Skip to main content
. 2022 Sep 15;22(18):7001. doi: 10.3390/s22187001
Algorithm 1 Pseudo-code for error regularization and data optimization
[YPred, score] = classify(DeepNNx, ValidationX)
[Index, val] = find(YPred ~= ValidationY)
for n = [index]
   if max(score(n) < 0.5)
     ValidationX(n) = [];
     ValidationY(n) = [];   
   elseif max(score(n) > 0.5)
     ValXSwap(n) = ValidationX(n);
      for val(n)~=ValidationY(n)
         find(TrainingX(n)==ValidationY(n))
      end
    TraXSwap(n) = TrainingX(n);
     ValidationX(n) = TraXSwap(n);
     TrainingX(n) = ValXSwap(n);
    else
      , fitcknn(ValidationX(n), ValidationY(n), ),
    end
end