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Abstract

Background: The TOPCAT trial suggested clinical benefits of spironolactone treatment among 

patients with Heart Failure with Preserved Ejection Fraction (HFpEF) enrolled in the Americas. 

However, a comprehensive assessment of biologic pathways impacted by spironolactone therapy 

in HFpEF has not been performed.

Methods: We conducted aptamer-based proteomic analysis utilizing 5,284 modified aptamers to 

4,928 unique proteins on plasma samples from TOPCAT participants from the Americas (n=164 

subjects with paired samples at baseline and 1 year) to identify proteins and pathways impacted by 

spironolactone therapy in HFpEF. Mean percentage change from baseline was calculated for each 

protein. Additionally, we conducted pathway analysis of proteins altered by spironolactone.

Results: Spironolactone therapy was associated with proteome-wide significant changes in 7 

proteins. Amongst these, caspase recruitment domain-containing protein 18 (CARD18), polycystin 

2 (PKD2), and pregnancy-specific glycoprotein 2 (PSG2) were upregulated, whereas hepatic 

growth factor (HGF), phospholipid-transfer protein (PLTP), insulin growth factor 2 receptor 

(IGF2R), and switch associated protein 70 (SWP70) were downregulated. CARD18, a caspase-1 

inhibitor, was the most up-regulated protein by spironolactone (−0.5% with placebo versus 

+66.5% with spironolactone, p<0.0001). The top canonical pathways that were significantly 

associated with spironolactone were apelin signaling, stellate cell activation, glycoprotein 6 

signaling, atherosclerosis signaling, liver x receptor activation, and farnesoid x receptor activation. 

Amongst the top pathways, collagens were a consistent theme that increased in patients receiving 

placebo but decreased in patients randomized to spironolactone.

Conclusions: Proteomic analysis in the TOPCAT trial revealed proteins and pathways altered 

by spironolactone, including the caspase inhibitor CARD18 and multiple pathways that involved 

collagens. In addition to effects on fibrosis, our studies suggest potential anti-apoptotic effects of 

spironolactone in HFpEF, a hypothesis that merits further exploration.
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Introduction

Heart failure with preserved ejection fraction (HFpEF) is an important cause of 

cardiovascular morbidity and mortality 1,2, and there is an urgent need for the development 

of pharmacological interventions that can improve clinical outcomes in HFpEF patients. 

The utilization of spironolactone in HFpEF is based on the results of TOPCAT (Treatment 

of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist Trial), which 

suggested beneficial effects among patients enrolled in the Americas. Spironolactone is 

a mineralocorticoid receptor inhibitor that improves diastolic dysfunction in HFpEF 3,4, 

reduces fibrosis 5–7, and reduces blood pressure 8–12, although the effects on blood pressure 

do not explain the effects in HFpEF13.

Broad proteomic scans of plasma, such as aptamer-based assays, have been successfully 

utilized to identify novel biomarkers involved in HF clinical outcomes and to provide a more 
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detailed biological understanding of HF phenotypes 14–17. In addition, proteomic strategies 

can be utilized to broadly investigate potential mechanisms of drug action, which may 

contribute to the discovery of downstream pathways or molecules for therapeutic targeting. 

In the present study, we performed proteomic analysis of samples from the American 

subset of the TOPCAT Biorepository to further explore and understand pathways altered by 

spironolactone therapy.

Methods

Study population

Plasma protein quantification was performed from paired baseline and one-year follow-up 

samples available from the TOPCAT trial 18, which have been previously described. The 

raw data and analytical methods of this paper are not publicly available for purposes of 

reproducing the results or replicating the procedures. This data might be available subject 

to the establishment of appropriate data-sharing agreements and regulatory approvals. The 

parent TOPCAT trial data are available through the US National Institutes of Health 

BioLINCC website. From 2006–2012, TOPCAT randomized patients with HFpEF, defined 

as symptomatic HF with an EF greater than 45%, to either spironolactone or placebo. From 

HFpEF patients, a subset (n=218, or 6.3%) had available frozen plasma samples for de novo 
protein quantification along with clinical data, which was obtained through the National 

Institutes of Health BioLINCC repository. Patients from the American subset with paired 

samples at baseline and one-year post-randomization (n=164) were included in the present 

analysis. All study participants provided written informed consent, and all participating 

institutions received approval from local Institutional Review Boards.

Plasma Protein Quantification

All plasma samples were analyzed using the SomaScan® assay version 4, which is 

a multiplexed, modified aptamer-based binding assay. The SomaScan® assay utilizes 

Slow-Off-rate Modified Aptamer (SOMAmer) reagents, which are chemically modified 

nucleotides, to bind and quantify target proteins in relative fluorescent units directly 

proportional to the amount of target protein in the sample. Assay details have been 

previously described 19. This assay includes 5,284 modified aptamer reagents to 4,928 

unique protein targets. A Detailed description of the assay methodology is provided in the 

supplementary material.

Statistical analysis

Participant characteristics were summarized using mean (SD) for continuous variables with 

symmetric distribution and median (interquartile range) for continuous variables with a 

skewed distribution. Categorical variables are expressed as counts (percentages). Analysis of 

variance (ANOVA) was used to compare normally-distributed continuous variables, whereas 

the Kruskal-Wallis test was used for non-normally distributed variables, and the chi-square 

or Fisher’s exact test, as appropriate, were used for categorical data.

The percentage change from baseline was computed for each protein and each participant, 

and these changes were compared between the 2 treatment arms. We implemented 
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alpha correction for multiple comparisons based on the number of principal components 

underlying the variability of all measured proteins, as previously described 20,21. There were 

111 principal components corresponding to a nominal p value threshold of 0.00045. This 

method avoids alpha error overcorrection that may occur with the Bonferroni method due 

to the intrinsic correlation structure between proteins. Differences between the treatment 

arms were considered statistically significant if the multiplicity corrected p-value for 

the comparison was <0.05. All probability values presented are 2-tailed. Analyses were 

performed using the MATLAB statistics and machine learning toolbox (Matlab 2016b, the 

Mathworks; Natwick, MA).

Pathway analyses

Between-arm differences in plasma proteins between the baseline and 1-year samples were 

utilized to perform pathway analyses, using Ingenuity® Pathway Analysis (IPA) software 

(Qiagen; Hilden, Germany; www.qiagen.com/ingenuity) 22–24. Proteins were identified 

according to their unique protein Identifier (UniProt ID) annotation. The totality of proteins 

included in the SomaScan® assay was used as the reference set and both direct and indirect 

experimentally confirmed relationships from all species were included. The ‘Core analysis’ 

module in IPA was used to perform pathway analysis on the differentially expressed 

proteins. This analysis identifies specific canonical pathways in which the changes induced 

by spironolactone are significantly overrepresented.

Results

Study population

The baseline characteristics of patients with available paired samples for analysis vs those 

who were not represented in the biorepository are shown in Table 1. Compared to the overall 

TOPCAT population, our subset (164 patients) was older (median [IQR]=73.5 [66,80] vs 

69 [61,76]; p<0.0001), more frequently male (57% vs 48%; p=0.02), exhibited a higher 

BMI (median [IQR] = 32.7 [28.1,36.8] vs 30.8 [27.1,35.7] kg/m2; p=0.01), and was more 

likely to report a history of smoking (60% vs 40%; p<0.0001). Our subset also exhibited a 

higher prevalence of diabetes (45% vs 31%; p=0.0004) and atrial fibrillation (53% vs 34%; 

p<0.0001), as well as higher rates of percutaneous coronary interventions (25% vs 14%; 

p<0.0001) and coronary artery bypass grafts (27% vs 12%; p<0.0001). Beta-blocker (85% 

vs 77%; p=0.009) and statin (76% vs 51%, p<0.0001) use was more prevalent, whereas 

ACEI/ARB (76% vs 84%, p=0.003) use was less prevalent. Baseline characteristics of 

patients in our subset randomized to spironolactone vs placebo are shown in Table 2. These 

groups were similar with respect to most clinical characteristics, although more patients 

in the spironolactone group required insulin therapy at baseline (13.1% vs 26.2% in the 

placebo vs spironolactone group, respectively, p=0.0478).

Changes in the plasma proteome associated with spironolactone therapy.

We identified significant changes in 7 proteins between the placebo and spironolactone 

groups, shown in Figure 1. Baseline levels of these 7 proteins did not differ and are 

presented in Table S1. Spironolactone induced upregulation of caspase recruitment domain-

containing protein 18 (CARD18: −0.5 vs +66.5 % change in placebo and spironolactone 
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groups, respectively; corrected p<0.0001), polycystin 2 (PKD2; −8 vs +20 %, corrected 

p=0.001), and pregnancy specific glycoprotein 2 (PSG2; −11.4 vs +13.8 %, corrected 

p=0.02), as well as downregulation of hepatic growth factor (HGF; +6.6 vs −5 %, corrected 

p=0.009), phospholipid transfer protein (PLTP; +5.6 vs −4.7 %, corrected p=0.01), switch 

associated protein 70 (SWP70; +4.5 vs −4.7 %, corrected p=0.04), and insulin growth 

factor 2 receptor (IGF2R; +0.3 vs −8.2 %, corrected p=0.03). Genetic validation of 

aptamer specificity for these proteins is provided in the supplement. The CARD18 aptamer 

specificity is demonstrated by Western blotting (Supplementary Figure 1).

Additionally, because spironolactone is known to affect renal function, we performed a 

secondary analysis after adjustment for changes in cystatin C and found no changes in the 

levels of the seven significant proteins compared to our primary analysis (Table S2).

Pathways associated with spironolactone therapy.

Pathway analysis revealed 6 pathways that were differentially expressed between the 

spironolactone arm and the control arm. These significant canonical pathways were apelin 

liver signaling (p=0.00006), stellate cell activation (p=0.0003), Glycoprotein 6 (GP6) 

signaling (p=0.005), atherosclerosis signaling (p=0.008), LXR/RXR activation (p=0.008), 

and FXR/RXR activation (p=0.02) (Figure 2A). For the proteins in each significant pathway, 

heatmaps (Figures 2B–G) highlight individual protein changes in spironolactone vs placebo 

arms over the follow-up period. Notably, the top 4 canonical pathways were enriched for 

multiple collagens that increased in the placebo group but decreased with spironolactone.

Discussion

We report for the first time a comprehensive proteomic analysis of the effect of 

spironolactone therapy in the TOPCAT trial. We identified previously unknown proteins and 

pathways altered by spironolactone in HFpEF, including proteome-wide significant changes 

in CARD18, PKD2, PSG2, HGF, PLTP, IGF2R, and SWP70. These changes, along with 

corresponding pathway analyses, indicate the effects of spironolactone on caspase signaling, 

fibrosis, growth factors, and lipoprotein biology (Figure 3).

In our analysis, the most abundantly, significantly upregulated protein in the spironolactone 

group was CARD18, also known as iceberg. CARD18 is a small caspase recruitment 

domain-containing decoy molecule induced by pro-inflammatory stimuli, which inhibits 

caspase-1 oligomerization and activation and subsequent generation of IL-1β 25–27. 

Caspase-1 is a pro-apoptotic molecule implicated in cardiomyopathy via its role in Ang 

II-induced cardiomyocyte hypertrophy and up-regulation of IL-1β 28. Caspase-1 triggers 

the activation of the NOD-like receptor family pyrin domain containing 3 (NLRP-3) 

inflammasome, causing pyroptotic cell death of cardiomyocytes, a key process in HF 29. 

Furthermore, spironolactone reduces levels of caspase-1 and IL-1β in a murine diabetic 

model 30. Similarly, multiple recent reports have indicated a cardioprotective role of other 

caspase recruitment domain-containing proteins. For example, the apoptosis repressor with 

caspase recruitment domain (ARC), is an anti-apoptotic protein that reduces myocardial 

cell death in response to biomechanical and ischemic stress 31–34. Strikingly, low-dose 

spironolactone could decrease infarct size and apoptosis in the reperfused myocardium 
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of rats by preventing the degradation of ARC 35. In the context of the present work, 

larger studies should determine whether changes in CARD18 are causally involved in the 

therapeutic response to spironolactone or represent a biomarker of its efficacy, rather than 

representing a less relevant downstream effect of the drug.

Spironolactone randomized therapy, compared with placebo, was also associated with 

significant increases in the protein PKD2. PKD2, or polycystin 2, is commonly known 

as the one of two most commonly mutated genes in autosomal dominant polycystic kidney 

disease (ADPKD) 36. In a randomized trial of patients with ADPKD, spironolactone therapy 

reduced blood pressure without affecting markers of endothelial dysfunction 37. In the 

myocardium, PKD2 regulates cardiac diastolic function via its interaction with Ryanodine 

Receptor 2, which is involved in calcium handling 38. PKD2 loss-of-function mutations 

impair diastolic function and predispose to HF 39. Similarly, in PKD−/− mice, the release of 

natriuretic peptides (e.g., BNP) is significantly reduced compared to controls in response to 

β adrenergic stress 40. However, it remains unclear whether effects on PKD2 are involved in 

the therapeutic response to spironolactone in HFpEF. Further mechanistic studies are needed 

to explore whether positive clinical effects of spironolactone in HFpEF might be, at least in 

part, mediated by PKD2.

A third novel finding of our study is that PLTP, a protein important for transferring 

phospholipids and free cholesterol from triglyceride-rich lipoproteins into HDL, was 

significantly downregulated in the spironolactone group. Prior studies support a potential 

mechanistic role for PLTP in cardiac dysfunction. High PLTP is a strong positive predictor 

of coronary artery disease (CAD) 41, a very common cause of HF. However, a direct 

mechanistic role for PLTP on HF is also possible. High PLTP activity is positively 

associated with LV dysfunction independent of PLTP effect on CAD 42,43. Moreover, 

PLTP is linked to increased insulin resistance 44–47 and the development of diabetes 48 

which can also contribute to ventricular dysfunction. Finally, PLTP has also been associated 

with inflammation. PLTP deficient mice fed a high-fat diet had reduced IL-6 compared to 

controls 49, while IL-6 dependent-induction of TNFα required PLTP 50. Moreover, PLTP 

deficient mice exhibited reduced ability of LDL to induce monocyte chemotactic activity 

and improved the anti-inflammatory activity of HDL 51. PLTP also impairs the reverse 

cholesterol transport process, as increased systemic PLTP activity decreased cholesterol 

efflux and from macrophages 52. Given the possible roles for PLTP beyond atherosclerosis 

and CAD, our finding that spironolactone therapy is associated with a reduction in 

PLTP protein levels also merits further exploration. In particular, determining whether 

spironolactone might significantly alter PLTP activity in addition to PLTP protein levels 

will be a critical step forward.

Another protein downregulated by spironolactone and previously implicated in HF survival 

is HGF, or hepatocyte growth factor. In two cohorts of patients, circulating HGF was 

positively associated with mortality in patients with stable congestive HF 53 and advanced 

HF 54. Since several murine studies indicate protective roles for HGF in the acute setting 
55,56, HGF might be an important counter-regulatory of the cardiac stress response 57. 

Given that the absolute percentage changes we observed in HGF were small, it is certainly 
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possible that the changes are reflective of underlying regulatory effects that are only weakly 

represented by changes in HGF levels.

The last two proteome-wide significant proteins downregulated by spironolactone were 

IGF2R and SWP70. IGF2R has been implicated in cardiomyocyte hypertrophy, fibrosis, and 

myocardial remodeling 58–61. Serum IGF2R levels were increased in patients with end-stage 

heart failure compared to controls 62. These findings, combined with our present data, lead 

to the hypothesis that spironolactone-induced reductions in IGF2R may be causally involved 

in its cardioprotective effects in HFpEF. Finally, SWP-70 is a guanine nucleotide exchange 

factor 63, with no known roles in cardiovascular biology.

Spironolactone is known to affect renal function, changes in which impact the circulating 

proteome. To investigate whether changes in renal function could be mediating the effect 

of spironolactone on circulating proteins, we adjusted for cystatin C, which is a valid 

surrogate for glomerular filtration rate 64,65. In these adjusted analyses, the same 7 proteins 

were significantly associated with randomization to spironolactone, again with CARD18 

exhibiting the most clinically and statistically significant change. These data suggest that 

spironolactone affected circulating CARD18 independent of effects on glomerular filtration.

We utilized pathway analysis to identify six significant pathways altered by spironolactone. 

One pathway is the apelin signaling pathway. Apelin is an endogenous ligand to the APJ 

receptor, found in myocardial tissue. Apelin has both a potent inotropic and an arterial 

vasodilator effect and is highly expressed in the left ventricular tissue of HF patients 66. 

In a randomized trial, acute administration of apelin in HF patients produced peripheral 

and coronary vasodilation and improved cardiac output 67. Furthermore, some studies have 

suggested a role for apelin in attenuating post-infarction remodeling 68,69, possibly by 

an antioxidant mechanism 70,71. Despite these intriguing observations, our findings only 

establish a correlation between spironolactone and apelin signaling, without implying that 

changes in this pathway mediate any of the potential benefits of the drug in HFpEF. The 

value of apelin as a therapeutic target remains unclear and is the focus of various ongoing 

studies.

Two additional pathways associated with spironolactone were the liver X receptor (LXR) 

and the farnesoid X receptor (FXR) signaling pathways. LXR is a receptor expressed in the 

heart, which is activated after myocardial infarction and associated with protection against 

myocardial ischemia-reperfusion injury 72,73, as well as protection against pathological 

myocardial fibrosis and hypertrophy 74,75. On the other hand, FXR, a regulator of apoptosis 

in cardiomyocytes 76, contributes to myocardial ischemia-reperfusion injury, and its 

knockout reduces apoptosis, fibrosis, and post-infarction remodeling in mice 77. Evaluation 

of the individual components of these pathways revealed that multiple collagens changed 

in each pathway. Fibrillar collagen chains such as COL1A1, COL2A1, and COL3A1 were 

consistently downregulated with spironolactone in agreement with reports about a potential 

anti-fibrotic role for spironolactone 78–80. Interestingly, spironolactone also decreases serum 

markers of collagen synthesis in patients with HFrEF and HFpEF 81,82.
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Recently, Ferriera et al. analyzed protein biomarkers in baseline and 9-month samples of 

patients from the “Heart ‘Omics’ in Aging” HOMAGE trial 83. This trial investigated 

the effect of spironolactone on cardiovascular function and markers of fibrosis in patients 

with risk factors for HF (e.g., CAD, hypertension, diabetes).7 Consistent with our findings, 

Ferriera et al. reported reduced circulating markers of fibrosis and extracellular matrix 

metabolism in patients treated with spironolactone. In addition, while they reported several 

changes in markers of inflammation and insulin signaling, they did not observe any 

effect of spironolactone on apoptosis or apelin signaling. Differences between the present 

study and the work of Ferriera et al. may be related to different study populations and 

divergent proteomic strategies. Ferriera et al. investigated plasma from patients who had 

risk of developing heart failure in contrast to our population with established HFpEF. 

Moreover, they utilized a targeted 164 protein Olink Proseek-multiplex® cardiovascular and 

inflammation assay; in comparison, our aptamer-based proteomic strategy included 4,928 

protein targets. The strength of the present approach is that it lends itself to a less biased 

discovery approach, including unexpected targets such as CARD18, but may increase the 

risk of type II error due to correct the alpha value for a larger number of comparisons

Our study should be interpreted in the context of its strengths and limitations. Strengths 

of our study include the relatively unbiased approach to interrogating plasma proteomics, 

which included ~5000 proteins, the randomized, double-blinded nature of the parent trial, 

and the highly systematic prospective data collection. Our study also has limitations. 

Proteins in the SomaScan® platform have been selected based on their previous 

identification and the ad hoc development of aptamer-based detection for incorporation 

into the SomaScan®. Given the large number of proteins interrogated, we applied correction 

for alpha error to minimize false-positive findings, which inevitably leads to a loss in 

power relative to analyses that utilize nominal statistical significance. In addition, since 

we are examining circulating factors, we cannot be certain of the tissue of origin of these 

factors in this clinical context. Whether the observed changes are a direct effect downstream 

of mineralocorticoid receptor antagonism or due to secondary alterations in the HFpEF 

phenotype cannot be ascertained by our analysis. It should be noted that plasma levels do 

not necessarily reflect in vivo compartmentalized activity; this is particularly true for neural 

activation pathways in which metabolomics or plasma levels of specific neurotransmitters 

may be more informative than proteomics. Finally, our study was based on a subset of 

TOPCAT participants with available plasma samples, rather than the TOPCAT population 

at large. The subsample included in this study exhibited some clinical differences compared 

to the subsample not included, which limits the generalizability of the findings. This 

also resulted in a smaller sample size, which does not provide sufficient statistical power 

to correlate the proteomics changes induced by spironolactone therapy with the risk of 

subsequent events. As such, our study is unable to establish whether any of the reported 

changes are actually involved in potential therapeutic or other clinically relevant effects of 

the drug in HFpEF.

In summary, we present a proteome-wide analysis of the effects of randomized 

spironolactone therapy in HFpEF and identify various plasma proteins that are impacted 

by this drug. Spironolactone altered proteins (CARD18, PKD2, PSG2, HGF, PLTP, IGF2R, 

SWP70) and pathways (apelin liver signaling, stellate cell activation, Glycoprotein 6 (GP6) 
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signaling, atherosclerosis signal, LXR-RXR activation, FXR-RXR activation) are involved 

in myocardial apoptosis, fibrosis, and remodeling. Whether the effects of spironolactone on 

these proteins and pathways are mechanistic drivers of its clinical efficacy or side effects, 

versus representing epiphenomena unrelated to these effects, will need to be examined 

through additional studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Clinical Perspective

What is new?

• Spironolactone increases levels of the anti-apoptotic protein (CARD18).

• Spironolactone alters multiple pathways including apelin liver signaling, 

stellate cell activation, Glycoprotein 6 signaling, atherosclerosis signaling, 

LXR/RXR activation, and FXR/RXR activation).

• Proteomics can be utilized to yield unexpected targets or markers of drugs in 

randomized controlled clinical trials.

What are the clinical implications?

• Spironolactone appears to exert broad effects in HFpEF, including alterations 

in anti-apoptotic pathways and pathways regulating collagens.

• Whether these effects are direct consequences of mineralocorticoid 

antagonism that mediate the effects of spironolactone, or markers of drug 

efficacy, should be explored in larger studies.
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Figure 1. Mean percent change between placebo vs spironolactone group for proteins that 
demonstrated multiplicity corrected p-value <0.05.
Data shown include mean percentage change +/− SEM in the placebo arm (red) vs 

spironolactone arm (blue). CARD18: Caspase Associated Recruitment Domain 18. PKD2: 

Polycystin-2/Polycystic Kidney Disease 2. PSG2: Pregnancy Specific Beta-1-Glycoprotein 

2. HGF: Hepatocyte Growth Factor. PLTP: Phospholipid Transfer Protein. IGF2R: Insulin-

like Growth Factor 2 Receptor. SWP70: Switch-Associated Protein 70.
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Figure 2. Pathway analysis stratified by arm.
A) Pathways that demonstrated interaction p-value < 0.05 with randomization to 

spironolactone arm. B-G) Heatmaps of the mean percent change for proteins involved in 

the pathways identified in (A) including B) apelin liver signaling pathway, C) stellate cell 

activation, (D) GP6 signaling, E) atherosclerosis signaling, F) liver X Receptor-Retinoid 

X Receptor (LXR/RXR), and G) farnesoid X Receptor-Retinoid X Receptor (FXR/RXR). 

A2M: alpha 2 microglobulin, AGT: Angiotensin, ApoB: Apolipoprotein B, ApoC3: 

Apolipoprotein C3, ApoF: Apolipoprotein F, C3: Complement protein 3, CETP: Cholesterol 

ester transfer protein, COL: Collagen, FAS: Fas death receptor, GP6 Signaling: Glycoprotein 

6 signaling, HGF: Hepatocyte growth factor, HMGCR: Hydroxy-3-Methylglutaryl-CoA 

Reductase, HNF4A: Hepatocyte Nuclear Factor 4 Alpha, IGFBP: Insulin-like growth factors 

binding protein, IL1R2: interleukin 1 receptor type 2, IL36A: Interleukin 36 alpha, LAMA2: 

Laminin subunit alpha-2, LYZ: Lysozyme, MMP2: Matrix metalloproteinase 2, PDGFRA: 

Platelet derived growth factor receptor alpha, PDGFRB: Platelet derived growth factor 

receptor beta, PLA2G12B: Phospholipase A2 Group 12 B, PLTP: Phospholipid transfer 
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protein, RHOG: Ras Homolog Family Member G, TNRFSF14: TNF Receptor Superfamily 

Member 14.
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Figure 3. Plasma proteins altered by spironolactone in TOPCAT:
In HFpEF patients, spironolactone alters proteins and pathways involved in myocardial 

apoptosis, fibrosis, and remodeling. CARD18: Caspase Associated Recruitment Domain 

18. FXR/RXR: Farnesoid X Receptor-Retinoid X Receptor. LXR/RXR: Liver X Receptor-

Retinoid X Receptor. PKD2: Polycystin-2/Polycystic Kidney Disease 2. PSG2: Pregnancy 

Specific Beta-1-Glycoprotein 2. HGF: Hepatocyte Growth Factor. PLTP: Phospholipid 

Transfer Protein. IGF2R: Insulin-like Growth Factor 2 Receptor. SWP70: Switch-Associated 

Protein 70.
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Table 1.

General Characteristics of American TOPCAT trial participants included vs. not included in this analysis.

TOPCAT America Participants not 
included in this analysis. (n=1601)

Median (IQR), Mean (SD), or n (%)

TOPCAT America Participants 
included in this analysis. (n=164)

Median (IQR), Mean (SD), or n (%)

P value

Age 72 (64,79) 73.5 (66,80) 0.12

Male sex 789 (49%) 94 (57%) 0.05

Body Mass Index (BMI) 32.9 (27.9,38.6) 32.7 (28.1,36.8) 0.42

Race 0.04

White 1241 (77%) 141 (85%)

Black 283 (17%) 19 (11%)

Asian 77 (5%) 4 (2%)

LVEF 58 (52,64) 60 (53.5,65) 0.35

Smoking History 802 (54%) 96 (61%) 0.09

Myocardial infarction 321 (20%) 38 (23%) 0.34

Stroke 147 (9%) 11 (6%) 0.28

Coronary artery bypass graft (CABG) 291 (18%) 45 (27%) 0.004

Percutaneous coronary intervention (PCI) 303 (19%) 41 (25%) 0.06

Chronic obstructive pulmonary disease 
(COPD)

274 (17%) 17 (10%) 0.02

Hypertension (HTN) 1432 (90%) 155 (95%) 0.04

Atrial fibrillation (AF) 655 (41%) 87 (53%) 0.002

Diabetes Mellitus (DM) 714 (45%) 74 (45%) 0.9

Glomerular filtration rate (GFR) 60.6 (48.8,77) 63.1 (51.7,75.6) 0.43

Hematocrit (HCT) 38.5 (35.4,41.9) 39 (35.9,41.7) 0.65

B-natriuretic peptide (BNP) 396 (188,794) 489 (190,1068) 0.13

Systolic blood pressure (SBP) 130 (118,139) 124 (118,136) 0.01

Diastolic blood pressure (DBP) 70 (62,80) 70 (61,76.5) 0.01

Insulin 347 (22%) 32 (20%) 0.52

Beta blocker (BBs) 1246 (78%) 141 (86%) 0.01

Calcium channel blocker (CCBs) 612 (38%) 69 (42%) 0.33

Angiotensinogen converting enzyme 
inhibitor/Angiotensin receptor blocker (ACE/

ARBs)

1269 (80%) 125 (76%) 0.35

Aspirin 927 (58%) 100 (61%) 0.45

Statins 1022 (64%) 126 (77%) 0.0009
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Table 2.

Baseline Characteristics of included participants randomized to placebo or spironolactone.

Placebo (80)
Mean (SD) or n (%)

Spironolactone (84)
Mean (SD) or n (%)

P value

Age 72.4(9.5) 71.6(9.4) 0.57

Male sex 47(56%) 47(59%) 0.75

Body Mass Index (BMI) 32.3(6.7) 32.6(6.8) 0.71

Race 0.43

White 71(85%) 70(88%)

Black 10(12%) 9(11%)

Other 3(4%) 1(1%)

Smoking History 48(59%) 48(62%) 0.74

Myocardial infarction 22(26%) 16(20%) 0.36

Stroke 3(4%) 8(10%) 0.12

Coronary artery bypass graft (CABG) 24(29%) 21(26%) 0.86

Percutaneous coronary intervention (PCI) 20(24%) 21(26%) 0.72

Chronic obstructive pulmonary disease (COPD) 10(12%) 7(9%) 0.61

Hypertension (HTN) 80(95%) 75(94%) 0.74

Atrial fibrillation (AF) 47(56%) 40(50%) 0.53

Diabetes Mellitus (DM) 35(42%) 39(49%) 0.43

Glomerular filtration rate (GFR) 66.4(19) 62.3(19) 0.16

Hematocrit (HCT) 39(4.3) 38.6(4.3) 0.55

B-natriuretic peptide (BNP) 482.7(659.3) 498.9(665.1) 0.85

Systolic blood pressure (SBP) 124.3(14.2) 124.8(14.2) 0.82

Diastolic blood pressure (DBP) 69.3(10.8) 68.8(10.8) 0.77

Insulin 11(13%) 21(26%) 0.04

Beta blocker (BBs) 74(88%) 67(84%) 0.5

Calcium channel blocker (CCBs) 33(39%) 36(45%) 0.52

Angiotensinogen converting enzyme inhibitor/Angiotensin receptor blocker (ACE/
ARBs)

66(79%) 59(74%) 0.58

Aspirin 51(61%) 49(61%) 1

Statins 67(80%) 59(74%) 0.45
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