Table 5.
A comparison of prediction accuracy on time-series CT dataset from different methods. All accuracy measures are represented by mean ± standard deviation, which are computed over different patients and time frames.
Epi | LA | LV | RA | RV | Ao | PA | WH | ||
---|---|---|---|---|---|---|---|---|---|
| |||||||||
Dice (↑) | Ours | 0.902 ± 0.035 | 0.96 ± 0.018 | 0.956 ± 0.033 | 0.946 ± 0.014 | 0.944 ± 0.017 | 0.974 ± 0.006 | 0.798 ± 0.129 | 0.94 ± 0.012 |
2D UNet | 0.913 ± 0.028 | 0.958 ± 0.014 | 0.957 ± 0.023 | 0.927 ± 0.041 | 0.925 ± 0.041 | 0.971 ± 0.009 | 0.867 ± 0.114 | 0.937 ± 0.022 | |
3D UNet | 0.884 ± 0.03 | 0.935 ± 0.012 | 0.946 ± 0.03 | 0.928 ± 0.019 | 0.92 ± 0.02 | 0.955 ± 0.01 | 0.831 ± 0.059 | 0.922 ± 0.014 | |
Voxel2Mesh | 0.786 ± 0.072 | 0.933 ± 0.019 | 0.928 ± 0.037 | 0.92 ± 0.021 | 0.928 ± 0.019 | 0.924 ± 0.011 | 0.651 ± 0.123 | 0.894 ± 0.014 | |
ASSD (nm) (↓) | Ours | 0.697 ± 0.308 | 0.54 ± 0.205 | 0.574 ± 0.399 | 0.781 ± 0.21 | 0.756 ± 0.219 | 0.28 ± 0.073 | 2.714 ± 3.079 | 0.906 ± 0.5 |
2D UNet | 0.634 ± 0.281 | 0.569 ± 0.181 | 0.538 ± 0.25 | 1.097 ± 0.668 | 1.099 ± 0.737 | 0.281 ± 0.103 | 1.155 ± 1.019 | 0.767 ± 0.291 | |
3D UNet | 0.811 ± 0.34 | 0.871 ± 0.277 | 0.711 ± 0.381 | 0.993 ± 0.325 | 1.017 ± 0.267 | 0.504 ± 0.19 | 1.598 ± 1.183 | 0.929 ± 0.259 | |
Voxel2Mesh | 1.297 ± 0.451 | 0.916 ± 0.208 | 0.993 ± 0.423 | 1.194 ± 0.327 | 1.034 ± 0.275 | 0.844 ± 0.124 | 3.788 ± 2.008 | 1.438 ± 0.325 |