Skip to main content
. 2022 Sep 9;22(18):6843. doi: 10.3390/s22186843
Algorithm 1. The pseudocode of conventional GWO
1. Generate a population Xi (i = 1, 2, …, n) randomly
2. Initialize the parameters of GWO (max_iteration, a, A and C)
3. Calculate the fitness values and assign α, β and δ
4. While (t < max_iteration)
5.         For each grey wolf
6.                 Update the position of the current grey wolf using Equations (6)–(8)
7.         End for
8.         Update a, A and C
9.         Amend the grey wolves’ positions beyond boundary limits
10.       Calculate the fitness values of the new positions
11.       Update the α, β and δ
12.        t = t + 1
13. End while
14. Return the position of α