| Algorithm 1 Pseudo-code for error regularization and data optimization |
| [YPred, score] = classify(DeepNNx, ValidationX) [Index, val] = find(YPred ~= ValidationY) for n = [index] if max(score(n) < 0.5) ValidationX(n) = []; ValidationY(n) = []; elseif max(score(n) > 0.5) ValXSwap(n) = ValidationX(n); for val(n)~=ValidationY(n) find(TrainingX(n)==ValidationY(n)) end TraXSwap(n) = TrainingX(n); ValidationX(n) = TraXSwap(n); TrainingX(n) = ValXSwap(n); else …, fitcknn(ValidationX(n), ValidationY(n), …), … end end |