Skip to main content
. 2022 Sep 13;11(18):5364. doi: 10.3390/jcm11185364

Table 6.

The performance of DRF in experimental group_A.

Item Classifier Lasso PCA TSNE UMAP ICA IOSMAP t-Test
Stroke
detection
SVM 0.861 0.691 0.691 0.710 0.686 0.731 0.716
nn 0.861 0.680 0.634 0.680 0.666 0.646 0.713
RF 0.783 0.711 0.666 0.660 0.688 0.704 0.698
DT 0.662 0.615 0.596 0.613 0.632 0.647 0.601
KNN 0.873 0.669 0.669 0.692 0.666 0.705 0.719
Ada 0.797 0.642 0.642 0.639 0.739 0.669 0.679
LR 0.854 0.704 0.704 0.723 0.729 0.699 0.723
NB 0.840 0.639 0.639 0.722 0.646 0.685 0.653
GBDT 0.791 0.659 0.685 0.648 0.677 0.683 0.687
DA 0.867 0.710 0.710 0.722 0.710 0.692 0.731
NIHSS
evaluation
SVM 0.727 0.482 0.482 0.500 0.528 0.492 0.500
nn 0.743 0.619 0.562 0.464 0.610 0.533 0.652
RF 0.692 0.548 0.521 0.486 0.504 0.533 0.587
DT 0.663 0.587 0.568 0.521 0.494 0.557 0.603
KNN 0.677 0.523 0.523 0.428 0.522 0.480 0.536
Ada 0.731 0.526 0.526 0.491 0.476 0.597 0.574
LR 0.795 0.532 0.532 0.496 0.512 0.568 0.629
NB 0.755 0.527 0.527 0.618 0.607 0.649 0.667
GBDT 0.687 0.513 0.509 0.531 0.518 0.527 0.606
DA 0.783 0.541 0.541 0.489 0.541 0.574 0.607
Outcome
prediction
SVM 0.818 0.546 0.546 0.500 0.549 0.573 0.576
nn 0.766 0.551 0.554 0.635 0.605 0.646 0.647
RF 0.684 0.553 0.526 0.572 0.540 0.588 0.578
DT 0.595 0.515 0.525 0.596 0.550 0.592 0.521
KNN 0.694 0.592 0.592 0.584 0.553 0.667 0.638
Ada 0.681 0.504 0.504 0.525 0.562 0.622 0.553
LR 0.797 0.546 0.546 0.503 0.510 0.559 0.679
NB 0.818 0.526 0.526 0.616 0.606 0.597 0.664
GBDT 0.681 0.544 0.561 0.562 0.580 0.618 0.593
DA 0.676 0.563 0.563 0.508 0.563 0.556 0.571