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Abstract: The particulate matter present in air pollution is a complex mixture of solid and liquid par-
ticles that vary in size, origin, and composition, among which are polycyclic aromatic hydrocarbons
(PAHs). Although exposure to PAHs has become an important risk factor for cardiovascular disease,
the mechanisms by which these compounds contribute to increased cardiovascular risk have not
been fully explored. The aim of the present study was to evaluate the effects of PAH exposure on
systemic pro-inflammatory cytokines and markers of endothelial dysfunction. An intervention was
designed using a murine model composed of twenty BALB/c male mice separated into controls and
three groups exposed to a mixture of phenanthrene, fluoranthene, and pyrene using three different
concentrations. The serum levels of the inflammatory cytokines and gene expression of adhesion
molecules located on endothelial cells along with inflammatory markers related to PAH exposure in
aortic tissue were determined. Furthermore, the expression of the ICAM-1 and VCAM-1 proteins was
evaluated. The data showed significant differences in IL-6 and IFN-γ in the serum. In the gene expres-
sion, significant differences for ICAM-1, VCAM-1, and E-Selectin were observed. The results suggest
that phenanthrene, fluoranthene, and pyrene, present in air pollution, stimulate the increase in serum
inflammatory cytokines and the expression of markers of endothelial dysfunction in the murine
model studied, both relevant characteristics associated with the onset of disease atherosclerosis and
cardiovascular disease.

Keywords: air pollution; endothelium; inflammation; cardiovascular disease

1. Introduction

Air pollution is a serious global public health problem. According to the Ambient Air
Quality Guide of the World Health Organization (WHO), 95% of the world population lives
in areas exceeding the recommended values [1]. The most recent estimates revealed that
4.2 million deaths (7.6% of total global mortality and 700,000 more deaths in 2015 compared
with 1990) are attributable to ambient particulate matter2.5 (PM2.5) [2]. PM is a widespread
complex mixture of solid and liquid particles suspended in air that vary in size, shape,
origin, and composition. PM is an air pollutant known as a human carcinogen (group I,
IARC, 2013). The composition of PM can substantially vary between geographical regions,
sources of emissions, and even weather or seasons [3]. Its chemical composition comprises
inorganic ions (e.g., sulfates, nitrates, ammonium, and soluble metals), insoluble metals,
elemental carbon, and organic compounds including PAHs, polychlorinated biphenyls,
biological components (allergens), microbial agents, and water. The carbonaceous part
of air pollution is regarded as more involved in adverse health effects, and some PAHs
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are considered as particularly important [4]. Thus, PM and PAH are among the most
health-relevant air pollutants [5,6].

The three main ways in which air pollution causes damage to the cardiovascular
system have been proposed: (a) secretion of pro-inflammatory mediators or oxidative stress
in the circulatory system; (b) imbalance of the autonomic nervous system; and (c) direct
penetration of particles or components in the circulatory system, which affect numerous
tissues within the cardiovascular system [7]. Reports indicate that the smallest particles
increase the risk of cardiovascular events, with PM2.5 being specifically associated with
an increased risk of myocardial infarction, stroke, arrhythmia, and exacerbation of heart
failure symptoms in susceptible patients [8].

PM accumulation, especially redox active components (e.g., metals and PAHs), can
cause oxidative stress and inflammation in lung tissue [9]. The inflammatory response to
exposure to PM is characterized by the increased expression of pro-inflammatory cytokines
such as tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), which are secreted
by cells of the innate immune system [10]. In addition, the adaptive immune system
releases interleukin-1β (IL-1β), interleukin-4 (IL-4), and IL-6 [11]. These cytokines are
released into the circulatory system, increasing the liver production of C-reactive protein
(CPR) and fibrinogen, IL-6, IL-1β, interferon-gamma (IFN-γ), interleukin-8 (IL-8), and
TNF-α [8]. This increase in cytokines associated with exposure to PM has been described in
various studies [12–15].

Pathological stimuli in the endothelium trigger a phenotype-modifying adaptive
response, a process known as endothelial activation, characterized by increased expression
of adhesion molecules Selectin-P (P-Selectin), Selectin-E (E-Selectin), intercellular adhesion
molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) [16,17]. This
process compromises the barrier function of the endothelium, which promotes leukocyte
diapedesis, increases vascular tone by decreasing nitric oxide production, and reduces
resistance to thrombosis [18,19].

Among the toxic components found in PM2.5 are PAHs, whose main emission sources
are the domestic burning of coal and wood, power plants that burn fossil fuels and biomass,
industrial processes, and vehicular traffic [20]. Concentrations of these compounds vary
depending on multiple factors such as the season of the year, geographic location, and
demographics, among others. Thus, for Temuco, Chile, it was determined that the dominant
individual PAHs were phenanthrene (35–45%), fluoranthene (11–15%), and pyrene (9–12%),
with the phenanthrene domain reflecting a typical characteristic of emissions from biomass
combustion, especially burning wood for heating or cooking [21].

Most of these studies focused their interest on the PM relationship with cardiovascular
disease development; however, the mechanisms by which PAH presents in PM contribute to
the increased cardiovascular risk have not been explored in depth. Therefore, the objective
was to evaluate the effects of PAH exposure on markers of inflammation and endothelial
dysfunction in a murine model of BALB/c mice.

2. Materials and Methods
2.1. Animals

Twenty male BALB/c mice were randomly assigned to four equal groups of five
animals each including a control group (C = no exposure) and three groups exposed to
10 µg, 30 µg, and 50 µg of a PAH mixture, composed of 55% phenanthrene (Sigma-Aldrich,
St. Louis, MO, USA), 25% fluoranthene (Sigma-Aldrich, St. Louis, MO, USA), and 20%
pyrene (Sigma-Aldrich, St. Louis, MO, USA), proportionally to the most representative
distribution of the PAHs previously described [21]. Dimethylsulfoxide (DMSO, Sigma-
Aldrich, St. Louis, MO, USA) was used as a solvent. The animals were kept in the Bioterio
of the University of La Frontera, receiving a standard diet and ad libitum water.
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2.2. Experimental Protocol

The animals received a 2-week acclimatization treatment according to the instillation
protocol described above [22]. The intervention groups underwent nasal instillation of a
volume of 10 µL using a micropipette. The intranasal instillation induced an apnea reflex
followed by a deep inspiration. In addition, the control group was instilled with the vehicle
solution (DMSO) using the same volume. The intervention protocol consisted of instillation
for 5 days a week for 5 weeks. We recorded the weight of the animals once a week. To
assess the animals’ level of stress and spontaneous activity, the cylinder test was applied
every two weeks, where the upright exploration attempts in a transparent cylinder were
quantified [23]. Thus, low attempts or immobility indicated the level of activity of the
animal. To assess the general condition of the animals, the Morton and Griffiths ‘Animal
Supervision Protocol’ was applied once a week [24]. The Scientific Ethics Committee of the
Universidad de La Frontera (No 105_18) approved the experimental protocol.

2.3. Sampling Extraction

Euthanasia was performed with a mixture of ketamine/xylazine using a lethal in-
traperitoneal dose of 200 mg/kg of ketamine-16 mg/kg of xylazine. Whole blood sampling
was performed by cardiac puncture and centrifuged at 2000 rpm for 15 min. Once the
serum was separated from the blood clot, the samples were stored at −80 ◦C for later
analysis. The thoracic aorta was removed and stored at −80 ◦C in a sterile tube with 1 mL
of RNAlaterTM stabilizer solution (Ambion Inc., Austin, TX, USA).

2.4. Cytokine Analysis

We analyzed the serum levels of IL-6, IL-10, IL-17A, INF-γ, and TNF-α with the 6-Plex
Kit of the Bio-Plex Pro TM Mouse Cytokine Th17 Panel A (BioRad, Hercules, CA, USA)
following the manufacturer’s instructions, with the MAGPIX® system (Luminex, Austin,
TX, USA). Twenty samples were tested in duplicate in a 96-well plate including an 8-point
standard curve in duplicate and two wells as the negative control. Data collection was
performed with xPONENT 4.2® software (Luminex, Austin, TX, USA). We adjusted the
cytokine values according to the weight of each animal.

2.5. Gene Expression by RT-qPCR

Gene expression was analyzed by quantitative real-time polymerase chain reaction
(RT-qPCR). Specific primers were used for ICAM-1, VCAM-1, E-Selectin, P-Selectin, platelet
endothelial cell adhesion molecule (Pecam-1), endothelial nitric oxide synthase (eNOS),
aryl hydrocarbon receptor (Ahr), Kelch-type ECH-associated protein 1 (Keap 1), transcrip-
tion factor p65 (RelA), inhibitor of nuclear factor kappa-B kinase subunit beta (IKK-β),
IL-6, and TNF-α, together with the reference genes for ribosomal protein L32 (RPL32)
and beta2-microglobulin (B2M) (Table 1). Frozen aortic tissue samples were lysed using
2 mL prefilled tubes with ceramic beads (MP biomedical, Solon, OH, USA) in a benchtop
BeadBugTM homogenizer (Benchmark Scientific, Sayreville, NJ, USA) for 60 s at 3500 rpm,
adding 1 mL of TRIzol® reagent (Invitrogen, Waltham, MA, USA). Once the tissue was
completely homogenized, the TRIzol® reagent protocol recommended by the manufacturer
was followed to extract the total RNA, and subsequent evaluation by spectrophotome-
try (NanoQuant Infinite® 200 PRO, Tecan®, Männedorf, Switzerland) and fluorometry
(Quantus™ Fluorometer, Promega, Madison, WI, USA) to determine the purity (260/280
nm ratio) and the amount of RNA extracted, respectively. A ratio between 1.8 and 2.0
was considered as acceptable. The total RNA samples were diluted to ensure a final
concentration of 30 ng/µL. The synthesis of cDNA was carried out through reverse tran-
scription using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems,
Foster City, CA, USA). A qPCR was performed to quantify the expression of each of the se-
lected genes and housekeeping gene using the Fast SYBR® Green Master Mix Kit (Applied
Biosystems, Foster City, CA, USA) following the manufacturer’s protocols. For qPCR anal-
ysis, LinRegPCR® software was used, which established a linearity window and calculated
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the PCR efficiencies per sample. With the average PCR efficiency per sample, Ct value,
and fluorescence threshold established, the initial concentration per sample expressed in
arbitrary fluorescence units was calculated [25]. To analyze the specificity of the primers,
the melting curve was evaluated.

Table 1. The primer sequences used for the PCR analysis.

Gene Sequence Forward Sequence Reverse

ICAM-1 TTCTCATGCCGCACAGAACT TCCTGGCCTCGGAGACATTA
VCAM-1 CTGGGAAGCTGGAACGAAGT GCCAAACACTTGACCGTGAC
E-Selectin AGCCTGCCATGTGGTTGAAT CTTTGCATGATGGCGTCTCG
P-Selectin GAAGTGTGACGCTGTGCAAT CAGCTGGAGTCGTAGGCAAA
PECAM-1 GGAAGTGTCCTCCCTTGAGC GGAGCCTTCCGTTCTTAGGG

eNOS GCTCCCAACTGGACCATCTC TCTTGCACGTAGGTCTTGGG
Ahr TAAAGTCCACCCCTGCTGAC CATTCAGCGCCTGTAACAAGA

Keap1 GGCAGGACCAGTTGAACAGT CATAGCCTCCGAGGACGTAG
RelA CCTGGAGCAAGCCATTAGC CGCACTGCATTCAAGTCATAG

IKK-β GTGCCTGTGACAGCTTACCT CTCCAGTCTAGAGTCGTGAAGC
IL-6 CCCCAATTTCCAATGCTCTCC CGCACTAGGTTTGCCGAGTA

TNF-α ATGGCCTCCCTCTCATCAGT TTTGCTACGACGTGGGCTAC
RPL32 TAAGCGAAACTGGCGGAAAC CATCAGGATCTGGCCCTTGA
B2M ACTGACCGGCCTGTATGCTA CAATGTGAGGCGGGTGGAA

ICAM-1—Intercellular adhesion molecule 1; VCAM-1—Vascular cell adhesion molecule 1; E-Selectin—Selectin,
endothelial cell; P-Selectin—Selectin platelet; PECAM-1—Platelet/endothelial cell adhesion molecule 1; eNOS—
Nitric oxide synthase endothelial cell; Ahr—Aryl-hydrocarbon receptor; Keap1—Kelch-like ECH-associated
protein 1; RelA—Transcription factor p65; IKK-β—Inhibitor of nuclear factor kappa-B kinase subunit beta; IL-6—
Interleukin 6; TNF-α—Tumor necrosis factor α; RPL32—Ribosomal protein L32; B2M—Beta-2 microglobulin.

2.6. Western Blotting

Protein levels of ICAM-1 and VCAM-1 were quantified using α/β-tubulin as a loading
control. We performed total protein extraction from aortic tissue using the TRIzol® reagent
protocol. Total proteins were quantified using the Pierce BCA Colorimetric Assay Kit
(Thermo Scientific ™, Rockford, IL, USA) in a 96-well multiplate, in triplicate. The protein
extract was diluted 3:1 in 4× Laemmli sample buffer (Bio-Rad, Hercules, CA, USA) before
adding β-mercaptoethanol in a 1:9 ratio (Bio-Rad). The final protein concentration used
for the immunodetection of each sample was 40 µg. The samples were denatured at 95
◦C for 5 min, and then loaded onto a 4–20% Mini-PROTEAN® TGX ™ electrophoresis
gel (Bio-Rad). Afterward, electrophoresis was applied at 100 V for 15 min and then 200 V
for 30 min. To differentiate the molecular mass of the bands, the Precision Plus Protein ™
Kaleidoscope standard (Bio-Rad) with a volume of 10 µL was used. The proteins were then
transferred to the PVDF immunoblot membrane (Bio-Rad) for 1.5 h at 350 mAmp. Once the
transfer was complete, the membrane was stained with Ponceau Red Solution S (Biotium,
Fremont, CA, USA) to verify the transfer. Subsequently, the membrane was blocked with
5% NFDM/TBS-Tween for 1 h and then incubated with the primary antibodies at 4 ◦C
overnight according to the manufacturer’s instructions. VCAM-1 (1:1000, 5% BSA, 1X TBS,
0.1% Tween®20; Cell Signaling 32653, Danvers, MA, USA), ICAM-1 (1:1000, 5% NFDM, 1X
TBS, 0.1% Tween®20; Abcam, ab179707), and as the loading control α/β-tubulin (1:1000,
5% BSA, 1X TBS, 0.1% Tween®20; Cell Signaling 2148, Danvers, MA, USA). Subsequently,
the membrane was washed with TBS-Tween and incubated with the HRP-conjugated
secondary antibody (1:3000, 5% NFDM 1X TBS, 0.1% Tween®20, goat anti-rabbit IgG;
Cell Signaling 7074, Danvers, MA, USA) for 1 h at room temperature. Antigen-antibody
binding bands were detected using G: BOX Chemi XRQ (SYNGENE, Frederick, MD, USA)
chemiluminescence equipment using the SuperSignal ™ West Femto Maximum Sensitivity
Substrate Kit (Thermo Scientific ™, Rockford, IL, USA), following the manufacturer’s
recommendations. The densitometric analysis of the bands was performed using the
ImageJ 1.51j8 open-source software (https://imagej.nih.gov/ij/index.html (accessed on 22
August 2022), National Institutes of Health, Bethesda, MD, USA)

https://imagej.nih.gov/ij/index.html
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2.7. Statistical Analysis

Data were analyzed using Prism 8.0.2 software (GraphPad, San Diego, CA, USA).
The results are ex-pressed as the means ± standard error of the mean. To evaluate the
distribution of the values obtained, the Shapiro–Wilk normality test was performed. For
the comparison of the groups, Welch’s ANOVA with the Dunnett’s multiple comparisons
test or its non-parametric simile Kruskal–Wallis and a multiple comparison analysis were
used through Dunn’s test. A two-way ANOVA was used for group comparison analyses
with two variables. A p-value < 0.05 was established for statistical significance.

3. Results
3.1. Animals

The initial weight per group of animals did not show significant differences (p = 0.091).
The mean weight was as follows: control = 24.20 ± 1.07 g; group 10 µg = 21.40 ± 0.40 g;
group 30 µg = 21.80 ± 0.74 g; group 50 µg = 20.80 ± 0.37 g. The weekly weight of each
animal was recorded, which did not show significant differences between the groups
(p = 0.058). No differences were found in the spontaneous activity of the animals evaluated
with the cylinder test (p = 0.919; Figure 1).
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Figure 1. Monitoring of the general condition of the animals. (A) Evolution of weight per week
by group (p = 0.058). (B) Comparison of the exploration attempts per group in the cylinder test
(p = 0.919). Two-way ANOVA. (n = 5 per group).

3.2. Serum Cytokines

We observed significant differences between the intervention and the control groups
for the IL-6 levels (p = 0.026) [Control v/s 10 µg, p = 0.025; Control v/s 30 µg, p = 0.024;
Control v/s 50 µg, p = 0.256] and IFN-γ (p = 0.039) [Control v/s 10 µg, p = 0.039; Control
v/s 30 µg, p = 0.050; Control v/s 50 µg, p = 0.195]. In contrast, TNF-α (p = 0.145), IL-10
(p = 0.576), and IL-17A (p = 0.296) did not show differences between the groups (Figure 2).

3.3. Gene Expression

We observed significant differences for the gene expression of ICAM-1 (p = 0.047)
[Control v/s 10 µg, p = 0,944]; [Control v/s 30 µg, p = 0.655]; [Control v/s 50 µg, p = 0.041],
VCAM-1 (p = 0.023) [Control v/s 10 µg, p = 0.981]; [Control v/s 30 µg, p = 0.910]; [Control
v/s 50 µg, p = 0.023]; and E-Selectin (p = 0.048) [Control v/s 10 µg, p > 0.9999]; [Control v/s
30 µg, p > 0.999]; [Control v/s 50 µg, p = 0.033]. No differences were found for P-Selectin
(p = 0.986), Pecam-1 (p = 0.705), and eNOS (p = 0.396) (Figure 3). Regarding markers
related to PAH exposure and inflammatory indicators, no differences were identified in Ahr
(p = 0.789); Keap1 (p = 0.507); RelA (p = 0.679); IKK-β (p = 0.450); IL-6 (p = 0.878); TNF-α
(p = 0.760) (Figure 4).
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Figure 2. The quantification of weight-adjusted serum inflammatory cytokines in animals exposed to
the PAHs and controls. (A) IL-6 (p = 0.026) [Control v/s 10 µg p = 0.025; Control v/s 30 µg p = 0.024;
Control v/s 50 µg p = 0.256]. (B) IFN-γ (p = 0.039 [Control v/s 10 µg p = 0.039; Control v/s 30 µg
p = 0.050; Control v/s 50 µg p = 0.195]). (C) TNF-α (p = 0.145). (D) IL-10 (p = 0.576). (E) IL-17A
(p = 0.296). Data are presented as the mean ± SEM. The dashed line represents the mean value of
the control group. Welch’s ANOVA with Dunnett’s multiple comparisons test (Control, n = 4; 10 µg,
n = 5; 30 µg, n = 4; 50 µg, n = 5).
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Figure 3. The relative gene expression of endothelial dysfunction markers in the aortic tissue of
animals exposed to PAHs and controls. (A) ICAM-1 (p = 0.047) † [Control v/s 10 µg, p = 0.944];
[Control v/s 30 µg, p = 0.655]; [Control v/s 50 µg, p = 0.041]. (B) VCAM-1 (p = 0.023) † [Control
v/s 10 µg, p = 0.981]; [Control v/s 30 µg, p = 0.910]; [Control v/s 50 µg, p = 0.023]. (C) E-Selectin
(p = 0.048) ‡ [Control v/s 10 µg, p > 0.9999]; [Control v/s 30 µg, p > 0.999]; [Control v/s 50 µg,
p = 0.033]. (D) P-Selectin (p = 0.986) ‡. (E) Pecam-1 (p = 0.705) ‡. (F) eNOS (p = 0.396) †. Relative
quantification was calculated using the reference genes RPL32 and B2M. Data are presented as the
means ± SEM. † Welch’s ANOVA with Dunnett’s multiple comparisons test. ‡ Kruskal–Wallis with
Dunn’s post hoc analysis (Control, n = 4; 10 µg, n = 4; 30 µg, n = 4; 50 µg, n = 4).* p < 0.05.
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Figure 4. The relative gene expression of exposure-related PAHs and inflammatory markers in aortic
tissue from PAH exposed animals and the controls. (A) Ahr (p = 0.789) ‡. (B) Keap1 (p = 0.507) ‡.
(C) RelA (p = 0.679) ‡. (D) IKK-β (p = 0.450) †. (E) IL-6 (p = 0.878) ‡. (F) TNF-α (p = 0.760) †. Gene
expression was normalized using the RPL32 and ACTB as reference genes. Data are presented as
mean ± SEM. † Welch’s ANOVA test. ‡ Kruskal–Wallis test (Control, n = 4; 10 µg, n = 4; 30 µg, n = 4;
50 µg, n = 4).

3.4. Protein Expression

The protein expression of ICAM-1 (p = 0.117) and VCAM-1 (p = 0.210) did not show
significant differences in the aortic tissue, although we observed an elevated expression in
the intervention groups compared to the control group (Figure 5).
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tissue. (A) Relative protein expression of ICAM-1 (p = 0.117). (B) Relative protein expression of
VCAM-1 (p = 0.210). (C) Representative Western blots are shown for ICAM-1, VCAM-1, and α/β-
tubulin. Data are presented as the mean ± SEM. Welch’s ANOVA test. (Control, n = 4; 10 µg, n = 4;
30 µg, n = 4; 50 µg, n = 4).

4. Discussion

The concentrations and doses of PAHs used for this protocol were established accord-
ing to previous studies using PM [26] and pollution generated by diesel combustion [27]
as we did not find studies using PAH nasal instillation. Some studies have reported that
exposure to PAH increases circulating pro-inflammatory cytokines, IL-6, IL-8, and TNF-α
being the most studied markers [28,29]. In this study, a significant increase in serum IL-6
and IFN-γ was identified. Another report carried out on workers at a coal plant showed an
increased concentration of IL-6 in plasma, demonstrating a dose-dependent relationship
with PAH metabolites in urine [28]. IL-6 represents a good indicator of cytokine cascade
activation, accurately reflecting the inflammatory state, in addition to its high stability since
the half-life of IL-6 is longer than that of other pro-inflammatory cytokines [30]. On the other
hand, IFN-γ induces the overexpression of additional pro-inflammatory cytokines such
as IL-12, IL-15, TNF-α, IFN-γ-inducible protein-10 (IP-10), inducible nitric oxide synthase
(iNOS), among others, inducing the activation of pro-inflammatory transcription factors
such as the nuclear factor kappa light chain enhancer of activated B cells (NF-κB) [31].
However, in a study carried out on asthmatic and non-asthmatic children exposed to air
pollution from traffic and followed for 6 years, there were no differences in circulating IFN-
γ concentrations [32]. However, a study evaluating three different areas of environmental
pollution according to their volatile components identified increased IFN-γ and TNF-α
concentrations in industrialized and high-traffic areas compared to low-traffic areas [33].
Furthermore, a study evaluating different sources of pollutants derived from wood com-
bustion identified a significant increase in blood TNF-α [34], showing that exposure to
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particles derived from wood combustion containing PAH can upregulate pro-inflammatory
cytokines including IL-6 and TNF-α.

IL-10 has pleiotropic effects on immunoregulation and inflammation, downregu-
lating the expression of Th1 cytokines, class II MHC, and co-stimulatory molecules in
macrophages. IL-10 also improves B cell survival, proliferation, and antibody produc-
tion [35]. This cytokine can block the activity of NF-kB, participating in the regulation
of the JAK-STAT signaling pathway. By comparing different pro-inflammatory and anti-
inflammatory cytokines associated with different levels of environmental pollution, Do-
breva et al. showed that air pollutants, mostly PM2.5, modulated cytokine production by
altering the TNF-α (pro-inflammatory) and IL-10 (anti-inflammatory) [36].

An increase in the pro-inflammatory cytokines affects the regulation of vascular tone,
cell adhesion, inflammation, proliferation, and the phenotype of smooth muscle cells as
well as the formation of atheroma plaques [16]. Endothelial activation is characterized by an
increase in the expression of adhesion molecules, leukocyte diapedesis, increased vascular
tone due to decreased nitric oxide production, and reduced resistance to thrombosis [18].
The process of endothelial activation has been described as the factor initiating atheroma
plaques in the vascular tissue. Thus, TNF-α enhances the expression of adhesion molecules
in vascular endothelial cells. An in vitro study determined that stimulation of human
coronary artery endothelial cells exposed to TNF-α increased ICAM-1 expression [37]. Our
data indicate increased expression of the ICAM-1, VCAM-1 and E-Selectin genes, showing
significant differences in the group exposed to 50 µg PAHs. Additionally, ICAM-1 and
VCAM-1 protein expression was elevated in the PAH-exposed groups, although it did not
reach statistical significance, being able to explain this by post-transcriptional regulations
that should be studied in more depth.

We also observed a nonsignificant increase in IL-6 and TNF-α. Endothelial activation
by TNF-α is carried out by two main mechanisms: activation of NF-κB and MAPK. The
activation of NF-kB plays a central role in the regulation of multiple cellular processes such
as inflammation, immune response, differentiation, proliferation, apoptosis, and cancer,
thus it is considered as a master regulator of inflammatory responses [38]. Furthermore,
TNF-α, IL-1β, IL-6, and IFN-γ expression are elevated within the great elastic arteries
of old mice and humans [39]. This pro-inflammatory arterial phenotype is associated
with increased NF-κB activity. When translocated to the nucleus, NF-κB activates the
transcription of genes involved in the production of pro-inflammatory cytokines [40]. As
we did not observe an increase in the gene expression of RelA and IKK-β, it becomes
necessary to identify the mechanisms by which exposure to PAHs stimulates the increased
expression of adhesion molecules in vascular tissue.

Based on the findings of this study, it is necessary to expand the studies that can
investigate the mechanisms by which PAHs can generate deleterious effects on the car-
diovascular system, being able to speculate that these compounds, due to their nature,
manage to enter the cardiovascular system directly via bloodstream, affecting the vascular
endothelium manage to enter the cardiovascular system directly via bloodstream, affecting
the vascular endothelium. Thus, evidence shows that the passage of small molecules
(PM0.1) into the blood directly affects the vascular system. Within this group of particles,
we can find particles derived from fossil fuels and wood combustion [7,41–43]. In this sense,
reports have determined that PAHs bind to AhR, leading to the release of the latter from the
multiprotein complex and its consequent translocation to the nucleus, where it dimerizes
with the nuclear translocator AhR (ARNT), leading to binding to the xenobiotic response
element (XRE) in the promoter region of target genes to stimulate transcription [44]. Fur-
thermore, it has been proposed that AhR-mediated pathways are linked to responses to
oxidative stress through the dissociation of the nuclear factor erythroid 2-related factor 2
(Nrf2) and the inhibitory protein keap1 [45].

Regarding the behavior of the variables studied, it was originally expected that there
would be a dose–response relationship, a situation that was not observed in this inves-
tigation. In this regard, it is important to point out that the responses to the different
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pollutants did not always maintain this behavior, finding little evidence indicating that
exposure to increasing doses of PM leads to vasomotor dysfunction and the progression of
atherosclerotic plaque [46]. Furthermore, it has been suggested that systemic or pulmonary
inflammation is not a prerequisite for dysfunction in the vasomotor response and accel-
erated the progression of atherosclerosis in animals exposed to PM [46]. Therefore, in the
investigation, we wanted to review both the markers of systemic inflammation and the
specific effect on tissue, particularly aortic tissue, evaluating markers of endothelial dys-
function that are recognized as potent factors for vasomotor dysfunction and atherosclerotic
plaque formation. However, it has been documented that different types of PAH generate
effects through different pathways in the tissues. An example of this is benzo[a]pyrene
(B[a]P), which is considered to have a low affinity for AhR, but with potent effects on Ca2+

induction, a mechanism related to endothelial dysfunction. In contrast, pyrene, which
seems to have an even greater effect on Ca2+ induction, but a non-nuclear Ahr stimulation
pathway [47], showed differences in the effects of various PAHs in their pathophysiological
mechanism of action. This is relevant to exemplify that the effect observed in tissue may be
influenced by several metabolic pathways, which requires further investigation.

The PAH doses used in this research are within the ranges published in various
studies and are adequately summarized in the review by Møller et al. [46]. However,
it is important to point out that there is a great variation in the representation of PAHs
in the particulate matter in the air, which depends on the concentrations of its different
types, emission sources, time of year, place of measurement, and PM level, among others.
These factors make direct extrapolation somewhat complex to perform. Thus, for example,
residents living in rural areas generally inhale higher concentrations of PM-bound PAHs
(4.2–655 ng/m3) [48] than residents living in urban areas (0.4–11, 9 ng/m3) [49]. In this
study, a mixture of phenanthrene, fluoranthene, and pyrene was obtained, which are
characteristic of the winter season associated with the combustion of wood for heating
and cooking.

Although we have reported interesting findings regarding the role of exposure to PAHs
in pro-inflammatory states and cardiovascular health, this study had limitations of a small
number of animals per group, considering that no previous data were found regarding the
model used for PAH management. In addition, the intervention contemplated 5 weeks of
exposure, which could be a bit limited considering the long-term deleterious effects that
people exposed to high levels of air pollution have been shown to manifest.

5. Conclusions

Our results suggest that PAHs of phenanthrene, fluoranthene, and pyrene, present
in PM, partially stimulate the production of serum inflammatory cytokines, which have
been associated with the development of various diseases related to high exposure to
air pollution, in addition to being a relevant factor for the development of endothelial
dysfunction and atherosclerotic disease. Furthermore, an increase in the expression of
adhesion molecules related to endothelial dysfunction was found, an initial mechanism in
the atherogenesis process that contributes to the formation, progression, and complications
of the atherosclerotic plaque, alterations that are usually subclinical and poorly diagnosed.
In this studied murine model, we showed that both mechanisms associated with the
development of cardiovascular disease were manifested and may represent a model that
allows for investigating the cellular and molecular mechanisms associated with exposure
to PAHs present in PM.
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