices to similar structural features of the heart for different images. This behavior
allowed convenient generation of the mean whole heart shapes from the test dataset by
computing the average coordinates of each vertex. Fig. 8 demonstrates the mean whole
heart shapes for MR and CT images from the MMWHS test dataset, respectively, and the
distribution of the average surface distance errors on the whole heart compared with manual
ground truths. For both CT and MR data, locations that suffer from higher surface errors
include the ends of the aorta and pulmonary arteries, boundaries between the right ventricle
and the pulmonary artery, boundaries between the right atrium and the ventricle, and the
inferior vena cava region on the right atrium. We note that several of the locations of largest
error are artificial boundaries, or arbitrary truncations of vessels extending away form the
heart.

3.3. Generalization to low-Resolution MR images

Cardiac MR image data are often acquired in a slice-by-slice manner and thus often vary

in through-plane resolution due to the use of different acquisition protocols and vendors.
For MR images with low through-plane resolution, accurately constructing smooth surface
geometries is challenging since a method would need to complete the cardiac structures that
are not captured between the slices. Therefore, having trained our method on MR images
with high through-plane resolution to produce detailed whole heart geometries, we evaluate
the performance of our method on MR images with lower through-plane resolution and
compare it with our baselines. To disentangle the effect of through-plane resolution from
the effect of other variations of MR images, we first generate low-resolution MR images
from our validation data by down-sampling the images to various slice thicknesses. We then
evaluate the robustness of different methods to challenging real low-resolution MR images
that significantly differ from our training datasets. Namely, we used data from our cine MR
images, which were acquired with large slice thicknesses (8—10 mm), different acquisition
planes, and from a different clinical center.

3.3.1. Synthetic low-resolution MR data—Fig. 9 displays an example of down-
sampling an input image dataset along the longitudinal direction of the left ventricle to
various slice thickness of 1 mm, 6 mm, and 10 mm, as well as the corresponding predictions
from our method, 2D UNet and 3D UNet, respectively. For low through-plane resolution
images, the same linear resampling method was applied as before to interpolate the 3D
image volume to the sizes required by the neural network models. As the slice thickness

was increased to up to 10 mm, while 2DUNet can generally produce consistent segmentation
on 2D slices, it produces uneven 3D geometries due to poor inter-slice consistency. In
contrast, the 3D UNet is able to produce smoother surfaces by accounting for inter-slice
information. However, as slice thickness increases, the 3D UNet produces less accurate
segmentation, such as incorrectly classifying a part of the RV into the RA and a part of the
PA into the aorta, as shown by the arrows in Fig. 9. Our method, however, for all different
slice thicknesses, produces consistent reconstructions that closely resembles the ground truth
surfaces and are free of any major artifacts. Fig. 10 displays quantitative evaluations of
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the reconstruction performance on various image resolutions. Regardless of slice thickness
values considered, our method out-performed 2D UNet and 3D UNet both in terms of Dice
and ASSD. Moreover, as slice thickness increases from 1 mm to 10 mm, in general, we
observed increasing improvement of our method compared with 2D UNet or 3D UNet.
Furthermore, by taking a 3D image volume as the input, our method and 3D UNet are more
robust to additional in-plane resolution changes than the 2D UNet. Both our method and the
3D UNet demonstrated a smaller reduction in accuracy with 4 times reduction of in-plane
resolution.

3.3.2. Real low-resolution MR data—We evaluated the robustness of our method
on the challenging cine MR dataset, which significantly differs from our training datasets
in terms of the through-plane resolution, imaging plane orientation and coverage of the
heart. To generate ground truth segmentation and meshes from low-resolution MR data,
we resampled such 3D image volume and linearly interpolated between the slices to have
an isotropic spacing of 1 mm along all three axes. The ground truth segmentations were
obtained by manually segmenting the interpolated image data and manually correcting
artifacts due to low through-plane resolution based on prior human expert knowledge

of the heart to obtain smooth and physiologically plausible geometries that match with
the low-resolution image data as much as possible. Table 4 compares the reconstruction
accuracy between our method and the baselines. The reconstruction accuracy was evaluated
at two time frames, end diastole and end systole, for each patient. Overall, our method
demonstrated high reconstruction accuracy and outperformed the other methods for most
cardiac structures in terms of average Dice score and ASSD.

Fig. 11 compares the whole-heart geometries reconstructed by our method with others for
one example of cine cardiac MR images. Our method was able to produce clean surface
meshes while at the same capture most of the cardiac structures with reasonable accuracy.
In contrast, since these images were acquired on imaging planes that were different from
those used in acquiring the training data, 2D UNet produced inaccurate reconstruction

and disconnected surfaces. 3D UNet produces more complete reconstruction of the cardiac
structures but often produced many disconnected false positive regions. Voxel2Mesh is
able to produce clean surface meshes with generally correct topology but the predictions
are not accurate. Furthermore, as changes in input images over different time frames are
small, our method produced consistent reconstruction over different time phases. However,
segentation-based methods, 2D UNet or 3D UNet, often produce inconsistent reconstruction
with significant shape or topology changes, despite small changes in input images over
different time frames.

3.4. Construction of whole-heart 4D models from motion image data

We further tested our method on time-series CT datasets. Table 5 compares the
reconstruction accuracy between our method and the other baseline methods. Similar to
above, the reconstruction accuracy was evaluated at two time frames, end diastole and end
systole, for each patient. Overall, our method demonstrated high reconstruction accuracy and
outperformed the other methods for most cardiac structures in terms of average Dice score
and ASSD.
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Furthermore, we explore the potential capability of our method to reconstruct dynamic 4D
whole-heart models to capture the motion of the heart from time-series image data. Fig.
12 displays example whole-heart reconstruction results of our methods on time-series CT
data that consisted of images from 10 time frames over the cardiac cycle for each patient.
Although our model predicts mesh reconstructions independently from each time frame,

it is able to consistently deform the template meshes such that the same mesh vertices

on the template meshes are generally mapped to the same region of the reconstructed
geometries across different time frames, as shown by the color maps of vertex IDs in Fig.
12. Moreover, as demonstrated by the segmentation in Fig. 12, our method is able to capture
the minor changes between time frames. Therefore, our method can potentially be applied
to efficiently construct 4D dynamic whole-heart models to capture the motion of a beating
heart.

Impact of post-processing on reconstruction performance

Post processing techniques have been commonly applied to correct prediction artifacts from
segmentation-based deep-learning methods. Therefore, we investigated how the performance
of our method compare with that of the 2D UNet and 3D UNet after post-processing.
Namely, for each cardiac structure, we applied a median filter with a kernel size of 5 x 5 x

5 voxels to fill any small gaps within the segmentation and smooth segmentation boundaries.
We then removed any disconnected regions from the segmentation by computing the largest
connected component for each cardiac structure. To correct for gaps between the predicted
cardiac structures we leveraged the ability of our method to consistently map the same
vertices to the similar regions of the heart. Thus, we can readily identify the vertices on the
adjacent surfaces between the cardiac structures from our training data. For test cases, we
can then project each of these vertices to the closest vertex on the adjacent surface.

Table 6 compares the reconstruction accuracy for our method, 2D UNet, and 3D UNet

after the above post-processing steps as well as the accuracy differences before and after
post-processing for each method. For both CT and MR data, our method consistently
outperformed the baselines for all cardiac structures in terms of Dice and Jaccard scores,
and for most cardiac structures in terms of ASSD and HD measures, respectively. In general,
post-processing techniques did not bring major improvements in Dice, Jaccard or ASSD
measures for all the methods. Indeed, these post-processing techniques are designed to
correct artifacts small in size and thus do not significantly contribute to the improvements

in global accuracy measures. In contrast, for local accuracy measure HD, post-processing
techniques brought a major improvement in HD measure for 3D UNet for MR data due to
the removal of disconnected regions from the predictions. Fig. 13 displays the segmentation
and reconstruction results for a challenging MR case before and after post-processing.
Segmentation-based approaches, 2D and 3D UNets, predicted topological incorrect LV
myocardium geometries with large holes, whereas our template-based method predicted
topological-correct geometries. Post-processing techniques were able to reduce, but not fully
close these holes. For this MR case, our method produced a small gap between the LV and
myocardium as these two structures are represented by individual surfaces. However, our
post-processing method on the mesh was able to automatically seal this gap.

Med Image Anal. Author manuscript; available in PMC 2022 September 23.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Kong et al.

3.6.

Page 16

Impact of limited training data on reconstruction performance

We investigate how well our method can reconstruct whole-heart geometries using only a
small number of training data. In this experiment, our neural network model was trained
using only the training set of MMWHS challenge, which consists of 20 CT images and 20
MR images. 16 out of 20 image volumes from each modality were used for training and the
rest were used for validation. We compared our method against the baseline methods for the
same MMWHS test set described above. The baseline methods were trained using the same
training and validation splits.

Table 7 compares the Dice and Jaccard scores, ASSD and HD of the reconstruction results
for the methods trained with the reduced training set, as well as the accuracy differences
compared with training models using more data, as described above. For CT data, our
method consistently outperformed others in terms of Dice and Jaccard scores for the whole
heart and individual cardiac structures except for pulmonary arteries. In terms of ASSD and
HD, our method outperformed 3D UNet and Voxel2Mesh and was comparable to 2D UNet.
For MR data, our method demonstrated better performance than others in terms of whole
heart Dice and Jaccard scores, as well as surface HD of whole heart. 2D UNet demonstrated
the best whole heart ASSD performance. For individual cardiac structures, our method
showed better Dice and Jaccard scores for Epi, LV, RA and RV, smaller ASSD values for
Epi, LV, RA and smaller surface HD values for most of the cardiac structures except for LA
and Ao. Figure B15 shows the distribution of different segmentation accuracy metrics for
whole heart and individual cardiac structures among the MMWHS test dataset.

As shown in Table 7, when trained with a smaller training dataset, the methods generally
showed reduced Dice or Jaccard scores and increased ASSD and HD values for both whole
heart and individual cardiac structures compared with when trained with a larger dataset, as
summarized in Table 2. Exceptions include the smaller HD values of Epi, LA, LV, RV and
PA from our method for CT data and the better LV and aorta segmentation from 3D UNet
for MR data in terms of all four metrics. Compared with CT data, all methods generally
demonstrated more significant reduction of segmentation accuracy for MR data, in terms of
average values of reduction for all four metrics. While performance drops due to reduced
size of training data is consistent, the actually amount of performance drop is minor for our
method, 2D UNet and 3D UNet. For example, although the number of CT training data was
reduced from 87 to 16, we only observed a small average reduction (0.01-0.02) of whole
heart Dice scores for 2D UNet, 3D UNet and our method. However, the performance drop
for Voxel2Mesh in relation to the number of training data was much more significant, with a
0.27-0.28 reduction of whole-heart Dice scores for CT and MR data. Among all the cardiac
structures, our method had the most significant performance reduction of PA reconstruction
for both CT and MR data while segmentation based approaches, 2D UNet and 3D UNet,
demonstrated a more uniform performance drop across all cardiac structures. Indeed, the
shapes of the PA differ significantly from our initial sphere template mesh and therefore
accurately capturing the shapes of PA might require more training data for our method.
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4. Discussion

Image-based reconstruction of cardiac anatomy and the concomitant geometric
representation using unstructured meshes is important to a number of applications, including
visualization of patient-specific heart morphology and computational simulations of cardiac
function. Prior deep-learning-based approaches have shown great promise in automatic
whole heart segmentation (Zhuang et al., 2019), however converting the segmentation
results to topologically valid mesh structures requires additional, and often manual, post-
processing, and is highly-dependent on the resolution of the image data. In this work,

we present a novel deep-learning-based approach that uses graph convolutional neural
networks to directly generate meshes of multiple cardiac structures of the whole heart

from volumetric medial image data. Our approach generally demonstrated improved

whole heart reconstruction performance compared with the baseline methods in terms

of accuracy measures, Dice and Jaccard scores, ASSD and HD. Furthermore, our

method demonstrated advantages in generating high-resolution, anatomically and temporally
consistent geometries, which are not reflected by the accuracy measures.

Our method reconstructs cardiac structures by predicting the deformation of mesh vertices
from sphere mesh templates. We have demonstrated the advantages of this approach over
segmentation-based approaches in terms of both precision and surface quality. Namely,

the use of a template mesh can introduce topological constraints so that predicted cardiac
structure are homeomorphic to the template. Thus, our template based approach enables one
to eliminate disconnected regions and greatly reduce erroneous topological artifacts often
encountered with existing deep-learning-based segmentation methods. While the cardiac
structures of interest were homeomorphic to spheres, the presented method has the potential
to be generalized to organs with different topology, by using a different template mesh with
the required surface topology.

When trained on a relatively large dataset with 87 CT and 41 MR images, our method was
able to achieve comparable accuracy to manual delineations, which is considered the gold
standard. Furthermore, since we explicitly regularized the surface smoothness and normal
consistency, our method produced smooth and quality meshes while capturing the detailed
features of the cardiac structures. Namely, these factors along with the use of a template
enable our method to generate realistic cardiac structures even when image quality was poor
and segmentation methods struggled to provide realistic topology. From our observations,
the locations on the heart that our neural network models produced high surface errors are
consistent with the locations that could suffer from high inter- or intra-observer variations,
such as the arbitrary length of aorta and pulmonary arteries, boundaries between atria and
ventricles and between the right atrium and the inferior vena cava. Indeed, these boundaries
are not distinguishable by voxel intensity differences and are often subject to uncertainties
even for human observers.

Compared with segmentation-based approaches, our method predicts whole heart surfaces
directly in the physical space rather than on a voxel grid of the input image. The whole
heart geometries are represented using surface meshes rather than a dense voxel grid.
Hence, our method is able to generate high-resolution reconstructions (10K mesh vertices
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for each cardiac structure) efficiently on a limited memory budget and within a shorter

or comparable run-time (table B10). Prior 3D segmentation-based approaches have sought
to increase the segmentation resolution by training separate neural networks to first locate
the region of interest or generate low resolution segmentations, and then generate refined
segmentations within the localized region (Payer et al., 2018; Isensee et al., 2021). Our
method does not require training multiple neural networks and can make predictions directly
from the entire down-sampled cardiac image volume. As we used a cascade of three mesh
deformation blocks, we observed that the first deformation block can already effectively
position and deform the meshes to the correct locations and the subsequent deformation
blocks can further refine the predicted mesh vertex locations. High resolution segmentation
may also be obtained by recent methods that represent geometries using implicit surfaces
(Kirillov et al., 2019). Namely, for each point in the physical space, this approach predicts
the probability of this point belonging to a certain tissue class. Therefore, by sampling a
large number of points in the physical space, these methods can also achieve high-resolution
reconstruction that are not constrained by the voxel resolution of the input image or GPU
memory. However, the inference process for such methods is computationally expensive
(Gupta and Chandraker, 2020) as it requires prediction on a large number of points. In
contrast, our method represents the mesh as a graph (i.e., a sparse matrix) and takes less than
a second to predict a high resolution whole heart mesh.

Compared with prior deep-learning-based mesh reconstruction methods from image

data (Wang et al., 2020a; Wickramasinghe et al., 2020), our method used a shared

graph neural network to simultaneously predict surface meshes of multiple cardiac
structures. This is made possible by initializing the template meshes at various scales and
locations corresponding to individual cardiac structures. We observed that proper template
initialization is essential to avoid local minimums due to large mesh deformation at the
beginning stage of training. In contrast, prior approaches are designed for predicting a single
geometry from image data and require training a separate graph neural network for each
anatomical structure and thus do not easily scale to reconstruct multiple cardiac structures
at a high-resolution from a single image volume. Furthermore, while prior approaches
proposed various upsampling scheme to construct a dense mesh from a coarse template
(Wickramasinghe et al., 2020; Wang et al., 2020a), we directly deformed a high resolution
template. Since the majority of weights is in the image feature encoder to process a dense
volumetric input image, more mesh vertices can provide more effective gradient propagation
to the image feature encoder. Indeed, using a coarse mesh with 3K mesh vertices for each
cardiac structures, we observed a 2% reduction of whole heart dice score as shown in

our supplemental materials (table B8). However, our method was still able to outperform
Voxel2Mesh by 3% and 10% for CT and MR data using a coarse mesh template with a
similar amount of mesh vertices. These design choices allowed our method to demonstrate
promising generalization capabilities to unseen MR images and maintain good performance
when trained with a smaller number of samples. In contrast, Voxel2mesh suffered from a
large performance drop when trained on a smaller dataset.

When applied to time-resolved images, our method consistently deformed the template mesh
such that mesh vertices were mapped to the similar regions of the heart across different
time frames. Learning such semantic correspondence is purely a consequence of our model
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architecture and did not require any explicit training. This behavior of producing semantic
corresponding predictions was also observed in DeepOrganNet, which reconstructed lung
shapes from single-view X-ray images by deforming lung templates (Wang et al., 2020b).
Point-corresponded meshes across different input images are required for numerous
applications, such as building statistical shape models, constructing 4D dynamic whole-heart
models for motion analysis and deriving boundary conditions for deforming-domain CFD
simulations. Current approaches that construct feature corresponding meshes for the heart
mostly use surface or image registration methods to deform a reference mesh so that its
boundary is consistent with the target surfaces or image segmentation (Ordas et al., 2007;
Khalafvand et al., 2018; Kong and Shadden, 2020). However, registration algorithms are
often very computationally expensive to align high-resolution meshes and they often suffer
from inaccuracies for complex whole heart geometries due to local minimums during the
optimization process. In the case of time-series image data, our method naturally produces
point corresponding meshes with high resolution (10K mesh vertices per cardiac structure)
across time frames within a couple of seconds, while prior methods could require hours to
generate a 4D dynamic whole-heart model at a similar resolution. Although not considered
here, it is possible to include another loss function that minimizes the point distances
between the vertex locations on the predicted meshes and ground truth landmarks when
available to further enhance feature correspondence.

Limitations of the proposed method include a lack of diffeomorphic constraints to establish
a differentiable mapping from the initial spheres and the predicted surfaces. While we used
the Laplacian loss to regularize the smoothness of the meshes, a diffeomorphic constraints
may help to further prevent face intersections. Recently, Gupta and Chandraker (2020)
proposed to learn neural ordinary differential equations to predict a diffeomorphic flow

that maps a sphere mesh template to the target shapes, thus implicitly preserving the
manifoldness of the template mesh without explicit regularizations. This approach could

be combined with our image-based whole-heart mesh prediction framework in the future to
deform the whole heart geometry while preserving the manifoldness of the meshes so that
they could be directly used in applications such as numerical simulations and 3D printing.
Furthermore, while our method can simultaneously predict multiple structures from image
data, those structures are not coupled to each other. Small intersections or gaps could appear
between adjacent cardiac structures. While we have demonstrated that simple projection can
generally correct such artifacts, future work could include more explicitly constraining the
coupling of cardiac structures within the learning framework.

5. Conclusions

We have developed a deep-learning-based method to directly predict surface mesh
reconstructions of the whole heart from volumetric image data. The approach leverages

a graph convolutional neural network to predict deformation on mesh vertices from a
predefined mesh template to fit multiple anatomical structures in a 3D image volume.

The mesh deformation is conditioned on image features extracted by a CNN-based

image encoder. The method demonstrated promising performance of generating accurate
high-resolution and high-quality whole heart reconstructions and out-performed prior deep-
learning-based methods on both CT and MR data. It also demonstrated robust performance
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when evaluated on MR or CT images from new data sources that differ from our the
training datasets. Furthermore, the method produced temporally consistent predictions and
feature-corresponding predictions by consistently mapping mesh vertices on the templates
to similar structural regions of the heart. Therefore, this method can potentially be applied
for efficiently constructing 4D dynamics whole heart model that captures the motion of a
beating heart from time-series images data.
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Appendix A

Al. Implementation details

Al.1. Image pre-Processing

Intensity normalization and resizing were applied to all 3D image volumes to obtain
consistent image dimensions and pixel intensity range. We followed the procedures in Kong
and Shadden (2020) to normalize pixel intensity values of each CT or MR image volume
such that they ranged from -1 to 1. The 3D image volumes were then resized using linear
interpolation to a dimension of 128 x 128 x 128, which maintained image resolution with

a manageable computational cost. The ground truth meshes were generated by applying the
Marching Cube algorithm (Lorensen and Cline, 1987) on the segmentations, followed by 50
iterations of Laplacian smoothing.

Al.2. Image augmentation

Data augmentation techniques were applied during training to improve the robustness of the
neural network models to the variations of input images. Specifically, we applied random
scaling (-5% to 5%), random rotation (=5° to 5°), random shearing (=10° to 10°) as well

as elastic deformations (Simard et al., 2003) on the input images. For elastic deformations,
16 control points were placed along each dimension of the 3D image volume and were
randomly perturbed. The input images are then warped according to the displacements of the
control points using the B-spline interpolation.

Al1.3. Training

The model parameters were computed by minimizing the total loss function using the Adam
stochastic gradient descent algorithm (Kingma and Ba, 2014). The initial learning rate

was set to be 0.001, while B; and B, for the Adam algorithm were set to 0.9 and 0.999,
respectively. Point losses were evaluated on the validation data after each training epoch
and the model was saved after one epoch only if the validation point loss had improved.

We adopted a learning rate schedule where the learning rate was reduced by 20% if the
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validation point losses had not improved for 10 epochs. The minimum learning rate was 5
x 1076. The network was implemented in TensorFlow and the training was conducted on
a Nvidia GeForce GTX 1080 Ti graphics processing unit (GPU) until the validation loss
converged.

Al.4. Evaluation metrics

We used Dice, Jaccard scores as well as average symmetric surface distance (ASSD) and
Hausdorff distance (HD) to evaluate the accuracy of our reconstructions. Dice and Jaccard
scores are similarity indices that range from 0 to 1 as given by

. 2lIp n Ig|
DICC(IP, IG) = m (8)
[Ip n Ig]
Jaccard(lp, IG) = m 9)

The ASSD and HD measure the average and the largest inconsistency in terms of
Euclidean distance between the reconstruction result and the ground truth, respectively. For
reconstructed meshes P and the ground truth meshes G, the ASSD and HD are given by

||P—g||2+ Z mi llp —gll2

ASSD(P, G) = min ——=—— n—=— 10

p;,gec Pl " Siper (G 0
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Normal discrepancy between the reconstruction result and the ground truth was evaluated by
an average normal error (ANE). Namely, for n,, n), being the vertex normals at points x and
y, respectively,

1 - (np’ ng>
ANEP, G) = Z . T 12)
p € P;g =argmin|lp —gll2
geG

Surface smoothness was evaluated by the average normalized Laplacian distance (ANLD).
ANLD measures the Euclidean distances between the coordinates of mesh vertices and the
mean coordinates of their neighbours, normalized by the average edge length between the
mesh vertices and their neighbours. Namely,

1
HP— Dy € S (p) T K ”
P [/ @] P2
ANLD(P) = )’ I .
PEP T kae/lf(p)“p - Kpll,

(13)
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The percentage mesh self-intersection was calculated as the percentage of intersected mesh
facets among all mesh facets. The intersected mesh facets were detected by TetGen Si
(2015).
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Diagram of the proposed automatic whole heart reconstruction approach. The framework
uses 3D convolutional layers (shown in blue) to encode image features and predict a binary
segmentation map from an input image volume. The corresponding image features are

sampled by pooling layers (shown in orange) based on the vertex coordinates of the template

mesh. From the combined image and mesh features, graph convolutional layers (shown in
green) are then used to predict the deformation of mesh vertices to generate the final mesh

predictions.
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Fig. 2.
Example reconstructions from our method for CT (left) and MR (right) data selected from

MMWHS test dataset. Our method reconstructs the whole heart consisting of seven cardiac
structures, including the four heart chambers, left ventricle epicardium, aorta and pulmonary
arteries. Geometry of each reconstructed cardiac structure is demonstrated in two different
views, with the bottom view also displaying the meshes.
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Fig. 3.
Visualizations of the median and worst reconstruction results among the MMWHS CT test

dataset in terms of whole-heart Dice scores for all compared methods.
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Fig. 4.
Visualizations of the median and worst reconstruction results among the MMWHS MR test

dataset in terms of whole-heart Dice scores for all compared methods.
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Fig. 5.
Comparison of the predicted whole heart surfaces from different methods for CT test cases.

Different rows demonstrated the zoomed-in axial view of the images and predictions from
different test cases with the 10th, 50th, 90th percentiles of Dice scores based on our method.
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Fig. 6.

Comparison of the predicted whole heart surfaces from different methods for MR test cases.
Different rows demonstrated the zoomed-in axial view of the images and predictions from
different test cases with the 10th, 50th, 90th percentiles of Dice scores based on our method.
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Fig. 7.

W%ole heart reconstruction results from the 10 most challenging CT and MR images for
which 2D UNet predicted less accurate segmentations in terms of Dice scores compared
with the rest images in the MMWHS test datasets. On top of each case is the whole-heart
Dice score of our result and the difference in whole-heart Dice score compared with 2D
UNet reconstruction. The color map denotes the indices of mesh vertices and demonstrates
the correspondence of mesh vertices across reconstructed meshes from different images.

Dice=0.85(+0.02)
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Fig. 8.
Distribution of the average surface distance errors on mean whole heart shapes from the CT

and MR data in MMWHS test dataset.
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Fig. 9.

Robustness of different methods to through-plane resolution changes of MR images. Left
panel shows the front and back views of the ground truth surfaces; top panel shows example
slices along the down-sampling axis of images down-sampled to varying slice thicknesses,
and bottom panel shows front and back views of predicted whole-heart surfaces from
different methods corresponding to different slice thickness values.
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Fig. 10.
Relation of Dice and ASSD values of whole-heart surfaces to through-plane resolution of

MR images. Comparison between different methods and different in-plane resolutions are
indicated by lines with different color and different styles, respectively. The bottom panel
shows the average percentage differences of Dice or ASSD values between our method and
2D UNet or 3D UNet across all validation images.
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Fig. 11.
Short axis and long axis slices at different time frames for an example cine cardic MR data

and the corresponding reconstructed whole heart surfaces from different methods.
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Mid Diastole Mid Systole

Fig. 12.
Whole-heart reconstruction results for time-series CT data. From left to right, each column

displays results at one time frame from middle diastole to early diastole. The top row
shows predicted segmentation overlaid with CT images and the bottom row shows the
correspondence maps of mesh vertices across reconstructed meshes from different time
frames, with same color denoting the same mesh vertices on reconstructed meshes.
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Ground Truth Ours Ours + Post

Fig. 13.
Example of whole heart segmentation and surface reconstruction results before and after

post-processing.
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