Table 1.
Summary of the included studies based on cell-laden bioinks.
Author | Cell-Laden Bioink | Other Biomaterial/ Growth Factor |
Cell Types | Bioprinting Strategy | Study Design |
Application |
---|---|---|---|---|---|---|
Lee et al., 2021 [53] | Collagen | FGF-2 | hPDLSCs | Extrusion | In vitro and in vivo | PDL regeneration |
Wang et al., 2021 [66] | Collagen | SrCS | Human gingiva fibroblasts | Extrusion | In vitro and in vivo | Periodontal regeneration |
Kérourédan et al., 2018 [57] | Collagen type 1 | - | SCAPs | LAB | In vitro and in vivo | Bone regeneration |
Kérourédan et al., 2019 [58] | Collagen type 1 | VEGF | SCAPs and HUVECs | LAB | In vivo | Bone regeneration |
Duarte Campos et al., 2020 [60] | Collagen type 1 + agarose | - | DPSCs and HUVECs | Inkjet | In vitro and ex vivo | Dental pulp regeneration |
Keriquel et al., 2017 [56] | Collagen type 1 + nHAp | - | Mouse bone marrow stromal precursor D1 cell line | LAB | In vitro and in vivo | Bone regeneration |
Moncal et al., 2021 [49] | Collagen + chitosan + β-glycerophosphate + nHAp | rhBMP-2 | Rat BMSCs | Extrusion | In vitro | Bone regeneration |
Moncal et al., 2022 [50] | Collagen + chitosan + β-glycerophosphate + nHAp | PDGF and BMP-2 | Rat BMSCs | Extrusion | In vitro | Bone regeneration |
Touya et al., 2022 [59] | Collagen type 1 + TCP (BioRoot RCS®, Septodont, Saint-Maur-des- Fossés, France) | - | SCAPs | LAB | In vitro and in vivo | Bone regeneration |
Kim et al., 2022 [55] | Collagen type 1 or dECMs + β-TCP | - | DPSCs | Extrusion | In vitro and in vivo | Dental tissue regeneration |
Kang et al., 2016 [41] | Gelatin + fibrinogen + HA + glycerol | PCL/TCP | hAFSCs | Extrusion | In vitro and in vivo | Alveolar bone/bone regeneration |
Han et al., 2019 [51] | Gelatin + fibrinogen + HA + glycerol | - | DPSCs | Extrusion | In vitro | Dentin/dental pulp regeneration |
Han et al., 2021 [52] | Demineralized dentin matrix particles + fibrinogen + gelatin | - | DPSCs | Extrusion | In vitro | Dental tissue regeneration |
Kort-Mascort et al., 2021 [68] | Alginate + gelatin + dECMs | - | Human SCC (Cell lines: UM-SCC-12 and UM-SCC-38) | Extrusion | In vitro | Head and neck cancer in vitro model |
Tian et al., 2021 [65] | Sodium alginate + gelatin + nHAp | - | hPDLSCs | Extrusion | In vitro | Bone regeneration |
Park et al., 2020 [47] | Gelatin + GelMA + HA + glycerol | BMP-mimetic peptide | DPSCs | Extrusion | In vitro | Dental tissue regeneration |
Amler et al., 2021 [62] | GelMA | - | Bone-derived MPC/Bone marrow MPC/Periosteal MPC | Stereolithography | In vitro | Bone regeneration |
Raveendran et al., 2019 [69] | GelMA | - | hPDLSCs | Extrusion | In vitro | Periodontal regeneration |
Kuss et al., 2017 [42] | MeHA + GelMA + HA | PCL/HAp | Porcine stromal vascular fraction from adipose tissue | Extrusion | In vitro | Alveolar bone/bone regeneration |
Ma et al., 2015 [63] | GelMA + PEGDA | - | hPDLSCs | Inkjet | In vitro | Periodontal regeneration |
Ma et al., 2017 [64] | GelMA + PEGDA | - | Rat PDLSCs | Inkjet | In vitro and in vivo | Alveolar bone regeneration |
Amler et al., 2021 [61] | GelMA + PEGDA3400 | - | JHOBs and HUVECs | Stereolithography | In vitro | Alveolar bone in vitro model |
Lin et al., 2021 [67] | Calsium silicate + GelMA | - | DPSCs | Extrusion | In vitro | Dentin regeneration |
Chimene et al., 2020 [46] | GelMA + kCA + nSi (NICE bioink) |
- | Human primary bone marrow-derived MSCs | Extrusion | In vitro | Alveolar bone regeneration |
Athirasala et al., 2018 [43] | Alginate + dentin matrix | - | SCAPs | Extrusion | In vitro | Dentin/dental pulp regeneration |
Walladbegi et al., 2020 [70] | Nanofibrillated cellulose + alginate (CELLINK AB, Gothenburg, Sweden) | β-TCP | hADSCs | Extrusion | In vitro | Bone regeneration |
Dubey et al., 2020 [48] | ECM + AMP | - | DPSCs | Extrusion | In vitro | Bone regeneration |
Dutta et al., 2021 [54] | Poloxamer-407 | - | SCAPs | Extrusion | In vitro | Dental tissue regeneration |
Aguilar et al., 2019 [44] | - | - | Mice bone marrow stromal cells | Scaffold-free (Kenzan method) | In vitro | Bone regeneration |
Aguilar et al., 2019 [45] | - | - | Mice bone marrow stromal cells | Scaffold-free (Kenzan method) | In vitro | Bone regeneration |
Ono et al., 2021 [71] | - | - | Human PDL cell line 1-17 | Scaffold-free (Needle array) | In vitro | PDL regeneration |
LAB, laser-assisted bioprinting; GelMA, gelatin methacryloyl; PEGDA, poly(ethylene glycol) dimethacrylate; HA, hyaluronic acid; PCL, poly (ε-caprolactone); TCP, tricalcium phosphate; MeHA, methacrylated hyaluronic acid; kCA, kappa-carrageenan; HAp, hydroxyapatite; nHAp, nano-hydroxyapatite; AMP, amorphous magnesium phosphates; nSi, nanosilicates; Poloxamer-407, synthetic copolymer of poly(ethylene glycol) and poly(propylene glycol); ECM, extracellular matrix; dECM, decellularized extracellular matrix; SrCS, strontium-doped calcium silicate; hPDLSCs, human periodontal ligament stem cells; hAFSCs, human amniotic fluid-derived stem cells; SCAPs, human stem cells from apical papilla; DPSCs, human dental pulp stem cells; HUVECs, human umbilical vein endothelial cells; MSCs, mesenchymal stem cells; BMSCs, bone marrow mesenchymal stem cells; hADSCs, human adipose tissue-derived mesenchymal stem cells; JHOBs, jawbone-derived human osteoblasts; MPC, human mesenchymal progenitor cells; SCC, squamous cell carcinoma; VEGF, vascular endothelial growth factor; BMP, bone morphogenetic protein; rhBMP, recombinant bone morphogenetic protein; FGF, fibroblast growth factor; PDGF, platelet-derived growth factor