Skip to main content
. 2022 Sep 9;22(18):6828. doi: 10.3390/s22186828

Table 3.

The prediction error of the classification module, which is trained by Kullback–Leibler divergence loss with/without data augmentation.

Accuracy_Severity Accuracy_Number RMSE_Count
Case 1 99.31% 84.60% 2.74
Case 2 99.17% 84.17% 2.17
F-RCNN 73.97% 3.39
YOLOv3 63.70% 3.37
Wu et al. 84.11% 2.33