Table 7.
A comparison of prediction accuracy on MMWHS MR and CT test datasets from different methods trained with images from MMWHS training set.
Epi | LA | LV | RA | RV | Ao | PA | WH | |||
---|---|---|---|---|---|---|---|---|---|---|
| ||||||||||
Dice (↑) | Ours | 0.880 | 0.926 | 0.931 | 0.868 | 0.885 * | 0.945 | 0.786* | 0.900 * | |
2DUNet | 0.877* | 0.916 | 0.926 | 0.855 | 0.876* | 0.916 | 0.805 | 0.892* | ||
3DUNet | 0.816* | 0.916 | 0.914 | 0.848 | 0.878 | 0.923 | 0.793 | 0.877 | ||
Voxel2Mesh | 0.501* | 0.748* | 0.669* | 0.717* | 0.698* | 0.555* | 0.491* | 0.656* | ||
Jaccard (↑) | Ours | 0.790 | 0.863 | 0.874 | 0.773 | 0.798 * | 0.897 | 0.666* | 0.819 * | |
2DUNet | 0.784* | 0.847 | 0.864 | 0.753 | 0.787* | 0.850 | 0.692 | 0.807* | ||
3DUNet | 0.696* | 0.848 | 0.844 | 0.741 | 0.787 | 0.860 | 0.670 | 0.782 | ||
Voxel2Mesh | 0.337* | 0.600* | 0.510* | 0.570* | 0.543* | 0.397* | 0.337* | 0.491* | ||
CT | ASSD (mm) (↓) | Ours | 1.357 | 1.137 | 0.966 | 1.750 | 1.320 | 0.729 * | 2.020 | 1.333* |
2DUNet | 1.014 * | 1.141 | 0.911 | 1.702 | 1.433* | 0.808 | 1.754 | 1.240 * | ||
3DUNet | 1.809* | 1.389 | 1.134 | 2.176 | 1.585 | 0.832 | 2.276 | 1.668 | ||
Voxel2Mesh | 3.412* | 3.147* | 4.973* | 3.638* | 4.300* | 4.326* | 5.857* | 4.287* | ||
HD (mm) (↓) | Ours | 13.789 | 10.362 | 9.628 | 14.467 | 12.766 | 12.740* | 25.362 | 27.567 | |
2DUNet | 13.582 | 10.221 | 6.700 | 14.788 | 16.608* | 11.410 | 28.128 | 32.514 | ||
3DUNet | 15.044 | 40.157* | 9.730 | 15.037 | 13.777 | 10.821 | 27.467 | 48.731 | ||
Voxel2Mesh | 15.526* | 13.683* | 22.146* | 16.834* | 18.390* | 19.419* | 35.322* | 37.065* | ||
Dice (↑) | Ours | 0.773 | 0.826* | 0.913 | 0.838 * | 0.861 | 0.824* | 0.663* | 0.846 * | |
2DUNet | 0.751 | 0.831 | 0.880 | 0.815 | 0.852 | 0.838 * | 0.747 | 0.834 | ||
3DUNet | 0.733 | 0.811 | 0.885 | 0.827* | 0.829 | 0.825 | 0.741 | 0.823 | ||
Voxel2Mesh | 0.282* | 0.498* | 0.515* | 0.599* | 0.539* | 0.241* | 0.300* | 0.483* | ||
Jaccard (↑) | Ours | 0.639 | 0.712* | 0.842 | 0.727 * | 0.768 | 0.715* | 0.517* | 0.737 * | |
2DUNet | 0.611* | 0.720 | 0.793 | 0.702 | 0.753 | 0.726 * | 0.608 | 0.719* | ||
3DUNet | 0.588 | 0.695* | 0.803 | 0.718* | 0.727 | 0.718 | 0.615 | 0.709 | ||
Voxel2Mesh | 0.170* | 0.339* | 0.367* | 0.442* | 0.388* | 0.144* | 0.187* | 0.327* | ||
MR | ASSD (mm) (↓) | Ours | 2.385 | 2.166* | 1.300 | 2.358 * | 1.812 | 3.243 | 3.138 | 2.235* |
2DUNet | 2.692* | 1.688 | 1.603 | 3.151* | 1.736 | 2.920 | 2.281* | 1.897 | ||
3DUNet | 2.713 | 3.866 | 1.551 | 2.475 | 1.931 | 4.049 | 2.259 | 2.120 | ||
Voxel2Mesh | 6.886* | 5.987* | 8.679* | 6.173* | 8.192* | 7.877* | 9.200* | 7.419* | ||
HD (mm) (↓) | Ours | 16.804 | 15.559* | 12.197 | 17.286 * | 14.480 | 26.012 | 19.927 | 29.983 | |
2DUNet | 23.798 | 14.887 * | 14.651 | 22.028* | 22.810* | 24.237 | 22.883* | 39.724* | ||
3DUNet | 20.136 | 32.978 | 13.643 | 23.735 | 22.351 | 31.900 | 21.363 | 43.475 | ||
Voxel2Mesh | 27.272* | 22.748* | 31.327* | 24.456* | 28.987* | 29.381 | 33.637* | 40.072* |
An asterisk * indicates statistically significant accuracy differences, compared with Table 2, resulted from training on a smaller datset based on t-tests (p < 0.05 ).