Skip to main content
. 2022 Sep 8;22(18):6799. doi: 10.3390/s22186799

Table 1.

Quantitative evaluation on LOL synthetic and real dataset, in terms of PSNR and SSIM. The best results are in bold.

Method LOL-Syn LOL-Real
PSNR↑ SSIM↑ PSNR↑ SSIM↑
BIMEF 17.20 0.7172 17.85 0.6526
CRM 18.91 0.7864 19.65 0.6623
DHECE 17.75 0.7800 14.64 0.4450
Dong 16.90 0.7487 17.26 0.5270
EFF 17.20 0.7127 17.85 0.6526
LIME 16.88 0.7762 15.24 0.4702
MF 17.50 0.7514 18.73 0.5590
MBLLEN 17.07 0.7301 17.86 0.7247
JED 17.48 0.7444 17.33 0.6654
SRIE 14.50 0.6163 17.34 0.6859
RRM 17.15 0.7277 17.33 0.5144
DRD 17.13 0.7978 15.47 0.5672
DeepUPE 15.08 0.6225 13.27 0.4521
SCIE 18.50 0.7631 19.40 0.6906
KinD 17.84 0.7971 20.73 0.8103
EnlightenGAN 16.57 0.7338 18.23 0.6165
RetinexNet 22.05 0.9054 20.06 0.8158
KinD++ 17.69 0.8334 21.30 0.8226
DRBN 23.22 0.9275 20.29 0.8310
Our 24.62 0.9314 21.64 0.8481