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Abstract: Platinum is an ideal material for high-temperature resistant device packaging due to its
higher melting point and good electrical properties. In this paper, the thermocompression bonding
of Pt–Pt metal electrodes was successfully realized through process exploration, and the package
interconnection that meets the requirements was formed. A square bump with a side length of
160 µm and a sealing ring with a width of 80 µm were fabricated by magnetron sputtering. Different
pressure parameters were selected for chip-level bonding; the bonding temperature was 350 ◦C for
about 20 min. Analysis of the interface under a scanning electron microscope found that the metal
Cr diffused into Pt. It was found that two chips sputtered with 300 nm metal Pt can achieve shear
resistance up to 30 MPa by flip-chip bonding at 350 ◦C and 100 MPa temperature and pressure,
respectively. The leakage rate of the sample is less than 2 × 10–3 Pa·cm3/s, the bonding interface is
relatively smooth, and the hot-pressed metal bonding of Pt electrodes with good quality is realized.
By comparing the failure rates at different temperatures and pressures, the process parameters for
Pt–Pt bonding with higher success rates were obtained. We hope to provide new ideas and methods
for the packaging of high-temperature resistant devices.

Keywords: Pt–Pt interconnection; high-temperature resistant packaging; metallic bonding

1. Introduction

Sensors working with graphene as a sensitive material have received extensive at-
tention in recent years. The unique thermal properties, electrical properties, and high-
temperature resistance [1–3] of graphene show a strong potential for enhancing perfor-
mance and improving the reliability of devices operating at high temperatures and harsh
environments. However, the lack of reliable high-temperature packaging technology im-
pedes the application of graphene in the field of high-temperature MEMS devices. Burla
et al. [4] achieved nickel wire bonding for high-temperature packaging, and Ni wire bonds
were found to be electrically stable for temperatures up to 550 ◦C. However, the high-
temperature oxidation of nickel limits its practical application. On the other hand, Pt has
almost perfect corrosion resistance, making it a better high-temperature encapsulation
material than nickel. Brachmann et al. [5] demonstrated a Pt wire bonding method that can
withstand an 1100 ◦C environment. The investigated Pt films were composed of a 50 nm
thick e-beam evaporated Cr seed layers and an approximately 1 µm electrodeposited Pt film.
This study proved the excellent prospects of Pt in the field of high-temperature packaging.
To the best of our knowledge, the current high-temperature packaging mostly uses wire
bonding technology, while wire bonding technology can no longer meet the requirements
of miniaturization, light weight, high performance, and low power consumption of modern
electronic products [6]. Notably, the flip chip is obviously more in line with the future
development trend of the electronics industry.
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The common electronic packaging method is realized by forming flip chips [7,8]
by thermocompression metallic bonding [9] or direct bonding [10]. The essence of
metallic bonding is the mutual diffusion of atoms on the surface of two metals [9],
which relies on metallic bonds, metal melting, and other factors in order to bond
firmly. On the one hand, it combines the excellent properties of the material and,
on the other hand, completely utilizes the benefits of the metal film to improve the
photoelectric performance of the device. Direct bonding involves cleaning and acti-
vating the surface of the bonding sheet [11], directly bonding it at room temperature,
and finally combining it with heat treatment to form an interconnected interface.
The difference between the two methods is that metallic bonding involves the same
kind of metal material, while direct bonding can be carried out with two different
materials. Therefore, defects such as the dislocations generated in the process of metal
bonding only exist near the interface of metal bonding and do not extend to the entire
material and thus hardly affect the performance of the material before bonding. Since
a thin oxide film is formed on the surface of the metal in the air, the oxide film blocks
the mutual diffusion of atoms on the two metal surfaces, restricting the diffusion of
atoms unconditionally. Additionally, the bonding interface of metal bonding cannot
add a dielectric layer. Metal bonding is usually achieved by heating and pressing
and is different from the eutectic interface interconnection formed between different
metals [12]. For example, Au–Au, Cu–Cu [13,14] and Al–Al [15,16] make atomic-level
contact under the simultaneous action of heat and pressure. Under the movement of
atoms, the two layers of metals undergo diffusion movement, and the diffused atoms
connect the two layers of metals together.

In this paper, we have focused on the high-temperature packaging needs of MEMS
devices [17–19] and used Pt with excellent performance at high temperatures as the bonding
material [20,21] to explore the process required for its packaging and its performance
after packaging.

2. Materials and Methods

There are three steps to realize Pt–Pt interconnection: test sample design, fabrication
of fine-pitch bumps followed by bumps surface pretreatment, and finally Pt–Pt thermo-
compression bonding.

2.1. Test Sample Design

The top and low substrates of the bonding are two chips of 6 × 6 mm2 and
8 × 8 mm2, respectively. The total bonding area is approximate to 5.5 mm2. The
schematic diagram of the mask is shown in Figure 1. The outer side length of the
sealing ring of the single repeating unit is 1.31 mm, the inner side length is 1.15 mm,
and the side length of the small square of the bonding bump is 160 µm. The side length
of the total mask structure is 5 × 5 mm, and each structure contains 16 repeating units.
The figure on the right of Figure 1a shows a single, repeating unit, which is located on
a substrate with a size of 8 × 8 mm. The figure on the right of Figure 1b shows a single,
repeating unit, which is located on a substrate with a size of 6 × 6 mm. The above
shapes are made of silicon as the substrate through photolithography, sputtering, and
other processes. The lithography was performed using an MA6 model lithography
machine produced by SUSS MicroTec in Germany. The top and bottom two substrates
are bonded by thermocompression to ensure a firm connection between the sealing
ring and the bump, forming a closed space.
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Figure 1. Schematic diagram of mask and bonding structure. (a) Mask of the top substrate. (b) 
Mask of the bottom substrate. (c) Cross-sectional diagram of bonded structure. 

2.2. Substrate Fabrication 
The fabrication process of the top substrate is shown in Figure 2. First, the 400 µm 

thick silicon wafers were routinely cleaned, followed by ultrasonic cleaning with ace-
tone, isopropanol, and water for 5 min each, and finally dried under N2 [Figure 2a] [22]. 
A 300 nm thick SiNx passivation layer was first deposited on a 400 µm thick Si wafer by 
plasma-enhanced chemical vapor deposition (PECVD), and a mask structure was creat-
ed on the SiNx passivation layer using a negative photoresist. Subsequently, the bottom 
Cr/Pt electrodes with thicknesses of 50 and 300 nm, respectively, were deposited on the 
SiNx layer by magnetron sputtering [Figure 2b]. The electrode should not be too thick 
because an excessively thick bonding interface layer may cause the formation of mi-
crocracks and lead to poor bonding quality [23,24]. Finally, the negative adhesive peel-
ing was completed in acetone to produce the top substrate. The process for fabrication of 
the bottom substrate is the same as that of the top substrate. 

To remove surface oxide film, both the top substrate and bottom substrate were 
pretreated by Ar (a small amount of H2) plasma with a gas flow rate of 250 sccm under 
the power of 200 W for 180 s. After the metal surface is activated, the degree of atomic 
diffusion is increased by heating and pressing to tightly combine the two structures. The 
bonding adopts the electronic packaging FC150 flip-chip welding machine. 
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Figure 2. Schematic of the process for fabrication of the top substrate. (a) Cleaning. (b) SiNx pas-
sivation layer deposited by PECVD. (c) Negative photoresist masks and lithography. (d) Sputter-
ing Cr/Pt electrodes. (e) Negative adhesive stripping. 

2.3. Pt-Pt Thermocompression Bonding 
The relationship between bonding time and temperature is shown in Table 1. The 

present work attempts to use four sets of bonding parameters to determine the range of 
parameters that can achieve better Pt–Pt bonding interconnections. There are two pur-

Figure 1. Schematic diagram of mask and bonding structure. (a) Mask of the top substrate. (b) Mask
of the bottom substrate. (c) Cross-sectional diagram of bonded structure.

2.2. Substrate Fabrication

The fabrication process of the top substrate is shown in Figure 2. First, the 400 µm
thick silicon wafers were routinely cleaned, followed by ultrasonic cleaning with acetone,
isopropanol, and water for 5 min each, and finally dried under N2 [Figure 2a] [22]. A
300 nm thick SiNx passivation layer was first deposited on a 400 µm thick Si wafer by
plasma-enhanced chemical vapor deposition (PECVD), and a mask structure was created
on the SiNx passivation layer using a negative photoresist. Subsequently, the bottom Cr/Pt
electrodes with thicknesses of 50 and 300 nm, respectively, were deposited on the SiNx
layer by magnetron sputtering [Figure 2b]. The electrode should not be too thick because
an excessively thick bonding interface layer may cause the formation of microcracks and
lead to poor bonding quality [23,24]. Finally, the negative adhesive peeling was completed
in acetone to produce the top substrate. The process for fabrication of the bottom substrate
is the same as that of the top substrate.
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Figure 2. Schematic of the process for fabrication of the top substrate. (a) Cleaning. (b) SiNx
passivation layer deposited by PECVD. (c) Negative photoresist masks and lithography. (d) Sputtering
Cr/Pt electrodes. (e) Negative adhesive stripping.

To remove surface oxide film, both the top substrate and bottom substrate were
pretreated by Ar (a small amount of H2) plasma with a gas flow rate of 250 sccm under
the power of 200 W for 180 s. After the metal surface is activated, the degree of atomic
diffusion is increased by heating and pressing to tightly combine the two structures. The
bonding adopts the electronic packaging FC150 flip-chip welding machine.

2.3. Pt-Pt Thermocompression Bonding

The relationship between bonding time and temperature is shown in Table 1. The
present work attempts to use four sets of bonding parameters to determine the range of
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parameters that can achieve better Pt–Pt bonding interconnections. There are two purposes
for using these four sets of parameters. On the one hand, it can be identified whether the
interconnection interface can be formed after bonding, and on the other hand, whether
the shear resistance of the sample after bonding is good within this pressure range can
be ascertained. Finally, parameters that can form an interconnected interface and have a
certain shear resistance are selected. The variables of these four sets of parameters are all
pressure, the temperature is 350 ◦C, and the bonding time is 1200 s. Due to the high melting
point of platinum, it is more difficult to bond by thermocompression than other metals
such as gold and copper. Therefore, when flip-chip welding is used for thermocompression
bonding, the bonding temperature and bonding time are both selected to be close to the
upper limit of the instrument.

Table 1. Case of bonding parameter.

Parameter Force Temperature Time

Case1 165 N 350 ◦C 1200 s
Case2 275 N 350 ◦C 1200 s
Case3 440 N 350 ◦C 1200 s
Case4 550 N 350 ◦C 1200 s

From Figure 1a,b, the bonding area of the bonding pair can be calculated to be about
5.5 mm2. According to the formula P = F/S, the pressure of case 1 is 30 MPa, the pressure
of case 2 is 50 MPa, the pressure of case 3 is 80 MPa, and the pressure of case 4 is 100 MPa
during thermocompression bonding.

3. Results and Discussion

Four different tests, including interfacial analysis, shear strength analysis, hermeticity
detection, and failure analysis were performed to evaluate the bonding performance.

3.1. Interfacial Analysis

After polishing at the 10 µm and 1 µm fine levels, the cross-sectional interface of Pt–Pt
bonding under SEM can be clearly seen in Figure 3. It can be observed from the backscatter
mode of the electron microscope that the bonding interface is relatively flat with no obvious
cracks or gaps. This suggests that after the thermocompression bonding described in this
article, the Pt–Pt metal electrodes are interconnected.
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Figure 4 is the bonding image of the bump obtained by the SEM mode under the
electronic scanning electron microscope. The bright part in the middle is the metal layer.
The thickness of the metal layer is measured to be about 700 nm, which is consistent with
the thickness of 50 nm Cr and 300 nm Pt plated during sputtering. Further, no obvious
cracks were observed in the metal layer, and the whole surface tends to be smooth, forming



Micromachines 2022, 13, 1543 5 of 11

a good interconnection interface. Interestingly, no obvious delamination phenomenon of
Cr and Pt resulting from the diffusion of Cr is observed in the metal region on each side.
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Figure 4. SEM image of the bump.

Figure 5 shows the result of the line scan of the bonding interface. Through the
longitudinal line scan of the bonding interface, the content of three elements is analyzed. It
can be found that most of the Si elements are distributed on both sides of the metal layer,
which is more in line with the actual situation, indicating that the hot-press bonding does
not cause the non-metallic surface to diffuse inward. Moreover, the content of Pt element
is mainly concentrated in the metal layer area, the middle part is more concentrated, and
the two sides are more symmetrical and uniform, which shows that the interconnection
interface formed after thermocompression bonding has no displacement, and the Pt–Pt
interface is better connected with fewer impurities. Additionally, the widely distributed
Cr element is essentially more concentrated between the Si layer and the Pt layer, and is
consistent with the SEM image shown in Figure 4. The Cr layer is sandwiched between
the metal layer and the dielectric layer as an adhesion layer. After thermocompression
bonding, a small amount of diffusion of Cr element occurred between the Pt metal layers.
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Figure 6 is the distribution of silicon and Pt in the backscattered SEM image of the
interconnect interface. The blue dots in Figure 6a represent the distribution of silicon, and
the yellow dots in Figure 6b indicate the distributed Pt, and Figure 6c shows the effect of
integrating the two SEM images. Through elemental surface scanning analysis, it can be
observed that the bonded Pt element is still in the bonding area with no dislocation or drift.
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Figure 6. EDS surface scanning element analysis diagram of the bonding interface. (a) Distribution
diagram of silicon element, (b) distribution diagram of platinum element, (c) consolidated diagram
of element distribution.

In Figure 7a, the green dots in Figure 7b represent the Si element, the red dots in
Figure 7c represent the N element, the pink dots in Figure 7d represent the Cr element, and
the yellow dots in Figure 7e represent the Pt element; the yellow dots representing the Pt
element, Figure 7a, are a visual SEM image of the final integration of each element. The
combination of (Si + Cr + Pt = 100) and (Si + N + Cr + Pt = 100) elements were selected for
analysis. The delamination of each element in the bonded sample was more obvious and
no dislocation diffusion or element drift was observed.
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of nitrogen element, (d) distribution diagram of chromium element, (e) distribution diagram of
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3.2. Shear Strength Analysis

Figure 8 is a schematic diagram of the shear force test. The equipment used in the
experiment is Dage4000 bond tester which can provide testing of bond shear force and
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tensile force. The sample in the picture is denoted by the blue part in the middle. After
the lower substrate is fixed, the push knife moves in the horizontal direction until the
upper and lower bonded substrates are separated. At the moment of separation, the force
required to stop the pushing knife is the force of bonding at that moment.
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Based on theoretical inferences, increasing the pressure can enhance the bonding
strength. Importantly, the pressure applied should not exceed the threshold of the sub-
strate’s withstanding ability. Excessive pressure may cause an overflow of sputtered metal
or cracks in the substrate. The shear resistance test in the effectively bonded sample in
this experiment is shown in Figure 9. A total of 12 bonding samples were selected and
divided into four groups according to the different bonding pressures: 30 MPa, 50 MPa,
80 MPa, and 100 MPa. Their shear resistance was found to be in the range of 12.2–14.3 MPa,
15.1–17.6 MPa, 16.9–18.9 MPa, and 17.3–31.8 MPa. The bonding pressure is positively corre-
lated within the withstandable range of the substrate, and its shear resistance can reach a
maximum of 30 Mpa as the pressure increases. When the bonding pressure is 100 MPa, the
measured value is the maximum shear force that the silicon wafer can withstand, and the
average shear resistance can reach 25 MPa; thereby, the shear strength of Pt–Pt bonding
meets the standard.
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Figure 10 shows the microscope schematic diagrams of the Pt metal sealing ring before
thermocompression bonding and the Pt metal sealing ring of the debris after the shear force
test. The shear test is generally divided into three fracture modes: IMC mode, solder mode,
and mixed IMC/solder mode. Fractures in the IMC mode generally occur in the IMC layer.
As can be observed from the Figure 10, the shear test destroyed the bonding electrode and
the sealing ring, and it can be seen that the fracture mode in the test is mainly the IMC
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mode [25,26], indicating that the shear resistance is mainly due to the force exerted on the
bonding electrode. This demonstrates that the bonding is effective.
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Of course, some metals do not perform well in shear tests. This may be caused by
uneven sputtering during the coating process due to the influence of experimental factors.

3.3. Hermeticity Detection

According to the method defined by the inspection standard (GJB 548B-2005 method
1014.2), the purpose of the test is to determine the hermeticity of microelectronic and
semiconductor device packages with internal cavities. The hermeticity test of the four
groups of bonded pairs is carried out. First, a detailed inspection was carried out using
the ZHP-30D helium mass spectrometer leak detector. The sample is kept under pres-
sure of 4 × 10–5 Pa for 2 h, and the leakage rate is measured with the leak detector after
taking it out. The actual leakage rate of the technically required samples is less than
2 × 10–3 Pa·cm3/s, that is, less than the specified leakage rate value (5 × 10–3 Pa·cm3/s).
As Table 2 shown, the first group of samples through the experiment showed the minimum
leakage rate measured to be 30 MPa/165 N, 350 ◦C, 1200 s: 3.3 × 10–4 Pa·cm3/s, the max-
imum leakage rate: 9.8 × 10–4 Pa·cm3/s, the average leakage rate: 6.55 × 10–4 Pa·cm3/s,
which is less than the leakage rate value required by the specification. Similarly, the second
group of samples showed the leakage rate measured under the bonding conditions of
50 MPa/275 N, 350 ◦C, 1200 s: 5.9 × 10–4 Pa·cm3/s, 3.3 × 10–5 Pa·cm3/s, average leak-
age rate: 3.115 × 10–4 Pa·cm3/s, which is less than the specified leakage rate value. The
third group of samples: 80 MPa/550 N, 350 ◦C, the maximum leakage rate measured
under the bonding condition of 1200 s: 2.77 × 10–5 Pa·cm3/s, the minimum leakage rate:
1.37 × 10–5 Pa·cm3/s, the average leakage rate: 1.81 × 10–5 Pa·cm3/s. The fourth group of
samples: 100 MPa/550 N, 350 ◦C under the bonding conditions of 1200 s, the maximum leak-
age rate measured: 1.83 × 10–5 Pa·cm3/s, the minimum leakage rate: 1.29 × 10–5 Pa·cm3/s,
average leakage rate: 1.48 × 10–5 Pa·cm3/s. In conclusion, the leakage rate values measured
by the four groups of different bonding parameters are all within the range of the leakage
rate values required by the specification. It can be inferred from Figure 11 that with the
increase in the bonding pressure, the average air tightness of the samples will gradually
increase, and the average air tightness of the successfully bonded samples can meet the
packaging requirements.

Table 2. Case of leakage rate.

Parameter Condition Minimum Leakage Rate Maximum Leakage Rate Average Leakage Rate

Group 1 30 MPa/165 N 3.3 × 10–4 9.8 × 10–4 6.55 × 10–4

Group 2 50 MPa/275 N 3.3 × 10–5 5.9 × 10–4 3.115 × 10–4

Group 3 80 MPa/550 N 1.37 × 10–5 2.77 × 10–5 1.81 × 10–5

Group 4 100 MPa/550 N 1.29 × 10–5 1.83 × 10–5 1.48 × 10–5
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3.4. Failure Analysis

Owing to the high melting point and boiling point of Pt, the diffusion process is
greatly restricted by temperature during the flip-chip welding process. Since the maximum
welding temperature of flip-chip welding in the bulk silicon process does not exceed
400 ◦C, this work used a welding temperature of 250 ◦C–350 ◦C and a bonding pressure
of 30 MPa–100 Mpa to explore the influence of different temperatures and pressures on
welding failure rate. Bonding failure may be caused by a variety of reasons, and the failure
may be manifested in that the top and bottom substrates do not adhere together or the
tests such as shear force and air tightness cannot meet the test requirements. It was found
that both the bonding pressure and the bonding temperature are positively correlated to
the failure rate as shown in Figure 12. When the bonding temperature is 625 K and the
bonding pressure is above 80 MPa, the failure rate is less than 0.4; under the same pressure
conditions, when the temperature is less than 625 K, the failure rate is greater than 0.5. It
shows that the failure rate is greatly affected by the bonding temperature, which should
optimally be above 625 K. When the bonding pressure is less than 50 MPa, the failure rate
of the bonding is more than 0.5, suggesting the optimal bonding pressure of Pt–Pt bonding
is more than 50 MPa.
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The Pt–Pt metal interconnection used flip-chip hot-press packaging technology to
achieve a relatively stable interconnection at a temperature of 350 ◦C and pressure above
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80 MPa. A series of experiments to evaluate its bonding performance was carried out.
The thickness of the metal layer did not change significantly after bonding, and there
was no Pt overflow at the bonding interface. In the case of bonding force of 550 N for
20 min, the shear resistance could reach up to 30 MPa. The shear experiment shows that the
fractured interface is mostly on the silicon-metal layer, indicating that the interconnection
interface after bonding is stable and does not easily fracture, indicating that the Pt–Pt metal
bonding has a certain feasibility in packaging. The failure analysis experiment shows that
the bonding pressure and temperature have an important influence on the failure rate,
which is in line with the basic principle of metal welding. In addition, increasing the metal
activity of the Pt metal interface may lower the requirements for bonding temperature and
bonding pressure. Thus, these materials are considered worth exploring. We can plasma-
treat the metal layer before bonding to improve the metal activity or find equipment that
can increase the bonding temperature and bonding pressure to improve the quality of the
bonding. In short, Pt–Pt metal bonding is a means of encapsulation that has great potential
in the high-temperature environment in the future.
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