| Algorithm 1. The pseudocode of conventional GWO |
|
1. Generate a population Xi (i = 1, 2, …, n) randomly 2. Initialize the parameters of GWO (max_iteration, a, A and C) 3. Calculate the fitness values and assign α, β and δ 4. While (t < max_iteration) 5. For each grey wolf 6. Update the position of the current grey wolf using Equations (6)–(8) 7. End for 8. Update a, A and C 9. Amend the grey wolves’ positions beyond boundary limits 10. Calculate the fitness values of the new positions 11. Update the α, β and δ 12. t = t + 1 13. End while 14. Return the position of α |