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Abstract: According to the working scenes, a proper light environment can enable people to maintain
greater attention and meditation. A posture detection system in different working scenes is proposed
in this paper, and different lighting conditions are provided for changes in body posture. This aims to
stimulate the nervous system and improve work efficiency. A brainwave acquisition system was used
to capture the participants’ optimal attention and meditation. The posture data are collected by ten
miniature inertial measurement units (IMUs). The gradient descent method is used for information
fusion and updating the participant’s attitude after sensor calibration. Compared with the optical
capture system, the reliability of the system is verified, and the correlation coefficient of both joint
angles is as high as 0.9983. A human rigid body model is designed for reconstructing the human
posture. Five classical machine learning algorithms, including logistic regression, support vector
machine (SVM), decision tree, random forest, and k-nearest neighbor (KNN), are used as classification
algorithms to recognize different postures based on joint angles series. The results show that SVM
and random forest achieve satisfactory classification effects. The effectiveness of the proposed method
is demonstrated in the designed systematic experiment.

Keywords: inertial sensor; posture reconstruction; working status measurement; gradient descent
method; work efficiency; light environment

1. Introduction

With the development of scientific research on light health, it has been proved that
the light environment affects not only eye health [1] but also work efficiency, emotion,
and physiological activities [2]. Therefore, providing an intelligent light environment that
adapts to different working scenes is emerging as a research hotspot. Some studies have
shown that office workers would like to control the lighting autonomously to keep them
motivated and focused throughout the day. Participants are more satisfied when they
perceive higher lighting quality in their offices Meanwhile, a higher color temperature
(7500 k compared to 3000 k) is proved to increase mental activity at 1000 lux [3]. The lower
color temperature can reduce central nervous system activity [4].

Attention is the primary evaluation indicator to detect the effect of the light environ-
ment on work efficiency. Several methods for monitoring attention have been employed
in previous studies. Wang et al. assessed subjects’ performance of attention influenced by
illumination using the Schulte grid method [5]. However, the experimental process can
be disrupted by this invasive and mandatory detection method. Roberto et al. designed a
multimodal acquisition framework to monitor blink activity during online task execution
for concentration assessment [6]. Landmark detection and ROI extraction were used to
localize eye regions and blink detection. However, in an environment without visual
feedback, this flexibility is lost, which makes it difficult to monitor the user’s attention. Lee
et al. verified the effect of illuminance and associated color temperature of LED lighting on
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memory during work [7]. The 3-back task lasts 5 min, and the number of correct answers
in the 3-back task reflects the attention level from the side. However, the data obtained by
this method are very subjective and do not directly reflect the changes brought about by
the light environment on human attention.

Nowadays, it is a standard method to monitor attention using Mindwave. This small
instrument causes no discomfort to participants and shows real-time changes in the brain.
Yan et al. demonstrated that the rate of the α-wave and β-wave of the students’ brain waves
significantly differed at different color temperatures (2700 K, 4000 K, 6500 K) and illumina-
tion levels (300 lx, 750 lx, 1000 lx) [8]. As the color temperature and illumination increase,
students became more excited and sensitive, showing a roughly positive correlation.

The different working states of people can be judged by observing their eye move-
ments, expressions, postures, etc. We find that numerous impressive research results are
obtained based on video methods of capturing human posture. Sanchez et al. investigated
a video-based method to generate a numerical measure of postural alignment of the head
and trunk in sitting [9]. The results show that the method is more accurate and reliable in
obtaining a more detailed spine profile than subjective judgment. However, some tricky
problems are often encountered in practice, such as user privacy issues, obstacle occlusion,
and the influence of light, which reduce the accuracy of motion recognition. In addition, it
is feasible to obtain the contour and motion state of the human spine or extremities using
pressure pads. Pressure sensors are mounted on the seat surface or backrest to capture the
participant’s pressure distribution for the identification of sitting posture. Shunsuke et al.
measured the time series of the pressure distribution of a person on a pressure cushion
to analyze the sitting person’s move direction and the amount [10]. Jawad Ahmad et al.
designed a flexible and inexpensive screen-printed large-area pressure sensing system that
eliminates erroneous pressure information and achieves more than 80% accuracy in sitting
classification [11]. Nevertheless, the pressure distribution reflects only the rough sitting
posture and cannot reconstruct the body posture. Some mechanical, optical and electromag-
netic human posture capture systems have also been studied. Mechanical human posture
capture systems limit human motion [12]. Optical-based human pose capture systems are
more expensive, require a high-light environment, and are susceptible to occlusion [13].
The electromagnetic-based human posture capture system is susceptible to magnetic field
interference, and magnetic field distortion caused by surrounding metal objects severely
affects accuracy [14].

With the development of microelectromechanical systems (MEMS), sensors have be-
come more accurate and compact, and human posture capture based on IMU is gradually
becoming a research hotspot [15]. Shull et al. reviewed and evaluated the clinical appli-
cations of wearable gait sensing and feedback [16]. The inertial measurement unit is the
most widely used wearable sensor, and its clinical benefits have been proven. Qiu et al.
designed a wearable smart system without root node constraints for high-precision human
motion capture [17]. Rubaiyat et al. investigated the four main daily activities of walking,
sitting, walking up and down stairs using a real-time human activity recognition system
based on a single triaxial accelerometer, with a recognition rate of more than 90% [18].
However, sensors worn only at specific locations fail to provide a comprehensive analysis of
posture, resulting in missing parameters that affect the accuracy of experiments. The most
commonly used sensor combinations in the early days were gyroscopes and accelerome-
ters. Mahmoud El-Gohar used two wearable inertial measurement units to estimate the
angle of the human shoulder and elbow. The orientation was calculated by integrating
the angular velocity of the gyroscope. Accelerometers were used as compensation data to
compensate for drift errors. Non-linear inertial posture fusion was achieved by applying
the traceless Kalman filter [19]. The rapid drift of estimates after a few seconds was caused
by time-varying biases and noise affecting accelerometer and gyroscope measurements,
which are unreliable. Therefore, researchers investigated multi-sensor fusion to solve the
drift problem. Bachmann et al. proposed a quaternion complementary filter based on
accelerometers and magnetometers for compensating for the drift of gyroscope signals [20].
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Yun et al. proposed a design combining extended Kalman filtering and Gauss–Newton
methods for parameter optimization [21]. The quaternion is solved from the accelerom-
eter and magnetometer measurements by the Gauss–Newton iterative method, and the
extended Kalman filter fuses the quaternion and the angular velocity to obtain the posture.

Currently, traditional methods for monitoring and evaluating posture rely on many
laboratory-based motion capture systems that lack application in realistic scenarios outside
the laboratory. Future research should focus on the natural human environment with con-
tinuous and long-term monitoring and interventions for motor posture. Previous research
has been applied in the medical, sports and virtual reality fields, but few researchers have
applied wearable inertial sensors in working conditions. In this paper, long-term human
posture monitoring is performed in a natural working environment by a self-made posture
detection system based on micro inertial sensors. Our purpose is to analyze participants’
attention in different states and light environments, and this paper mainly focuses on the
following points.

• An association between body posture in different working scenes and optimal light
conditions is established to enhance the work efficiency.

• A wearable device is designed with multiple IMUs fixed on the body to monitor
human posture in quaternion format. The full description of hardware and algorithms
is presented. Experimental results reveal that the scheme can effectively recognize
human postures in various work tasks.

• Assessment of brain activity under different light conditions at various degrees of
attention and meditation shows that environmental lighting factors are crucial for
improving work efficiency.

2. Materials and Methods
2.1. System Platform and Data Collection

This system aims to investigate a methodology for improving the work state based
on wearable devices. Musculoskeletal disorders can be triggered in office occupations
due to prolonged sedentary behavior [22]. In this paper, four common work postures are
considered. They correspond to four specific tasks: reciting English words, performing
English reading comprehension, browsing essays, and listening to music. As shown
in Figure 1, the system platform architecture shows that a whole-body posture capture
system based on inertial measurement units (IMUs) is used to capture and reconstruct
the human posture. The human posture data are learned and trained locally by machine
learning classification algorithms, and four types of working scenarios (memory, thinking,
understanding, and leisure) are classified. The features of the four work tasks are uploaded
to the cloud platform, where the office lighting system is unified and regulated. Providing
the best light environment according to the working posture in different work scenes will
improve people’s attention and meditation, obtaining the best office state.

We develop an IMU-based whole-body posture capture system to collect raw sen-
sor data of participants’ working postures and reconstruct human activities. The system
hardware and control platform UI are shown in Figure 2. This system consists of several
miniature inertial sensor nodes (IMU), a transceiver and computer software. Each inertial
sensor node consists of a ICM-20948 nine-axis inertial sensing module (a three-axis ac-
celerometer, a three-axis gyroscope and a three-axis magnetometer), a Lora communication
module and a trans-flash (TF) memory card. User comfort and impact on motion are our
special concerns, and we try our best to reduce the size of the inertial sensor node. The
final size of the PCB is 22 × 24 (mm), and the 3D housing size is 31.5 × 29.1 × 25.9 (mm).
Although the nodes are worn on the limbs via nylon straps, participants experience no
discomfort and move freely, and no harmful effects of the devices are observed on the
human body. ICM-20948 is encapsulated in a 3 × 3 × 1 mm QFN package, significantly
reducing chip size and power consumption while improving performance and reducing
costs. Table 1 shows the sensor specifications. The battery endurance of the self-made
inertial sensor node is about 3 h when fully charged, which is sufficient to satisfy the
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experimental requirements. Based on Lora wireless communication, the node control pro-
gram sends working commands to the sensor nodes through the transceiver and monitors
the working status of the nodes. The sensor nodes immediately acquire the participant’s
posture data with a sampling frequency of 400 HZ (up to 800 Hz) when the software sends
the “Start Acquisition” signal. All collected data are stored in the TF cards with a flash
file system in nodes. The data in TF cards are converted into CSV file by the node control
program, and then the whole-body motion postures of the participant are reconstructed
by the Matlab motion analysis program. The framework of the posture capture system is
shown in Figure 3.

Figure 1. System platform architecture.

(a) (b)

Figure 2. The hardware of the system platform and UI of control platform. (a) The hardware of the
system platform consists of several self-made micro inertial sensor nodes and a transceiver. (b) The UI
of the node control program is designed to manipulate the nodes to collect and convert posture data.

Table 1. IMUs internal structure parameters.

Unit Accelerometer Gyroscope Magnetometer

Dimension 3 axis 3 axis 3 axis
Sensitivity (/LSB) 0.833 mg 0.04 deg/s 142.9 gauss
Dynamic Range ±18 g ±1200 deg/s ±1.9 gauss
Bandwidth (HZ) 330 330 25
Non-linear (%FS) 0.2 ±0.1 0.1

Maladjustment (DEG) 0.2 0.05 0.25
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Figure 3. The framework of the posture capture system.

In order to analyze the effect of different light environments on attention and medita-
tion under different work tasks, the MindWave EEG monitoring system is used to monitor
the attention and meditation of the human brain under different light environments [23].
The EEG monitoring system consists of a MindWave brainwave device, a computer or
smartphone software. The brain produces electrical signals, which we commonly call
brainwaves and which are captured by MindWave through ThinkGear technology with a
sampling frequency of 512 Hz. The 50 Hz–60 Hz AC noise filter can filter, amplify, A/D
convert and output the collected signals. MindWave enables non-invasive dry electrode
technology. Unlike traditional EEG signal collectors, it is simple to operate, consumes less
power, is lightweight and easy to wear. The specifications of MindWave are shown in
Table 2. The shape of MindWave is shown in Figure 4. The EEG signals are measured by a
reference electrode contact placed in the earlobe and an electrode device placed in the fore-
arm of the forehead. These signals are processed by an integrated chip. The raw EEG data
can be output as delta, theta, low beta, high beta, low alpha, high alpha, low gamma and
high gamma waves. eSense is a patented algorithm based on ThinkGear technology. The
quantified eSense index values, i.e., “Attention” and “Meditation”, are obtained to reflect
people’s mental state. Bluetooth is the medium of communication between MindWave and
a computer or a mobile phone. The collected data is processed and saved in a specified
data file.

Table 2. MindWave performances specifications.

Performance Parameter

Acquisition frequency band 0–100 Hz
Signal sampling frequency 512 Hz

ADC precision 12 digits
Dynamic response time <2 ms
Environmental filtering 50/60 Hz
Data output frequency 1 Hz
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Figure 4. The shape of MindWave EEG device. It is worn on the head; the sensor tip is placed on the
forehead, and the ear clip is clamped on the earlobe.

2.2. Definition
2.2.1. Structural Model of the Human Body and Joint Angles

Based on human anatomy, the human structural model is defined as a rigid structure
consisting of 15 limb segments (head, spine, waist, left upper arm, left forearm, right upper
arm, right forearm, left shoulder, right shoulder, left thigh, left calf, right thigh, and right
calf) [24], as shown in Figure 5a. Figure 5b shows that fifteen nine-degree-of-freedom
inertial sensor nodes are placed on the corresponding limb segments, and each node
represents the corresponding rigid limb segment. The motion postures of the head, left
shoulder, right shoulder, and chest are captured by one node placed on the chest. Nodes
on the limb segments are used to obtain raw acceleration, gyroscope, and magnetometer
information during data acquisition.

(a) (b)

Figure 5. The mannequin definition. (a) The human body rigid model. (b) The position of inertial
sensors on the body.

Each two adjacent limb segments constitute a joint, and the joint angle corresponds to
the flexion of the joint. Sitting on a desk, the upper limbs are more involved in postural
adjustments. The upper extremity has a greater range of motion. The flexion angles of the
upper and lower limbs are defined as the breast flexion angle (BF), waist flexion angle (WF),
shoulder flexion angle (SF), elbow flexion angle (EF), and knee flexion angle (KF) [25], as
shown in Figure 6.
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Figure 6. Definition of human joint angle.

2.2.2. Definition of Coordinate Systems

The raw data of the motor posture are obtained from the IMUs on the extremities. The
posture calibration and conversion need to be performed in three coordinate systems to
reconstruct the participants’ motion posture based on the IMU data, as shown in Figure 7.
The three coordinate systems are defined as follows.

Figure 7. Definition of GCS, SCS, BCS.

• Geodetic coordinate system (GCS): This system is also known as the navigation coor-
dinate system. The three axes are perpendicular to each other, pointing north (x-axis),
east (y-axis) and to the ground (z-axis), corresponding to the ENU coordinate system.

• Sensor coordinate system (SCS): It is defined as the coordinates of the sensor nodes
placed on the human body.

• Body coordinates (BCS): As shown in the figure, we take the pelvis as the origin, with
the X-axis perpendicular to the body surface outward, the Y-axis perpendicular to the
X-axis to the right, and the Z-axis downward.

2.3. Methodology

This section describes the structure of the motion analysis program; the framework of
the motion analysis program is shown in Figure 8. The magnetometer eliminates errors by
ellipsoidal fitting. Accelerometers and gyroscopes are used for signal pre-processing. Initial
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posture quaternions are obtained from the magnetometer and accelerometer and used for
initial state estimation. The gradient descent method is used to fuse multi-sensor data. The
initial posture quaternion is compensated by the gyroscope, and finally an approximate
exact solution of the posture quaternion is obtained for motion posture reconstruction and
joint angle calculation.

Figure 8. Motion analysis algorithm framework.

2.3.1. Sensor Calibration

In the gyroscope error model, ωm(t) and ωs(t) represent the measured and actual values
of angular velocity, respectively, at time t, βω,s represents the gyroscope misalignment, and
µω,s represents the white noise interference of the gyroscope. In the accelerometer error
model, am(t) and as(t) represent the measured and actual values of acceleration, respectively,
at time t, gs is the gravitational acceleration component, and βa,s represents the white noise
interference of the accelerometer.

The calibration of the magnetometer is required because the soft and hard iron of the
surrounding environment distorts it. In this paper, the ellipsoid fitting method is used to
calibrate the magnetic field [26]. The ellipsoidal fitting equation is shown below:

(
Hx

m − ex
h
)2

a2 +

(
Hy

m − ey
h

)2

b2 +

(
Hz

m − ez
h
)2

c2 = R2 (1)

where ex
h , ey

h, ez
h are the deviations caused by hard iron errors, and Hx

m, Hy
m, Hz

m are the
data measured by the three-dimensional magnetometer. a, b, and c are the lengths of the
ellipsoidal semiaxes, and R is the modulus constant of the earth’s magnetic field. In this
paper, the ellipsoidal fitting method is used to eliminate ferromagnetic interference. The
calibration outcome of the magnetometer is shown in Figure 9.

2.3.2. Initial State Estimation

In this paper, quaternions are used as state variables to represent the 3D rotation
information of each limb segment to avoid the general locking problem of Euler angles,
and quaternions are lighter than matrices. The quaternion is defined as follows.

q = (q0, q1i, q2 j, q3k) (2)

where q0, q1, q2, and q3 are real numbers, and i, j, and k are three-dimensional space unit
vectors. This quaternion represents the working posture of the participants in the GCS.
Since the position of the sensor on the corresponding limb changes at any time during the
actual measurement, the initial state estimation ensures that the transition relationship
between the sensor and the corresponding limb component is a fixed value. Participants
stand with their arms naturally down, facing north for a few seconds. In BCS, the X-axis
points north, the Y-axis points east, and the Z-axis is perpendicular to the ground so that
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the BCS in the initial posture overlaps with the GCS. Using the following equations, the
Euler angles are calculated from the magnetometer and accelerometer.

φin = arctan
(

ay
S, az

S

)
θin = arcsin(−ax

S/g)

hx
G = hx

S cos θin + hy
S sin θin sin φin + hz

S sin θin sin φin

hy
G = hy

S cos φin − hz
S sin φin

ϕin = − arctan
(

hy
G/hx

G

)
(3)

where φin, θin, and ϕin represent the angle of roll, pitch and yaw, respectively, g represents
the gravitational acceleration, ax

S, ay
S and az

S represent the accelerometer measurements, and
hx

S, hy
S and hz

S represent calibrated magnetometer measurements, respectively. The initial
quaternion conversion matrix qG

Sin from SCS to GCS is obtained using the interconversion
between Euler angles and quaternions, as shown in Equation (4).
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2
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2
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)
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( ϕin

2
)
+ sin

(
φin
2

)
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(
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( ϕin

2
)
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(
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2

)
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(
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2

)
sin
( ϕin

2
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− sin

(
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2

)
sin
(

θin
2

)
cos
( ϕin

2
)

 (4)

(a) (b)

Figure 9. Magnetometer calibration: (a) before calibration (b) after calibration.

The initial quaternary transformation from SCS to BCS is the same as the quaternary
transformation from SCS to GCS, i.e., qB

Sin
≈ qG

Sin
. The quadratic transformation relation

from BCS to GCS represents the working posture of a participant in GCS, which can be
expressed as qG

Bin
= qG

Sin
⊗ qS

B and qS
B =

(
qB

S
)∗, where ∗ represents the conjugate matrix.

Since the sensors are fixed on the surface of the limbs, the rotation relation from SCS to BCS
is assumed to be constant, i.e., qB

S ≈ qB
Sin

. Thus, the quadratic rotational transformation of

the limbs with respect to the ground is qG
Bin

= qG
Sin
⊗
(
qB

S
)∗.

2.3.3. Posture Update Algorithm

Qiu et al. review the current state of research and challenges in sensor information
fusion theory for human behavior recognition applications [17]. Among the informa-
tion fusion algorithms, the extended Kalman filter [27], complementary filter [28], and
particle filter [29] are commonly utilized. The gradient descent (GD) method is widely
used [30]. Gyroscope measurements constitute the basis of posture reconstruction, while
accelerometers and magnetometers are used to estimate gyroscope errors. The gyroscope,
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accelerometer, and magnetometer are complementarily fused to solve the posture quater-
nion with minimum error. The optimal value of the rotational transform quaternion qG

S
is obtained by the gradient descent method, and the rotational error is eliminated while
capturing the working postures.

The error function between the field direction nG of the sensors in the GCS and the
direction nS in the SCS is defined as follows.

f
(

qG
S , nG, nS

)
=
(

qG
S

)∗
⊗ nG ⊗ qG

S − nS (5)

In order to make f
(
qG

S , nG, nS) converge to zero and obtain the optimal solution for
qG

S , we use the gradient descent algorithm proposed by Madgwick [31] to solve this issue.
Firstly, Equation (6) calculates the gradient of the error function:

∇ f
(

qG
S , nG, nS

)
= JT

(
qG

S , nG
)

f
(

qG
S , nG, nS

)
(6)

qG
S (t) = qG

S (t− 1)− ξ
∇ f
(
qG

S , nG, nS)∥∥∇ f
(
qG

S , nG, nS
)∥∥ (7)

The sensor’s rotational quaternion qG
S at the current moment is obtained through

several iterations by calculating Equation (7) until the final moment. This value represents
the local extremum, which has changed since the initial state. The error of the rotation
matrix is minimized by using the gradient descent method.

2.3.4. Movement Posture Reconstruction and Joint Angle Calculation

As mentioned earlier, the human body is defined as a rigid structure consisting of
limb segments. People change their work posture to adapt to various work scenarios. In
motion posture capture, the pelvis is used as the iterative origin of posture construction,
and the iterative procedure can obtain all limb postures.

We take the skeleton of the right leg as an example. We define thigh and calve segments
as V and W, respectively, as shown in Figure 10. The limb segment V is the parent segment,
the limb segment W is the child segment, and the posture of W is derived from V. DV0 and
DV1 are the starting and ending positions of the thigh limb segment V in the GCS. DW0 and
DW1 are the starting and ending positions of the calf limb segment W in the GCS. At time t,
DV1(t) equals DW0(t). lv and lw are defined as vectors of limb lengths.

Figure 10. Leg limbs. The joint angle connects the thigh V and calf W.

As mentioned above, the quadratic rotation of each limb segment from BCS to GCS
can be expressed as:

qG
B = qG

S ⊗ qS
B (8)
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Therefore, the position DV1(t) of the end of the V segment and the position DW1(t) at
the beginning of the W segment in the GCS are:

DV1 (t) = DV0 (t) + qG
B,V(t)⊗

[
0 lG

V (t)
]
⊗
(

qG
B,V(t)

)∗
(9)

DW1 (t) = DW0 (t) + qG
B,W(t)⊗

[
0 lG

W(t)
]
⊗
(

qG
B,W(t)

)∗
(10)

where qG
B,V(t) and qG

B,W(t) are the rotational quaternions of limb segments V and W from
BCS to GCS at time t. Thus, the whole-body motion postures are calculated by each limb
through Equations (9) and (10) with multiple iterations from the origin.

The joint angles are formed by the joints of adjacent limb segments [32]. As shown in
Figure 10, the joint angle θKF formed by limb segments V and W can be calculated by the
following equation.

θKF = arccos

−−−→
dG

V(t) ·
−−−→
dG

W(t)∣∣∣∣−−−→dG
V(t)

∣∣∣∣∣∣∣∣−−−→dG
W(t)

∣∣∣∣ (11)

As a result , the joint angle of the whole body posture can be solved by the inverse
cosine between the vectors of two adjacent limb segments.

3. Experiment
3.1. Experimental Environment

The basic lighting experiments were performed in the Optical Experiment Base of
Dalian Polytechnic University. The laboratory was set up as an office with no natural light.
The experimental environment is shown in Figure 11. Monitors were placed directly in
front of participants, with a distance of 50 cm between the monitor and the eyes. The chair
height was set according to the participants’ height to satisfy the participants maintaining
a knee angle of 90 degrees. In order to study the effect of different lighting environments
on different working conditions, the experiment provided four color temperature lighting
combinations: (1) 6000 K–600 lx, (2) 6000 K–500 lx, (3) 5000 K–500 lx, and (4) 3000 K–300 lx.

(a) (b)

Figure 11. The experimental environment and lighting configuration. (a) The office environment of
the Optical Experiment Base of Dalian Polytechnic University. (b) Light environment configuration
with eighteen 9 W LED bulbs with adjustable illumination and color temperature.

3.2. Experimental Process

To avoid abnormal sitting due to impaired vision, we recruited 6 participants (two
female and four male) with a visual acuity score greater than 0.5 (wearing glasses) who
are in good physical condition and volunteered to participate in the study. Before the
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experiment, participants received enough sleep and performed 2 h of relaxation. Con-
sumption of alcoholic beverages, coffee and other stimulants, and consciousness-altering
substances was prohibited. In addition, none of the subjects suffered from neck, shoulder,
leg or arm pain.

Participants wore self-made garments and ten nodes on the relevant limb segments
(breast, pelvis, upper and lower arms, thighs, and calves) during the experiment, as
illustrated in Figure 12. Sensor nodes recorded the whole body’s posture movement.
The MindWave brain-computer interface device was used to record brain wave data.
Participants were asked to sit at a computer table and complete an experimental task
prompted by the computer screen within a specific time.

Figure 12. Four experimental tasks including four working postures (recite English words, English
reading comprehension, browse essays and listen to music) and four light combinations (6000 k–600 lx,
6000 k–500 lx, 5000 k–500 lx, and 3000 k–300 lx).

Participants wearing the sensor nodes completed the following four scenarios se-
quentially according to their habits, each lasting 5 min. The participants carried out the
following tasks, as shown in Figure 12: (1) recite English words, (2) do English reading
comprehension, (3) browse essays, and (4) listen to music. We assume that reciting En-
glish words represents a memory-type work scenario requiring a high workload and great
attention. Doing test papers represents a thinking-type work scenario requiring some
attention. Browsing essays requires concentration but not much workload and represents a
comprehension-type work scenario. Finally, listening to music is different from the other
states. It represents a kind of relaxation in work, which can help participants relax and
free themselves from other work scenes. Each task that maintains 20 min was randomly
ordered. Participants perform the task in four lighting combinations. The obtained posture
data were used for machine learning to identify different work scenarios.

The experiment was divided into 4 × 4 experimental conditions, as shown in Table 3.
The participants’ EEG data corresponding to different experimental conditions were also
recorded at the same time as the posture acquisition.

Table 3. 4 × 4 experimental conditions.

6000 K–600 lx
Reciting words

6000 K–500 lx
Reciting words

5000 K–500 lx
Reciting words

3000 K–300 lx
Reciting words

6000 K–600 lx
Doing test paper

6000 K–500 lx
Doing test paper

5000 K–500 lx
Doing test paper

3000 K–300 lx
Doing Test paper

6000 K–600 lx
Browsing essays

6000 K–500 lx
Browsing essays

5000 K–600 lx
Browsing essays

3000 K–300 lx
Browsing essays

6000 K–600 lx
Listening to music

6000 K–500 lx
Listening to music

5000 K–600 lx
Listening to music

3000 K–300 lx
Listening to music
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4. Algorithm Verification and Experimental Results
4.1. Verification of the Whole Body Pose Capture Algorithm

To compare the accuracy of a self-made whole-body posture capture system with an
optical capture system in the laboratory, we used an optical capture system produced by
Natural Point, USA. This optical capture system uses near-infrared imaging to analyze and
reconstruct the three-dimensional motion of the human body with a displacement accuracy
of up to 0.1 mm. In the comparison test, 12 infrared cameras were used. Participants
were required to wear specific clothing. Optical markers and inertial sensor nodes were
placed at specific locations on their bodies. Participants walked around the laboratory
at will while two systems simultaneously performed posture capture. The experimental
scenario is shown in Figure 13. The optical capture system and the inertial posture capture
system were used to collect the posture data of the subjects at the same time with sampling
frequencies of 120 Hz and 400 Hz. The third-order Hermite interpolation method was
used to supplement the data collected by the optical capture system to align the data of the
two systems.

The joint angles θEFl and θEFr of the upper limbs were used as examples to compare
the results of joint angle. The comparison curve between the optical capture system and the
IMU-based inertial posture capture system is shown in Figure 14. The error distribution of
the joint angle of the two systems was described as the normal distribution fitting curve and
frequency histogram, as shown in Figure 15. The correlation coefficients of our method and
the optical system are 0.9983 and 0.9813, respectively. The results show that our method
can produce the same results compared to the optical system, which verifies the reliability
of the performance of the self-made whole-body pose capture system.

Figure 13. Contrast experimental scene between self-made system and optical capture system.

(a)

Figure 14. Cont.
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(a)

Figure 14. Comparison flexsion angle curve. (a) right elbow joint. (b) left elbow joints. The red curve
is obtained by OptiTrack, and the green curve is obtained by the self-made system.

(b) (c)

Figure 15. Error statistics of elbow joint angle. (a) Frequency histogram of left elbow joints. (b) Fre-
quency histogram of right elbow joints.

4.2. Posture Reconstruction and Work Status Classification

In daily work, the combination of upper and lower limb movements constitute our
different sitting postures. In order to provide a suitable lighting environment for differ-
ent postures, the postures under different lighting conditions were reconstructed by the
motion analysis program, as shown in Figure 16. Using machine learning classification
algorithms, the participant’s work tasks were identified based on the joint angle features of
the reconstructed postures.

4.2.1. Dataset Segmentation

The participants’ joint angles (θBF, θWF, θSF, θEF, and θKF) were calculated by the above
method. Every 1000 ms, the time series of each joint angle are separated into multiple time
window sequences. In order to expand the data sample size, 50% of data overlaps were
set between adjacent windows. As an example, word recitation data for each joint angle
feature were segmented into 178 groups. These 178 lines of data for reciting words were
labeled as 1, and so on; the data for doing English reading comprehension were labeled as
2, the data for browsing essays were labeled as 3, and the data for listening to music were
labeled as 4.

4.2.2. Feature Extraction

The segmented data cannot be used directly in the classifier’s classification. It is
essential to perform feature extraction on the data and extract the effective information
reflecting the movement’s properties to produce a feature sequence, which will be used
as the classifier’s input. We extracted 23 features from all joint angle sequences, including
time-domain and frequency-domain data. Table 4 lists the descriptions of the 23 features.
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Figure 16. Participant’s posture of four tasks in the experiment.

Table 4. Working condition feature table.

Feature Name Describe

Time domain feature

mean The mean value of data
med The median value of data
std The standard deviation of data

mad The median absolute value of data
quantile1 The 25th percentile of signal
quantile2 The 75th percentile of signal

iqr Interquartile range
skewness The skewness of time signal
kurtosis The kurtosis of time signal

var The variance of time signal
entropy The entropy value of signal

sepctral entropy The sepctral entropy value of signal

Frequency domain feature

maxfreq The maximum frequency of frequency features
maxval The maximum value of frequency features

maxratio The maximum ratio of frequency features
peak The main peak of autoregression features

height The second peak height of autoregression features
position The second peak position of autoregression features

spwf The spectral power features in 5 adjacent frequency

4.2.3. Performance on Different Classification Methods

Five classical machine learning algorithms, including logistic regression, support-
vector machine (SVM), decision tree, random forest, and K-nearest neighbor (KNN), were
used as classification methods to identify different postures based on sequences of joint
angles. K-fold cross-validation [33] was used to partition the dataset. Each subset was
disjoint and equal in size. One of the K copies was selected as the validation set, and the
remaining K-1 copies were used as the training set. In this paper, the 10-fold crossover was
applied to divide the dataset, and the remaining data were combined into several different
training and validation sets, excluding the test set. The feature data in the test set never
appeared in the training and validation sets. The feature data of the postures that have
appeared in the training set may become samples in the validation set next time. This
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ensures that all participants’ feature data are involved in training, validation and testing.
Finally, the average of each validation error was used as the final validation error of the
model. The model that obtained the highest accuracy on the validation dataset was selected
for evaluation on the test set.

We evaluate the classifiers by four classification model evaluation metrics: accuracy,
precision, recall, and F1-score. All the evaluation metrics in this paper are calculated using
the scikit-learn machine package in python. Precision refers to the proportion of correctly
classified results predicted as positive samples. Recall refers to the proportion of correctly
classified results in the actual positive samples. The precision and the recall are related
to each other. When the recall and precision of different models have their advantages,
the F1-score can evaluate the model well, which is the harmonic average of precision and
recall. As shown in Table 5, the recognition Accuracy of all models is above 95%, and
other evaluation metrics such as precision, recall, and F1-score are also high. All the above
evaluation metrics are weighted averages. KNN and random forest perform best in all
algorithms. It also shows that joint angle is an effective method to describe human posture.

Table 5. Predictive performance of different classification models.

Evaluation
Metrics

Logistic
Regression

Decision
Tree SVM Random

Forest KNN

Accuracy 0.9665 0.9623 0.9707 0.9874 0.991
Precision 0.9668 0.9629 0.9714 0.9880 0.9917

Recall 0.9665 0.9623 0.9707 0.9874 0.9916
F1-score 0.9666 0.9623 0.9708 0.9875 0.9916

AUC 0.9893 0.9690 0.9974 0.9998 0.9883
AUPRC 0.9712 0.9216 0.9921 0.9994 0.9710

The final output of a classification model is often a probability value, and we generally
need to convert the probability value to a specific category. When different models take
different thresholds, the receiver operating characteristic (ROC) curve and precision recall
curve (PRC) are effective metrics to evaluate the performance of classifiers. AUC is defined
as the area under the ROC curve. The ROC curve does not explicitly state which classifier
is better, but the classifier corresponding to a larger AUC is better. As shown in Figure 17a
and the sixth row of Table 5, random forest, SVM and KNN perform better. Similar to the
definition of AUC, AUPRC is the area under the PRC curve symbolizing the effectiveness
of each classifier [34]. As shown in Figure 17 and the sixth and seventh row of Table 5, the
random forest and SVM models always have better performance than other models. The
evaluation results show that posture acquisition with our method can effectively classify
different work tasks.

4.3. Analysis of Attention and Meditation in Different Light Environments

The “eSense” algorithm assesses a person’s current mental state through two indices of
“Attention” and “Meditation”. The eSense index indicates the user’s level of attention and
meditation with specific values between 1 and 100. A value between 40 and 60 represents a
general range, which is similar to the “baseline” determined in conventional brainwave
measurement techniques. A value between 60 and 80 represents a higher than average
level of attention or meditation. A value between 80 and 100 represents a very high level of
attention or meditation. Similarly, a value between 20 and 40 represents the “low-value
area”, while a value between 1 and 20 represents the “lowest value area”.

“Brainwave Visualizer” is a software platform for displaying brainwaves developed by
NeuroSky. This software views raw sensor data of brain waves, brain wave spectrum, “At-
tention”, and “Meditation”. Figure 18 shows the EEG signal, “Attention”, and “Meditation”
of listening to music at 3000 k–300 lx.
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(a)

(b)

Figure 17. ROC and PRC of different classification models. (a) is ROC and (b) is PRC.

Figure 18. Brainwave Visualizer. The EEG signals, “Attention”, and “Meditation” of listening to
music at 3000 k–300 lx.

The EEG data of participants under different experimental conditions are obtained
using Mindwave. Figure 19 depicts the original attention data for the four tasks of (1) recit-
ing English words, (2) performing English reading comprehension, (3) browsing essays,
and (4) listening to music. From Figure 19a, the distribution of the attention curves for
reciting English words under the four lighting settings can be seen, and the attention is
gradually decreasing. In Figure 19b, the attention doing English reading comprehension
is significantly greater in the 6000 k–500 lx and 5000 k–500 lx conditions than in the other
two light environments. Furthermore, in Figure 19c, the attention to browsing articles is
greatest in the light environment of 6000 k–500 lx. In Figure 19d, as the light environment
weakens, the attention required to listen to music also weakens.
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(a) (b)

(c) (d)

Figure 19. Raw data of concentration of 4 × 4 experimental conditions. (a) Attention of reciting
English words. (b) Attention of doing English reading comprehension. (c) Attention of browsing
essays. (d) Attention of listening to music. The left is the experimental task, and the right is the raw
data of the participants’ brain waves.

4.3.1. Comparison of Different Light Environment for Four Tasks

The attention of the four tasks under different color temperature-illumination com-
binations is statistically analyzed using box plots. As shown in Figure 20, the box plot
comparison results are generally consistent with the results presented in the raw data
curves above.

Figure 20a depicts the attention of reciting English words. After the original data
outlier cleaning, the concentration range is 100–45 under 6000 k–600 lx, 95–40 under
6000 k–500 lx, 85–20 under 5000 k–500 lx, and 70–10 under 3000 k–300 lx. The mean values
of attention during word recitation at the four color temperature-illuminance combina-
tions are shown in the figure: 6000 k–600 lx 71, 6000 k–500 lx 62, 5000 k–500 lx 51, and
3000 k–300 lx 45. Attention diminishes when the color temperature-illuminance decreases.
The figure shows that the box widths of 6000 k–600 lx and 6000 k–500 lx are similar, and the
data are relatively concentrated. The box width of 5000 k–500 lx is the widest, indicating
that the data are the most spread out. The data of 3000 k–300 lx are concentrated but with
the lowest mean attention value.

Figure 20b shows the attention level for doing English reading comprehension. Here,
50, 59, 56 and 42 are the average attention values under four color temperature-illumination
combinations. The attention fluctuates widely at 6000 k–600 lx, and there are more outliers.
It can be determined that the high color temperature-high illuminance combination is not
suitable for doing English reading comprehension (RC). On the contrary, the high color
temperature-medium illumination and medium color temperature-medium illumination
combinations can maintain higher attention values, and the highest mean attention value is
found in the 6000 k–500 lx light combination; the 3000 k–300 lx light combination makes
the attention performance poor and has more outliers.
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Figure 20. Box plot: attention of four work tasks in different light environments, including (a) reciting
words, (b) doing reading comprehension, (c) browsing essays, and (d) listening to music.

Figure 20c shows the attention of browsing essays. The mean values of attention under
the four conditions of color temperature-illumination combinations are: 6000 k–600 lx 51,
6000 k–500 lx 65, 5000 k–500 lx 47, and 3000 k–300 lx 47. Similar to the attention for doing
English reading comprehension, the 6000 k–500 lx combination is more suitable for brows-
ing. Although the average attention value is maintained at 51 for the combination of high
color temperature and high illumination, the large box width data are unfocused with large
fluctuations and outliers. The average attention values for the medium color temperature-
medium illumination and low color temperature-low illumination combinations are below
50, and there are many outliers in the 3000 k–300 lx illumination combination.

Figure 20d shows the attention values of listening to music. The average atten-
tion values of the four color temperature-illuminance combinations are 6000 k–600 lx 60,
6000 k–500 lx 53, 5000 k–500 lx 48, and 3000 k–300 lx 43. The average attention reduces
with decreasing color temperature and illuminance at various combinations.

4.3.2. Comparison of Different Tasks for Four Color Temperature-Illuminance
Combinations

For further elaboration of the light environment’s effect on participants’ attention
in different tasks, we compare the attention of the same color temperature-illumination
combination. As shown in Figure 21, the mean value of attention for reciting English
words reaches above 70 at 6000 k–600 lx, significantly higher than the other three tasks.
This indicates that high color temperature-high illumination is more suitable for memory-
based work scenarios. At 6000 k–500 lx, the mean attention values of reciting English
words, performing English reading comprehension and browsing essays are above 60.
This indicates that the combination of high color temperature-medium illumination has
a facilitative effect on memory, thinking and understanding of work scenes. Under the
combination of 5000 k–500 lx, the box plot median line is evenly distributed up and
down. The attention levels of all four work tasks are at the medium level and the lowest
attention level for listening to music. Under the combination of 3000 k–300 lx, the attention
levels of reciting English words, doing English reading comprehension, browsing essays
and listening to music are all below 50, indicating that the low color temperature-low
illumination has a weakening effect on the concentration levels of memory, thinking,
understanding, and leisure work situations, which makes the attention level unfocused.
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Figure 21. Box plot: attention of four light environments under different work tasks, including
(a) 6000 k–600 lx, (b) 6000 k–500 lx, (c) 5000 k–500 lx and (d) 3000 k–300 lx.

Listening to music corresponds to a leisure scene at work, and listening to music
in different light environments has a significant impact on attention and meditation. As
shown in Figure 22, there is a significant contrast between attention and meditation when
listening to music under different color temperature-illumination combinations. The mean
value of attention tends to reduce with the decrease of color temperature-illumination,
but the meditation tends to increase. Therefore, listening to music at the 3000 k–300 lx
combination is least attentive and most relaxed.

Figure 22. Box plot: Comparison of attention and meditation of listening to music.

5. Discussion

People work in various work scenarios, and providing the appropriate light environ-
ment for different work scenarios is crucial to enhancing work efficiency. In this paper, the
IMU-based body posture capture system is used to reconstruct human posture. Compared
to video and pressure sensor approaches, this method is easy to wear and does not interfere
with the participant’s postural movements. It is not limited by space, light or range of
motion during the acquisition process and allows kinematic analysis from the perspective
of the whole body posture. In our self-developed wearable sensor-based posture capture
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system, the gradient descent method is used to fuse the sensor data and solve the posture.
This is similar to the results of a typical optical motion capture system. The pelvis is a
reference point to calculate the body’s posture iteratively. In practical experiments, the
feature information of joint angles is used to recognize work scenarios, and the satisfactory
classification results prove the practicality and stability of our posture capture method. In
the future, we hope to upgrade sensor fusion techniques, which can significantly reduce
the computational workload and improve the accuracy of posture updates.

Meanwhile, when the posture information is combined with EEG information for
analysis, it reveals the changes in participants’ posture and attention under different
lighting environments. In this paper, 4 × 4 experimental factors (4 postures × 4 color
temperature-light combinations) are designed to discuss attention. The association between
human posture and optimal light conditions in different work scenarios is established.
Based on the study’s results, the optimal color temperature-light combinations for memory,
thinking, understanding and leisure work scenes are determined. The memory work
scenes are suitable to be performed at 6000 K–600 lx. The experimental results show that
the thinking and understanding work scenarios have similar concentration requirements.
Higher attention can be maintained in the combination of high color temperature-medium
illumination and medium color temperature-medium illumination. Attention decreases
in color temperature-illuminance combinations of 3000 K–300 lx. We should emphasize
meditation rather than attention. The best results for meditation degrees are obtained at
3000 K–300 lx combinations, which help participants to reach the desired comfort state.
Therefore, we believe that factors in different work scenarios are crucial to improving work
efficiency. We also intend to apply our technology to intelligent offices and other areas to
provide people with a pleasant working environment.

6. Conclusions

This paper presents a method to improve working based on wearable devices. A
self-made posture detection system based on IMUs performs long-term human posture
monitoring in a natural work environment. By assessing people’s attention and meditation
levels under different work tasks and light conditions, we establish the association between
different work states and optimal light conditions to enhance work efficiency. The effective-
ness and accuracy of proposed attitude estimation algorithm have been verified through
an optical motion capture system. Participants’ attention and meditation in different work
tasks and light environments are monitored by the Mindwave EEG device. The experimen-
tal results show that this scheme can effectively identify human posture in various work
tasks. Additionally, according to the feedback of attention level, we obtain the optimal light
environment under different work tasks.
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