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Abstract: To provide analytic materials for business management for smart retail solutions, it is
essential to recognize various customer behaviors (CB) from video footage acquired by in-store
cameras. Along with frequent changes in needs and environments, such as promotion plans, product
categories, in-store layouts, etc., the targets of customer behavior recognition (CBR) also change
frequently. Therefore, one of the requirements of the CBR method is the flexibility to adapt to changes
in recognition targets. However, existing approaches, mostly based on machine learning, usually take
a great deal of time to re-collect training data and train new models when faced with changing target
CBs, reflecting their lack of flexibility. In this paper, we propose a CBR method to achieve flexibility by
considering CB in combination with primitives. A primitive is a unit that describes an object’s motion
or multiple objects’ relationships. The combination of different primitives can characterize a particular
CB. Since primitives can be reused to define a wide range of different CBs, our proposed method
is capable of flexibly adapting to target CB changes in retail stores. In experiments undertaken,
we utilized both our collected laboratory dataset and the public MERL dataset. We changed the
combination of primitives to cope with the changes in target CBs between different datasets. As a
result, our proposed method achieved good flexibility with acceptable recognition accuracy.

Keywords: smart retail; in-store camera; customer behavior recognition; behavior reconstruction

1. Introduction

Smart retail is regarded as an arrangement of the Internet of Things and big data
analytics for retail purposes [1]. Usually, it collects data from videos captured by ubiquitous
cameras in retail stores. Consequently, we need to extract valuable information collected
by videos. Customer behavior (CB) is commonly considered to be a kind of valuable
analytic material for business management [2]. As there are an almost infinite number of
classes of CBs in retail environments, generally, specific CBs are selected as recognition
targets, called target CBs, based on needs. Typically, customer-centric retailing demands
different target CBs to analyze the customer decision-making process. Usually, the target
CB changes frequently with different products or in-store layouts because of the different
customer-product interactions. For instance, trying on clothes in a clothes shop, sitting on a
bed in a furniture shop, picking up a bottle from the shelf, picking up an ice cream from a
freezer, etc. Accordingly, CB recognition (CBR) methods should be modified to recognize
the changed target CBs. In some cases, a current target CB is required to be discriminated,
e.g., in the case of “pick a product”, discriminating whether a customer is picking a product
with one hand or both hands provides information regarding the customer’s effort to pick
a product. Therefore, a CBR method is expected to be flexible enough to address the issue
of frequent changes in the target CB.

As CBR is a branch of human activity recognition (HAR), current CBR methods use
machine learning (ML)-based models [3] due to their remarkable accuracy in HAR tasks.
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Nevertheless, in contrast to human activity recognition, CBR methods also require flexibility.
For frequent target CB changes, to recognize different target CBs, namely, changing the
model’s output, ML-based models require time-consuming re-collection of training data
and training the model. Though transfer learning can be applied in some cases for faster
training, the inevitable step of data collection is still time-consuming. This causes current
methods to be inflexible when coping with changes in target CBs. Additionally, in existing
methods, target CBs are mostly selected arbitrarily according to the training data, instead
of business needs, which indicates that change adaptation is not considered in their design.
Thus, current CBR methods are not suitable for target CBR tasks in retail environments.

To cope with target changes, we propose a rule-based method to recognize CB by the
combination of primitives, each of which is a kind of partitioned unit of CB. Since primitives
are allowed to be combined for the customization of various CBs, our proposed method can
reuse the primitives to customize the changed target CBs. The number of combinations of
primitives increases exponentially as the number of primitives increases linearly. Thus, our
method can cover a wide range of CBs with a small number of primitives. As CB analysis
focuses on customer-product interaction, we designed the primitive as a unit that describes
an object’s motion or the relationship between multiple objects.

To conclude, rather than accuracy improvement, we focus on the method’s flexibility,
which is also important in CBR requirements. Consequently, the main contribution of the
paper is the proposal of a flexible CBR method to cope with frequent changes in target CBs.

We evaluated our method on our self-collected laboratory dataset and the public
MERL dataset. Compared to the time-consuming collection of data and training of models,
our method was able to deal with target changes in a short time, which implies its enhanced
flexibility. Moreover, assessment of acceptable recognition accuracy indicated that we did
not lose too much accuracy as the cost of achieving a high degree of flexibility.

The remainder of this paper is organized as follows: Section 2 explains the problems
of existing methods in terms of their methodology and rationale for selecting target CBs.
Section 3 describes our proposal of CB decomposition and the matching of CB patterns
in detail. In Section 4, the evaluation of the performance of the proposed method on two
different datasets is described. Finally, Section 5 concludes the paper with some final
remarks and suggestions for future research.

2. Related Work

In retail environments, we analyze CBs to meet the demands of customer-centric
retailing. As a result, CBR tasks should not only address the issues of methodology but
also consider the difficulty of application and the customer’s experience. Currently, various
types of sensors are used in HAR research to acquire data on human movements. In contrast,
almost all research on CBR uses visual data. The major reason is that visual data-based
approaches can be directly applied to video acquired by surveillance cameras in the store,
which makes the application of these approaches hardware-free and avoids active customer
participation [2]. In addition, visual data contains much more information than most other
types of sensor data.

With the input of videos, existing CBR methods mainly use the pipeline of extracting
features from consecutive frames within a certain period and recognizing behavior from the
sequenced features using machine-learning-based models, especially the hidden Markov
model (HMM). Popa et al. [4] proposed an HMM-based model to recognize customer’s
buying behavior with optical flow features. Within the next two years, they improved
the HMM-based model by partitioning the CB into basic actions [5], which are similar
to our proposed primitives. However, they determined the basic actions by optical flow
features. Thus, the model is not explainable, which results in it having poor flexibility when
dealing with target CB changes. Djamal Merad et al. [6] applied an HMM model for hand
movement analysis and an SVM model as eye-tracking descriptors for the classification of
a customer’s purchasing type. The specific CB classes were not given because the authors
conducted CBR indirectly. Moreover, their wearable device was difficult to apply to every
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customer, and required customers’ active participation. However, people are generally
reluctant to cooperate without tangible rewards [2].

Apart from HMM models, convolutional neural networks (CNNs) are also widely
used due to their excellent performance on spatial feature extraction. Singh et al. [7] used a
CNN connected with a long short-term memory (LSTM) [8] model to recognize CBs, such
as hand in the shelf, inspecting the products, etc. Using this method, Singh et al. avoided
most object occlusions using top-view cameras. Some improved CNN-based models [3,9]
have recently been proposed to detect customers and recognize basic customer-product
interactions, such as picking up products, returning products back to the shelf, etc. Jingwen
Liu et al. [10] employed a dynamic Bayesian network to conduct CBR of six CBs, including
turning to shelf, touching, picking, returning, etc., based on hand movements and the
orientation of the head and body. Jumpei Yamamoto et al. [11] estimated CB class in a
book store based on depth features from a top-view camera and pixel state analysis (PSA)
features using a support vector machine (SVM).

In addition, several studies, not using an ML-based model [12,13], implemented a
complete CBR system with an RGB-D camera. Basic CBs, such as pick, return, etc., were
recognized, based mainly on processing depth information by background subtraction.
Unfortunately, since the systems were designed for specific purposes using simple and
efficient methods, their flexibility was compromised.

In sum, although the aforementioned ML-based methods achieved improvements in
CBR accuracy, they share common limitations with respect to flexibility, as follows:

• Difficulty in adapting to changes in target CBs: The ML models cannot be reused as
long as the changed CBs are substantially different from the training data. In this
event, time-consuming new training data collection and model re-training are required,
which implies inflexibility.

• The model is not explainable: Unexplainable models can only be tuned based on their
outputs. This implies poor flexibility during any modifications caused by changes in
business needs.

Furthermore, since there are few approaches similar to our method in the field of CBR,
we discuss the similarities and differences of several HAR methods with our approach with
respect to their application to CBR. Liu et al. [14] proposed an HMM-based method which
divides human activity into several phases, called “motion units”, analogous to phonemes
in speech recognition. Yale et al. [15] proposed interpretable high-level features based on
motion units. Different activities sharing the same motion units allow the model to derive
more explanatory power from human activities. Although motion units are similar to our
proposed primitives, the methods encounter two issues when applied to CBR tasks, which
highlight how they differ. Firstly, these methods use data from a smartphone’s acceleration
sensor. Alhough providing tangible rewards is less of a problem, the methods require the
active participation of customers, e.g., downloading an app and agreeing to its terms of
service, which increases saliency to customers. Consequently, the rewards increase the
cost and the active participation creates privacy issues [2]. Secondly, despite the fairly
complete categorization of human activities based on motion units, the methods do not
focus on human-item interactions. Since purchase behavior can be easily detected from
cashier records, recognizing non-purchase CB becomes one of the objectives of CBR. As the
main component of non-purchase CBs, human-item interactions are required in CBR tasks.
As an illustration, “picking up a product” and “returning a product” would be practically
identical due to their similar hand motions. Nishant Rai et al. [16] divided human activities
in indoor living spaces into atomic actions, analogous to the primitives in this paper. The use
of both visual and audio data avoided users’ active participation, and the training data
included human-item interactions. The authors improved recognition accuracy by training
the model with annotations of both atomic actions and human activities. In contrast, we
concentrated on improving the method’s flexibility without sacrificing too much accuracy,
as flexibility is one of the important factors for CBR tasks. Romany F.Mansour et al. [17]
combined a faster RCNN and a deep Q network for the detection of anomalous entities
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or human activities in videos. Since this is a typical ML-based HAR method, it requires
re-collecting training data and re-training models to adapt to the changed recognition
targets, which is inflexible for CBR tasks. In conclusion, the HAR methods described
require major modifications before they could be applied to CBR tasks.

3. Proposal

In this paper, we designed a unit, called a primitive, which is a kind of partitioned CB.
Our CBR process consists of object tracking, primitive recognition, and CBR by matching
recognized primitives with a predefined pattern of primitives. Since the innovative part
of our approach is CBR with the combination of primitives, we applied existing methods
to object tracking. The workflow of our approach is shown in Figure 1. At the beginning,
the existing method tracks objects from the input video captured by in-store cameras. Then,
each frame’s primitives are recognized based on the object trajectories. We predefine CB
as a pattern consisting of primitives. Finally, we match the recognized primitives with
the predefined primitive pattern. The matched pattern is regarded as the corresponding
CB. This section explains our proposed method in detail, including how we design the
primitives, the method for primitive recognition, customizing CB using primitives, and CBR
by pattern matching.

Figure 1. Proposal flow.

3.1. Primitive

The dictionary definition of a behavior is the accomplishment of a thing, usually over
a period of time or in stages. We believe that this definition reveals the process by which the
human brain recognizes a behavior from visual information. Behavior consists of several
stages, and our brains recognize this behavior by checking whether these stages occur in
the correct order. In this paper, we refer to these stages as primitives. Thus, CB can be
decomposed into primitive(s). Table 1 lists the target CBs in existing methods and the
primitives from our subjective decomposition of the target CBs. We did not list a type
of CB [18] in Table 1 because they recognize customer’s emotion from facial expressions
and speech text, which might breach customers’ privacy. During the decomposition, we
controlled the decomposition granularity to avoid redundancy from over-decomposition.
We found that the objects in the target CBs were body parts or products. There are two
types of primitives: one describes an object’s motion state and the other describes the
relationship between two objects. Based on what we have found so far, we can decide what
kind of information is in the primitive and how detailed it is.

It is necessary to design an expression format for primitives. Generally, using natural
language is considered an efficient method when we need to let others know that we
understand a behavior. Therefore, we define the primitive by a sentence with reference to
the natural language grammar. The syntax is:

subject verb object from wherestart to whereend, (1)

where italic words are syntax elements which can be replaced by words in the vocabulary
below. If wherestart = whereend, the syntax can be simplified as subject verb object where.
As the syntax shows, the primitive consists of subject, verb, object and where, each of which
has a corresponding vocabulary, as follows:

• subject: person, hand, product
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• verb: move, stay, follow, face to
• object: hand, shelf, cart, product
• where: in the shelf/cart, out of shelf/cart

Subject and object refer to the name of an entity. verb describes the movement of
subject or the relation between subect and object. where means the place where the primitive
happens. As our proposed method should cover a wide range of CBs, the vocabulary should
be a selection of commonly used words in retail environments. Therefore, these words
are selected based on our aforementioned findings from the existing methods in Table 1
Nevertheless, more and more words will be available as our research progresses. There
are some constraints and options for the syntax to avoid confusing definition sentences,
as below:

• subject, verb are required: subject, verb should be filled in. object is required in relation
primitives. where is optional.

• Any ignored optional element can be omitted: e.g., if where is ignored, we do not care
about the value of where, the syntax can be simplified as subject verb object.

• subject 6= object: Same subject and object is not allowed in logic.
• The logical operator NOT(!) is allowed: It indicates all words except this one.

In sum, the syntax describes what an object does or what happens to it. With some
verbs, it could represent two objects’ relationship. This design could define motion prim-
itives, the motion of an object, relation primitives, or the relation between two objects.
In the case of more than two objects, combining several relation primitives could describe a
CB composed of multiple objects.

Table 1. Primitives in target CBs of current approaches.

Target CB Related Approaches Primitives ({} = primitive)

Passing by the Shelf [3,10,12] {a person is moving in front of the shelf}

Turning to the Shelf [10] {a person is turning to face the shelf}

Viewing the Shelf [5,10,11] {a person is standing and watching the shelf}

Touch the Shelf [3–5,10,13] {one’s hand moves to the shelf},
{one’s hand moves back from the shelf}

Pick up a Product
from the Shelf

[3–5,9,10,12,13] {one’s hand moves to the shelf},
{one’s hand moves back from the shelf},

{a product is moving together with one’s hand}

Return a Product
back to the Shelf

[3,5,10,12,13] {one’s hand moves to the shelf},
{a product is moving together with one’s hand},

{one’s hand moves back from the shelf}

Put a Product into a
Basket/Cart

[10] {one’s hand moves to the cart},
{a product is moving together with one’s hand},

{one’s hand moves back from the cart}

Holding a Product [11] {a product is moving together with one’s hand}

Browsing a Product
in a Hand

[5,11,13] {a person is watching his hand},
{a product is moving together with one’s hand}

However, though the proposed syntax is enough for our current research, its applica-
tion range is limited due to the design of subject, verb, object, and where. Despite the ability
to define multi-object interactions theoretically, each sentence only defines two objects’
one-to-one relationship. Therefore, the resources for multi-object relationships definition
grow exponentially with the number of related objects. Nevertheless, it is currently suf-
ficient for us because there are at most two objects in interaction. Since where limits the
number of positions only to start and end, it cannot describe complex motion, such as
spiral movement.
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3.2. Primitive Recognition

In this section, we consider the elements in the syntax from the objects’ trajectories.
Since most CBs last for a few seconds which implies many frames for a video with 30 fps,
this leads to redundancy in the trajectories with the object-tracking method. Consequently,
we first perform trajectory segmentation to reduce redundancy in the trajectories. Then, we
recognize primitive elements using the results of segmentation.

Trajectory segmentation refers to compressing a trajectory into several segments,
which preserve most features of the trajectory. Current approaches [19,20] separate a
trajectory based on the moving distance and direction of each vector in the trajectory.
Thus, we design an approximate trajectory partitioning (ATP)-based algorithm [19] for
trajectory segmentation. However, ATP is sensitive to direction changes. In our case,
an object’s frequent direction changes over short distances probably refers to idling. We
anticipate that the algorithm will only react to change in the moving distance in this case.
Hence, we designed a thresholding algorithm based on ATP as shown in Algorithm 1.
The algorithm receives two inputs: a list of points KptsATP ← [p1, p2, p3, ..., pi, ..., pN ] from
ATP outputs, where pi refers to the i-th element in KptsATP, N is the number of key-points
from ATP, and a threshold thresholdidle is set to preserve the key-points with a distance
longer than thresholdidle. Since the time complexity of ATP and Algorithm 1 are O(n),
the time complexity of the tracjectory segmentation is O(n2), where n is the length of
the trajectory.

Algorithm 1: Thresholding Algorithm for Trajectory Segmentation
Input: List Of Points KptsATP ← [p1, p2, p3, ..., pi, ..., pN ], Integer thresholdidle
Output: List Of Points Kpts

1 index← 2;
2 pt1← p1;
3 idling← True;
4 Kpts← [pt1];
5 while index < N do
6 ptstart ← pindex;
7 ptend ← pindex+1;
8 vec← pend − pstart;
9 distance←

√
vec.x2 + vec.y2;

10 if distance ≤ thresholdidle then
11 if !idling then
12 Kpts.Add(ptindex−1);
13 ptstart ← ptend;
14 end
15 idling← True;
16 else
17 Kpts.Add(ptindex−1);
18 idling← False;
19 ptstart ← ptend;
20 end
21 index← index + 1;
22 end
23 if !(pN in Kpts) then
24 Kpts.Add(pN);
25 end
26 return Kpts;
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In the primitive’s syntax, subject and object are the entity names that can be ob-
tained directly from the trajectory information. The words “in the shelf/cart” and “out
of shelf/cart” for where can be directly acquired from the coordinates of the trajectory.
Therefore, only verb needs to be recognized from the trajectories. Algorithm 2 explains the
recognition for “move” and “stay”. The two words are a pair of antonyms that mean an
object is moving faster than a certain speed or staying still. The input segmented trajectory
ST ← [p1, p2, p3, ..., pi, ..., pM] contains the trajectory processed by segmentation algorithm,
where pi refers to the i-th point in ST, and M is the number of points of ST. thresholdidle
is reused in this algorithm to detect whether an object is moving or not. To improve the
robustness to noise, we applied a window with length of lenwindow1 to filter the noise.
The algorithm output verb1 is one of the words “move” and “stay”, which means the
recognition result for the current frame. The time complexity is O(n), where n is the smaller
of the length of the segmented trajectory and lenwindow1.

Algorithm 2: Verb Recognition(move, stay)
Input: List Of Points ST ← [p1, p2, p3, ..., pi, ..., pM], Integer thresholdidle, Integer

lenwindow1
Output: String verb1

1 index← M;
2 results← [];
3 while results.length ≤ lenwindow1 do
4 ptstart ← pindex;
5 ptend ← pindex+1;
6 vec← pend − pstart;
7 distance←

√
vec.x2 + vec.y2;

8 if distance ≤ thresholdidle then
9 results.Add(1);

10 else
11 results.Add(0);
12 end
13 index← index− 1;
14 if index = 0 then
15 Break;
16 end
17 end
18 sum← 0;
19 foreach element result of results do sum← sum + result;
20 ;
21 if sum ≤ results.length/2 then
22 verb1 ← “stay”;
23 else
24 verb1 ← “move”;
25 end
26 return verb1;

Algorithm 3 shows the recognition for the verb, “follow”. The word means the subject
is moving/staying together with the object. The inputs are two objects’ segmented trajectory
ST1 ← [p11, p12, p13, ..., p1i, ..., p1M] and ST2 ← [p21, p22, p23, ..., p2i, ..., p2M], where pji
refers to the i-th point in the trajectory STj, M is the number of points of the segmented
trajectory. threshold f ollow is used to detect whether an object is close to another one or not.
Similar to Algorithm 2, a parameter lenwindow2 is passed to the algorithm for denoising.
The algorithm output verb2 is “follow” or null, which means the recognition result for
the current frame. The time complexity is O(n). Furthermore, the verb “face to” refers
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to subject is facing object. Since it requires detecting the orientation of the body or head,
which is not currently supported in our method, we intend to omit it in this paper and
consider it in future work. The time complexity is O(n), where n is the smaller of the length
of the segmented trajectory and lenwindow1.

Algorithm 3: Verb Recognition(follow)
Input: List Of Points ST1← [p11, p12, p13, ..., p1i, ..., p1M], List Of Points

ST2← [p21, p22, p23, ..., p2i, ..., p2M], Integer threshold f ollow, Integer
lenwindow2

Output: String verb2

1 index ← M;
2 results← [];
3 while results.length ≤ lenwindow2 do
4 pt1← p1index;
5 pt2← p2index;
6 vec← pt2− pt1;
7 distance←

√
vec.x2 + vec.y2;

8 if distance ≤ threshold f ollow then
9 results.Add(1);

10 else
11 results.Add(0);
12 end
13 index ← index− 1;
14 if index = 0 then
15 Break;
16 end
17 end
18 sum← 0;
19 foreach element result of results do sum← sum+result;
20 ;
21 if sum ≤ results.length/2 then
22 verb2 ← null;
23 else
24 verb2 ← “follow”;
25 end
26 return verb2;

3.3. Define CB by Primitives

With our designed primitives, we are able to customize a wide range of CBs with a
combination of primitives. Since our primitives are designed with reference to target CBs in
existing methods, we applied primitives to define those target CBs. The clothes-related CBs
are excepted because they are not common in normal retail stores, and because they are too
complex for our proposal. We defined CBs in Table 1 by primitives, as shown in Table 2.
The symbol “→” defines the primitives’ chronological order. Primitives that precede this
symbol are assumed to occur first. Since the product is occluded when it is on the shelf
in our implementation, a precise definition of “touch the shelf” is difficult to formulate.
Therefore, we defined it broadly as the primitive pattern in Table 2.
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Table 2. Define target CBs by primitives.

Target CB Primitive Pattern ({} = Primitive, != Not)

Passing by the Shelf {person move out of shelf}

Turning to the Shelf {person !face to shelf}→ {person face to shelf}

Viewing the Shelf {person stay out of shelf}

Touch product in the Shelf {hand move to in the shelf}→
{hand move to out of shelf}

Pick up a Product from the Shelf {hand move to in the shelf}→
{hand move to out of shelf}, {product follow hand}

Return a Product back to Shelf {hand move to in the shelf}, {product follow hand}
→ {hand move to out of shelf}

Put a Product into a Basket/Cart {hand move to in the cart}, {product follow hand}
→ {hand move to !in the cart}

Holding a Product {product follow hand}

Browsing a Product in a Hand {product follow hand}, {person stay}

3.4. Primitive Pattern Matching

The recognized primitives are stored in a sequence to retain their chronological order.
Once any primitive has been recognized in the current frame, our method matches the
primitive sequence with the predefined primitive patterns. Any matched result is consid-
ered as a recognized CB. Algorithm 4 explains the details of the pattern matching. Since
forward matching in chronological order consumes a great deal of computational resources
to save different matching states for each primitive pattern, it leads to the running speed
becoming slow as the running time grows. Therefore, we match recognized primitives
in reverse chronological order. In other words, we start matching from the most recently
recognized primitives, which saves a great deal of computational resources because there is
no need to save the matching states. The algorithm takes the inputs of a sequence, including
recognized primitives, a predefined primitive pattern, and a number timeout, to stop the
algorithm when there are not any matched primitives within the recent timeout frames.
The output is a Boolean value of whether the corresponding CB is matched or not. The time
complexity is O(n), where n is the smaller of the length of Pseq and the length of Pde f .

Algorithm 4: Primitive Pattern Matching
Input: List Of Primitive Pseq, List Of Primitive Pde f , Integer timeout
Output: Boolean matched

1 seqIndex ← Pseq.length;
2 de f Index ← Pde f .length;
3 timeoutCounter ← 0;
4 while (seqIndex > 0) AND (timeoutCounter ≤ timeout) do
5 if Pseq[seqIndex] = Pde f [de f Index] then
6 de f Index ← defIndex− 1;
7 if de f Index = 0 then
8 return True;
9 end

10 else
11 timeoutCounter ← timeoutCounter + 1;
12 end
13 seqIndex ← seqIndex− 1;
14 end
15 return False;
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4. Evaluation
4.1. Experiment Settings

Our proposed method can be flexibly modified to recognize different target CBs to cope
with frequently changing target CBs in smart retail solutions. To evaluate our proposed
method, we used our collected laboratory dataset [21] and the public MERL dataset [7].
Our proposed method recognizes target CBs in input videos and calculates their f1-score as
the accuracy metric. Since videos in two datasets were taken in different environments, it
can be considered a change in retail environments to some extent. To recognize different
target CBs in the two different datasets, we only changed a few parameters of our designed
algorithms and predefined primitive patterns. By observing the accuracy of our method on
different datasets, and considering only a few modifications when changing datasets, we
could infer our method’s flexibility to some degree.

The inputs of our method are the trajectory coordinates, which need to be obtained
using object detection and a tracking model. However, wrong tracking results obtained by
other models mean wrong inputs to our method, which probably leads to wrong outputs.
To eliminate the influence of different object detection models on our evaluation results,
we track the annotated bounding boxes with a Kalman-filter and Hungarian algorithm
[22] to obtain the input trajectories for our method. In addition, although some tracking
models can predict the trajectories of occluded objects, the occluded trajectories are not
annotated in the evaluation. Regarding the output CB annotations, we annotated the
target CB in each frame for our laboratory dataset. As the MERL dataset is public, we
used its original CB annotations. For the experiments on both datasets, we implemented
our method in the same Windows 11 device with RAM of 16 GB. The CPU was an Intel
i7-12700K (3.6 GHz). The GPU was an NVIDIA GeForce RTX 3060 Ti (8 GB). The program
was written in Python 3.9. The ML framework was PyTorch 1.12. The third-party libraries
used included numpy 1.22 and scipy 1.8.

4.2. Our Laboratory Dataset

This is a dataset we collected at a public activity, where the randomly selected 19 par-
ticipants were requested to simulate shopping in front of the shelf one-by-one. The dataset
includes 19 top-view videos of 19 subjects with a resolution of 640 × 480. Each video was
about 30–60 s with 10 FPS and only one subject. Figure 2 shows some examples of the
annotated target CBs in the dataset. We built a laboratory retail environment and installed
an RGB top-view camera to obtain an occlusion-free view. Each participant in the videos
was asked to interact with the products on the shelf. The participant were required to
take at least one product from the shelf. There were four products of different shapes and
sizes, including a boxed juice, a deodorant spray, a stainless steel bottle, and a wet-tissue.
The products were not visible when they were on the shelf. Our data was collected when
our proposed method was demonstrated in a public activity. The videos were collected
without requiring the participants to sign any confidentiality agreement, and the partici-
pants’ faces were exposed to the cameras. Unfortunately, as a result, we cannot publish our
collected dataset until all the private information has been removed, such as by masking
the faces.

Since the innovative part of our proposed method involves the receipt of trajectory
coordinates as inputs, we annotated the bounding box of person, hand, and four products
in each frame. Then, we used a tracker with a Kalman-filter and Hungarian algorithm [22]
to obtain the object’s trajectory as input. Regarding the output CBs, we selected eight
CBs as listed in Table 3. Among them, the first six CBs included most target CBs used
in existing methods. However, with the annotation of the first six CBs, we found that
many frames still remained without annotation. Thus, we added two CBs to fill the
frames without annotations. We used some approximate definitions for some CBs, such as
“browse”, because the approximate definition enabled reuse of primitives with nearly no
loss of accuracy.
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Figure 2. Example of annotated CB in our laboratory dataset.

Figure 3 shows the confusion matrix of our laboratory dataset. Each CB’s column
includes two columns of frame count and each row’s frame count percentage. Figure 4
shows the f1-score and some statistics for our laboratory dataset. The total average is the
average value of the column calculated using the sum of the product of the frame percent
and each row’s value. The total average f1-score of our method was 89.35%, which is an
acceptable result. The f1-score for most CBs was also acceptable, except for “viewing,”
“walking,” and “touch”. In terms of “viewing”, the confusion matrix revealed the reason
with 68.18% precision. Some “viewing” frames were recognized as “select” and “browse.”
The ambiguous boundary caused the wrong prediction of “select”. The different definition
of “viewing” between annotation and CB definition led to the wrong prediction of “browse”.
As our proposed method cannot recognize the target’s orientation or track the target’s eyes
currently, our CB definition approximately defines “viewing” as stay static out of the shelf,
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while the annotation of “viewing” means the target is standing still and looking at the shelf.
The low recall of “viewing” indicates that most frames of “browse” were recognized as
“viewing”. The difference in CB definition is whether the target is holding a product or not.
Products are usually occluded in the “browse” frames, which caused the wrong recognition
output for “viewing”.

Table 3. Primitive patterns in our laboratory dataset.

Name Description Primitive Pattern ({}= Primitive, != Not)

Walking one is walking along the shelf {person move out of shelf}

Viewing one is standing in front of the shelf {person stay out of shelf}

Browse one is holding and watching a product without moving {product follow hand}, {person stay}

Pick one picks up a product from the shelf {hand move to in the shelf}→
{hand move to out of shelf}, {product follow hand}

Return one returns a product back to the shelf {hand move to in the shelf}, {product follow hand}
→ {hand move to out of shelf}

Touch one hand into the shelf without taking any product out {hand move to in the shelf}→
{hand move to out of shelf}

Select (1 hand) one hand is selecting products in the shelf {hand in the shelf}, {hand out of shelf}

Select (2 hands) both hands are used to select products in the shelf {hand out of shelf}

Figure 3. Confusion matrix of our laboratory dataset.

Figure 4. Results of F1-score of our laboratory dataset.

With respect to “walking”, some of its frames were recognized as “browse”. When
the target is walking while holding a product, it is difficult to determine the ambiguous
boundary between “browse” and “walking”. The CB definition in Table 3 recognizes them
by distinguishing whether the target is moving while holding a product. “Browse” refers
to holding a product while staying static. We used a single threshold to divide the object’s
moving speed to detect move or stay, which was not sufficiently accurate for totally correct
detection. Some frames were detected as staying static, which led to the wrong recognition.
This also applied to the low recall of “walking”.
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In the case of “touch”, there was only one case in the dataset. It was defined as a
customer putting their hand inside the shelf but taking nothing out of it. Some wrong
recognition of “pick” results in the low recall occurred because the picked object was
occluded. In addition, Figure 3 shows that most video frames were “browse” and occurred
more frequently than any other CBs. Thus, we considered discriminating within “browse”
to make the distribution of CBs more uniform.

According to the above results, our method showed acceptable accuracy for the lab-
oratory dataset. Some individual CBs with low f1-score are anticipated to be improved
by changing the CB definitions into more accurate definitions. To evaluate our proposed
method’s ability to discriminate CB, we predefined different primitive patterns to dis-
criminate the CB “select” according to whether one hand or both hands were used. This
indicates that our proposed method is able to deal with CB discrimination to some extent.
Concerning the evaluation of flexibility, we measured the time required by our method
when applied to different datasets. For the collected laboratory dataset, we spent about an
hour tuning the five parameters in the three designed algorithms and two to three hours
defining the primitive patterns in Table 3. Then, we annotated the CBs in each frame for
about five hours per day. The annotations took about one week in total. Since annotation is
not required during the application of our method, the time for annotation is considered as
a reference for the ML-based methods’ modification time.

4.3. MERL Dataset

The MERL shopping dataset [7] is a public dataset consisting of 106 top-view videos
with a resolution of 920 × 680, each of which is about two minutes long with 30FPS.
All 41 subjects were asked to do shopping in a retail store setting. Figure 5 presents
some examples of the annotated CBs in the dataset. With regard to the input trajectory
coordinates, we annotated the bounding box of person and hand in each frame based on
the results from the pose estimation model Higher HRNet [23] pretrained on the COCO
dataset [24]. We manually annotated the product’s bounding box in each frame. Due to
the limited time, we only finished the object’s bounding box annotations in 46 videos for
evaluation. Similar to the process for the laboratory dataset, we used the same tracker with
a Kalman-filter and Hungarian algorithm [22] to obtain the input trajectories.

For the output CBs, we used the CB annotations included in the dataset. This provided
five CBs’ annotation, and we defined them using our proposed method, presented in Table 4.
Among the five CBs, we excluded the CB “hand in shelf” from the evaluation because
many ground truths were not annotated during our random check of the annotations.

Table 4. Primitive Patterns in MERL dataset.

Name Description Primitive Pattern ({}=
Primitive)

Reach To Shelf reach one’s hand to shelf {hand move out of shelf}→
{hand move in the shelf}

Retract From Shelf retract hand from shelf {hand move in the shelf}→
{hand move out of shelf}

Hand In Shelf extended period with hand in
the shelf {hand in the shelf}

Inspect Product inspect product while holding
it in hand {product follow hand}

Inspect Shelf
look at shelf while not

touching and reaching for the
shelf

{person stay out of shelf}
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Figure 5. Example of annotated CB in MERL dataset.

Figure 6 shows the confusion matrix of the MERL dataset. Each CB’s column includes
two columns of frame count and each row’s frame count percentage. Figure 7 shows the
f1-score and statistics for the MERL dataset. The calculation of the total average was the
same as in Figure 4. The average f1-score of our method was 79.66%, which is acceptable for
our proposed method with only a change in CB definitions. Among the four target CBs, our
method achieved only about 60% precision for “reach to shelf” and “retract from shelf”. We
found that this was caused by the different boundary in the definition. Specifically, there
was a difference between our definition of “reach to shelf” and the definition in the MERL
dataset. We defined the CB’s boundary using a threshold of moving speed. Therefore, our
method started to recognize “reach to shelf” from the frame in which the hand was already
moving. The MERL dataset defines the start of “reach to shelf” as when one intends to
“reach to shelf”, when one’s hand has not yet moved. Thus, our recognition results always
differed from the annotations by a few frames. For “retract from shelf”, this accounted for
the low precision. The errors for “reach to shelf” and “retract from shelf” were caused by
different definitions. We consider our method to have been successful in recognizing every
“reach to shelf” and “retract from shelf” CB with a few frames’ difference. This implies that
we could improve our method by recognizing intention in our future research.
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Figure 6. Confusion matrix of MERL dataset.

Figure 7. Results of F1-score of MERL dataset.

Except for recognition accuracy, Table 5 compares the required modifications and
the estimated required time when applying our approach and the machine learning-
based approach to different datasets. Our proposed method changed the five parameters
(thresholdidle, lenwindow1, threshold f ollow, lenwindow2, timeout) in the three algorithms we de-
signed in Section 3. They were mainly used to cope with change in the person’s scale in the
video frames. We also re-defined the primitive patterns for the new target CBs. As shown
in Table 5, in our experiments, all the modifications took about 3–4 h.

Table 5. Flexibility: Modifications for dataset change adaptation.

Method Modifications Estimated Required Time

Our proposed method
5 parameters for our designed

3 algorithms 1 h

Re-define primitive patterns 2–3 h

Re-collecting video data no reference data

ML-based methods Re-annotating collected data a week (our dataset)
3 months (MERL)

Training and tuning model(s) no reference data

For the ML-based methods, the main modification was re-annotation. Since the
required time for data re-collection and model tuning varied greatly when dealing with
changes of datasets, we currently lack sufficient reference data to estimate its required time.
However, regarding the time spent on re-annotation, as we annotated both datasets for the
purpose of accuracy calculation, the required time for modification was estimated to be
about 2–3 months.

In conclusion, since our method cannot be fine-tuned as ML-based methods are, our
proposed method sacrifices accuracy to obtain flexibility. Nonetheless, the huge difference
in modification time indicates that the trade-off is justified. The considerably enhanced
flexibility could have application value in the context of CBR.

5. Conclusions

Smart retail solutions usually require the recognition of a wide range of CBs from
captured video in stores. The CBs that are selected as recognition targets are called target
CBs. Target CBs frequently change with changes in needs, environments, etc. To achieve
flexible target CB change adaptation, we proposed a flexible CBR approach. Our main
idea is recognizing CB using a combination of primitives, which are a kind of partitioned
CB. Since different CBs share the same primitives; the primitives can be reused when
adapting to target CB changes, which avoids time-consuming steps, such as re-collecting
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training data and re-training the recognition models. Consequently, our method can
flexibly adapt to changes in target CB by changing the combinations of primitives only. In
addition, we designed a syntax based on natural language grammar to define primitives.
The readable syntax improves the explanatory power of our method. Therefore, the usage
of primitives and our proposed syntax can enable a high degree of flexibility in target CB
change adaptation. Evaluation experiments undertaken demonstrated that our method
achieved an acceptable level of accuracy for different datasets, and great flexibility across
different datasets.

Nevertheless, the experiments also revealed some limitations of our proposed method.
Since our method is difficult to fine-tune to fit some individual situations, the recognition
accuracy is decreased compared to ML-based methods. A possible solution would be to
replace the current pattern matching algorithm with a probabilistic model. In addition,
because the element where in the primitive syntax limits the number of positions, the syntax
cannot represent complex movement, such as spiral movement. This leads to a limited
cover range of CB. Increasing the vocabulary of where could improve the model’s expressive
power to represent complex movement. Furthermore, though the syntax element f ace to
includes orientation information, the orientation detection is currently not applied. These
limitations may be addressed in future work.
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