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SUMMARY

Dengue, one of the most important mosquito-borne diseases, is a major international public
health concern. This study aimed to assess potential dengue infection risk from Aedes aegypti in
Kaohsiung and the implications for vector control. Here we investigated the impact of dengue
transmission on human infection risk using a well-established dengue–mosquito–human
transmission dynamics model. A basic reproduction number (R0)-based probabilistic risk model
was also developed to estimate dengue infection risk. Our findings confirm that the effect of
biting rate plays a crucial role in shaping R0 estimates. We demonstrated that there was 50% risk
probability for increased dengue incidence rates exceeding 0·5–0·8 wk−1 for temperatures ranging
from 26 °C to 32 °C. We further demonstrated that the weekly increased dengue incidence rate
can be decreased to zero if vector control efficiencies reach 30–80% at temperatures of 19–32 °C.
We conclude that our analysis on dengue infection risk and control implications in Kaohsiung
provide crucial information for policy-making on disease control.
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INTRODUCTION

Recently, Bhatt et al. [1] estimated that there were
nearly 390 million [95% credible interval (CrI)
284–528] dengue infections annually in 2010, of which
up to 96 million (95% CrI 67–136) developed clinical
or subclinical symptoms with different levels of

severity. On the other hand, Asia bore 67 (95% CrI
47–94) million apparent infections (∼70%) of this bur-
den [1]. The high disease prevalence, lack of a registered
vaccine or other prophylactic measures, and absence of
specific treatment make dengue fever a great threat to
public health globally [2]. The viruses and their pre-
dominant mosquito vector, Aedes aegypti (yellow
fever mosquito), are endemic to most of the tropical
and subtropical regions of the world [3].

Southern Taiwan is located in a tropical region with
relatively high temperature and relative humidity
(RH) year-round, forming an ideal condition for the
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growth of the vector of dengue fever, i.e. mosquito.
Historical epidemics of dengue in Taiwan have been
documented in 1902, 1915, and 1922 in Penghu
Islet; in southern regions of Taiwan in 1924, 1927,
and 1931; and throughout the island during
1942–1943 [4]. The most well known dengue out-
breaks in Taiwan have varied since 1987 in that the
prevalence has been higher in southern Taiwan [4].
In general, dengue epidemics have occurred in
Taiwan annually for the past decade and the largest
epidemic occurred in southern Taiwan in 2002 with
52 imported and 5336 indigenous cases that peaked
around September–December [5, 6].

Patterns of dengue infection vary over time owing
to the effects of extrinsic, e.g. climate [3, 7–9] and in-
trinsic, e.g. predictor–prey dynamics between the
pathogen and the host population [9–11], and immun-
ity and viral factors [12, 13]. Incidence patterns reflect
the complex interactions of all these factors. Wu et al.
[14] indicated that weather variability such as monthly
maximum and minimum temperatures, rainfall, and
RH are identified as meaningful and significant indi-
cators for the increasing occurrence of dengue fever
in the Taiwan region. Chen et al. [15] indicated that
warmer temperature with 3-month lag, elevated
humidity with high mosquito density increased the
transmission rate of dengue fever infection in southern
Taiwan. Lambrechts et al. [7] revealed that short-term
temperature fluctuations had significant impact on
dengue virus transmission by female A. aegypti.

The dynamics in mosquito–human dengue trans-
mission is a complex process involving many poten-
tially important factors. For vector-borne diseases,
the vectorial capacity (V) or the basic reproduction
number (R0) is usually used to characterize the key
components involved in vector–human transmission
dynamics [7, 16–18]. V captures key parameters of
an insect’s role in pathogen transmission, whereas
R0 characterizes the number of secondary cases gener-
ated by a primary infectious case via the vectors in an
entirely susceptible population [19]. R0 can be deter-
mined by a range of entomological and epidemiologi-
cal parameters [7, 9, 16–18, 20]. Moreover, R0 is a key
epidemiological determinant that provides an index
of transmission intensity and establishes threshold
criteria for control practices [16].

The key factors used to determine V and R0 include
vector density, vector biting rate, vector survival
probability, extrinsic incubation period (EIP) of the
parasite within the mosquito, transmission coefficients
between vector and human, and recovery rate of hosts

from infection. In infinite human populations, hetero-
geneous biting increases R0 because humans who are
bitten most often are also most likely to become
infected and then, by infecting a large number of mos-
quitoes, amplify transmission [10]. On the other hand,
temperature fluctuations have important impacts on
the time whenever mosquitoes become infectious and
hence impact on R0 and V [7, 20].

It is recognized that the interactions between
coupled mosquito−human population dynamics and
dengue transmission play an important role in the de-
velopment of dengue fever. A variety of mathematical
and computational models have been proposed for
elucidating the nonlinear transmission dynamics and
for enhancing our understanding of the within-host
spread of diseases [13, 17, 18, 21–24].

The incidence of dengue fever in Taiwan varies
widely from year to year, showing nearly a tenfold dif-
ference between years, indicating that the presence of
non-stationarity and nonlinearity exists in incidence
data. Hence, the transmission and population dynam-
ics of dengue fever in southern Taiwan are poorly
understood. The purpose of this study was to develop
a R0-based probabilistic risk framework by incorpor-
ating the dynamic model of vector–human dengue
transmission to predict dengue infection risk in south-
ern Taiwan. To examine the dengue population
dynamics and potential risk of infection, a well-
established mathematical model of dengue trans-
mission was adopted to study the potential impact
of dengue transmission on infection risk. The implica-
tions on the dengue vector control were also discussed.

MATERIALS AND METHODS

Study data

Here we used the city of Kaohsiung, a major dengue
epidemic area, located on the southwestern coast
of Taiwan (22° 48′ N to 23° 47′ N, 120° 176′ E to
121° 05′ E) as a study area. Kaohsiung is the second
largest metropolitan area with a typical tropical
climate. Thus, Kaohsiung is a densely populated
region (∼2·78 million persons within a total area of
3000 km2) with very high suitability for dengue trans-
mission and can provide adequate data for setting the
model parameters.

All monthly confirmed dengue cases were provided
by the Taiwan Center of Disease Control (Taiwan
CDC; http://www.cdc.gov.tw) for the period 2004–
2009 including indigenous and imported cases.
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Monthly dengue incidence rates per 100000 popu-
lation were estimated from monthly confirmed dengue
cases over the specific year-end population size. The
monthly maximum, mean, and minimum tempera-
tures in Kaohsiung during 2004–2009 were used.
Here the monthly minimum and maximum tempera-
tures are defined as the monthly average of the daily
minimum and maximum temperatures, respectively.
The time-series temperature profiles were adopted
from the Center Weather Bureau, Taiwan (http://
www.cwb.gov.tw/V7/index.htm).

Dengue−mosquito−human transmission model

By studying a model of dengue−mosquito−human
transmission dynamics built on past well-developed
models [13, 17, 18, 22–24], we explored the conse-
quences of vector–host interactions involving in
two levels: (i) mosquito population dynamics and
(ii) human population dynamics. The essential features
of the present model are depicted in Figure 1. The
systemof ordinary differential equations corresponding

to the model in Figure 1 is listed in Table 1 [equations
(T1)–(T8)].

Figure 1 depicts the dengue transmission dynamics
characterized specifically in terms of the biting rate
of mosquitoes and the transmission probabilities
following a bite. Briefly, the mosquito’s life cycle is
divided into an aquatic phase (Am) and adult female
stages (Fig. 1a). The immature period of the aquatic
phase is divided into eggs, larvae, and pupae. Adult
female mosquitoes may be (i) uninfected and suscep-
tible (Sm); (ii) exposed and carrying dengue viruses
but not yet capable of transmitting dengue (Em); or
(iii) carrying the viruses and fully infectious (Im).

The aquatic phase converts to the adult female
stage at an average transition rate ηA (d−1).
Parsimoniously, we used aquatic phase (Am) to rep-
resent the immature period and assumed that aquatic
phase and all adult stages suffer the average mortality
rate of μA and μm (d−1), respectively. Moreover, it is
assumed that adult female mosquitoes lay eggs at
the same average rate μb (d−1). Uninfected adult fe-
male mosquitoes acquire infection at a rate dependent
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Fig. 1. Mosquito–human dengue transmission model describing the interaction of (a) mosquito population and (b) human
population dynamics in the present study.
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on the force of infection (λh, d
−1) and the extrinsic in-

cubation rate (νm, d
−1). The force of infection result-

ing from humans (λh) depends on the biting rate of
mosquitoes (B, d−1), the transmission probability
from host to vector per bite (βhm, bite−1), and the
infected humans (Ih). Thus λh can be expressed as
BβhmIh/Nh where Nh is the total human population.

The susceptible-exposed-infectious-recovery (SEIR)
model was used to simulate the demographic dynam-
ics of the human population dengue transmission in
Kaohsiung with an assumption of equal birth and
mortality rate μh (d−1) (Fig. 1b). Susceptible indivi-
duals (Sh) acquire infection at the force of infection
rate (λm, d−1), that depends on the biting rate of
mosquitoes (B), the transmission probability from
vector to host per bite (βmh, bite

−1), and the infected

mosquitoes (Im). Therefore, λm can be written as
BβmhIm/Nm, where Nm is the total mosquito popu-
lation. The exposed humans (Eh) acquire infection at
a rate νh (d

−1) depending on the duration of the intrin-
sic incubation period. Most infected individuals (Ih)
recover at a rate ηh (d

−1) into a resistant compartment
(Rh).

Studying the force of infection rates of λh and λm,
biting rate is seen as the most crucial parameter
needing to be estimated. Barbazan et al. [20] indicated
that the daily biting rate can be calculated from the
duration of the gonotrophic cycle (GC) as B=1/GC,
where GC is the time spent in digesting a bloodmeal
and for eggs to reach maturity between two blood-
meals. Focks et al. [26] used enzyme kinetics to
determine the temperature-dependent gonotrophic

Table 1. Summary of governing equations for dynamic model of mosquito–human dengue transmission (Fig. 1) and
basic reproduction numbers

Equations Meaning

Mosquito population dynamics

Ȧm = μb 1− Am

K

( )
(Sm + Em + Im) − (ηA + μA)Am (T1) Aquatic phase

Ṡm =− Bβhm
Ih
Nh

+ μm

( )
Sm + ηAAm (T2) Susceptible mosquito

Ėm = Bβhm
Ih
Nh

Sm − (μm + νm)Em (T3) Exposed mosquito

İm=νmEm−μmIm (T4) Infected mosquito

Human population dynamics

Ṡh = μhNh − Bβmh
Im
Nh

+ μh

( )
Sh (T5) Susceptible human

Ėh = Bβmh
Im
Nh

Sh − (vh + μh)Eh (T6) Exposed human

İh=vhEh− (ηh+μh)Ih (T7) Infected human

Ṙh = ηhIh − μhRh (T8) Resistant human

Basic reproduction number (R0)*

R0
2=Rmh×Rhm (T9) Aggregated R0

R0 =

����������������������������������������
νmνhB2βhmβmh

(νh + μh)(ηh + μh)μm(μm + νm)
Sm(0)
Nh

√
(T10) Basic reproduction number

Rmh =
Bβmh

μm

νh
μh + νh

(T11) R0 from mosquito to human

Rhm =
1

(ηh + μm)
νm

(μm + νm)Bβhm
Sm0

Nh
(T12) R0 from human to mosquito

μh, Human mortality rate (d−1); Nh, total human population; B, biting rate (d−1); βmh, transmission probability from vector to
host per bite (bite−1); νh, intrinsic incubation rate (d−1); ηh, mean viraemic rate (d−1); μb, number of eggs at each deposit per
capita (d−1); K, maximal capacity of larvae; ηA, average aquatic transition rate (d−1); μA, average aquatic mortality rate (d−1);
βhm, transmission probability from host to vector per bite (bite−1); μm, average mortality rate for mosquito in adult stage
(d−1); νm, extrinsic incubation rate (d−1); Sm(0), initial value of susceptible mosquitoes.
* Adopted from Dumont et al. [25].

1062 C.-M. Liao and others



development rate (i.e. 1/GC). Here we analogized
the temperature-dependent gonotrophic rate as the
biting rate based on the GC concept. In doing so,
the temperature-dependent biting rate has the form
as [26],

B(T(t)) = B(298K)
(T(t)/298K) exp[(ΔHA/R)
×(1/298K − 1/T(t))]
1+ exp((ΔHH/R)
×(1/T1/2H − 1/T(t)))

, (1)

where B(T(t)) is the biting rate per mosquito (d−1) at
temperature T (K) on day t, B(298 K) is the biting
rate at 298 K (d−1), T is temperature (K), T½H is the
temperature (K) when half of the enzyme is deacti-
vated from high temperature, ΔHA and ΔHH are the
thermodynamic enthalpy changes (cal mol−1), and
R is the universal gas constant (1·987 cal mol−1 K−1).

R0 estimations

R0 in dengue−mosquito−human dynamics is the
product of the number of infectious mosquitoes gener-
ated during the infectious period of a primary infec-
tious human (Rmh) and the number of infectious
humans generated by the proportion of infectious
mosquitoes surviving the extrinsic incubation period
(Rhm) as R0

2=Rmh×Rhm [18, 25, 27]. The equations
of R0 are summarized in Table 1 [equations
(T9)–(T12)]. When R0>1 it implies that the epidemic
is spreading within a population and incidence is in-
creasing, whereas R0<1 means the disease is dying
out. An average R0 of 1 means the disease is endemi-
cally in equilibrium within the population.

R0-based probabilistic risk model

To develop a R0-based risk model, a conditional prob-
ability distribution function (pdf) describing the re-
lationship between R0 and the increased dengue
incidence rate has to be constructed. Massad et al.
[18, 27] developed a model that can be used to calcu-
late the increased dengue incidence rate (λd, wk

−1) that
is a function of R0, where λd is the rate constant
describing the increase in dengue cases over 1 week
under an exponential growth condition,

λd =
−(μm + ηh) +

�������������������������������
(μm + ηh)2 + 4μmηh(R0 − 1)

√
2

,

(2)
where μm is the average mosquito mortality rate
(wk−1) and ηh is the mean viraemic rate (wk−1).

Given the λd estimates from equation (2) based on
the probability distribution of R0 by incorporating
Kaohsiung-specific μm and ηh values, a conditional
pdf of P(λd|R0) describing the R0−increased dengue
incidence rate profile can then be reconstructed by a
four-parameter Hill equation as

P(λd |R0) = λd,min + (λd,max − λd,min)
1+ K50

R0

( )n , (3)

where λd,min and λd,max are the minimum and
maximum values of λd, K50 is the R0 at half value
of λd,max, and n is the fitted Hill coefficient.

The risk of increased dengue incidence rate can be
calculated by a joint probability function describing
the probability of a dengue outbreak in a susceptible
population based on R0 driven by dengue−
mosquito−human interactions. This can be expressed
mathematically as,

R(λd ) = P(R0) × P(λd |R0) (4)
where R(λd) is the risk of an increase in dengue cases
and P(R0) is the pdf of R0.

Sensitivity and uncertainty analyses

A sensitivity analysis was performed by Pearson corre-
lation statistics to investigate the parameter contribu-
tions in R0. The TableCurve 2D package (AISN
Software Inc., USA) and Statistica v. 6 (Statsoft Inc.,
USA) were used to perform model-fitting techniques
and statistical analyses.AMonteCarlo (MC) technique
was implemented to quantify the uncertainty and its
impact on the estimation of expected risk. A MC
simulation was also performed with 10000 iterations
to generate 2·5 and 97·5 percentiles as the 95% CI
for all fitted models. Crystal Ball software v. 2000.2
(Decisioneering Inc., USA) was employed to im-
plement MC simulation. Model simulations were per-
formed by using Berkeley Madonna v. 8.0.1. (http://
www.berkeleymadonna.com)

RESULTS

Dengue transmission dynamics

This study summed all observation values from vari-
ous studies and then calculated the weighted mean
and standard deviation (S.D.) of specific parameters
based on different sample sizes (i.e. weights) of the re-
spective studies. Nevertheless, the underlying distribu-
tions of these mean values were unknown. Thus we
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used a lognormal (LN) probability function to gener-
ate likelihood estimates performed by MC simulation.
The demographic data of the human population from
Kaohsiung were incorporated into the model. Model
parameterization of mosquito parameters was based
on published literature related to the experiments on
A. aegypti. Table 2 summarizes the parameter values
and initial conditions used in the present model.

By examining the major factor that influences R0,
we performed the sensitivity analysis on R0 in equation
(T10) (Table 1). We found statistically significant evi-
dence that ∼63% of the biting rate effect is associated
with R0. Given that the crucial factor in R0 is the biting
rate, we estimated the biting rates [equation (1)] based
on the time-series of monthly maximum (Tmax), mean
(Tmean), and minimum (Tmin) temperatures (Fig. 2a).
Figure 2b shows the estimated time-series of

temperature-specific biting rates for 2004–2009. The
mean biting rates were 0·13±0·06 (mean±S.D.,N=72),
0·23±0·07, and 0·43±0·08 d−1 for Tmin, Tmean, and
Tmax temperature regimens, respectively (Fig. 3a).

Our results indicated that a higher biting rate (e.g.
Tmax) results in a higher R0 and the fraction of
infected mosquitoes or human individuals in the
population is higher, and thus there are more second-
ary (or later) infections (Fig. 3b, d, f), leading to
higher dengue prevalence occurring over the timescale
of nearly 6–12 months (Fig. 3c, e, g). However, the
prevalence will eventually settle towards equilibrium
with most of the human population having experi-
enced infection (Fig. 3c, e, g).

To understand the relationship between dengue
prevalence in humans and susceptible mosquitoes or
humans, we considered that dengue dynamics varied

Table 2. Point values and probability distribution [LN(a, b)=Lognormal distribution with geometric mean a and
geometric standard deviation b] of parameter values and initial values used in the model

Symbol Meaning Distribution/point value

Mosquito parameter
μA

a Average mortality rate of aquatic phase (d−1) LN(0·07, 2·29)
ηA

a Average maturation rate from aquatic phase to adult (d−1) LN(0·004, 5·07)
μm

a Average mortality rate for mosquito in adult stage (d−1) LN(0·04, 1·38)
νm

b Extrinsic incubation rate (d−1) LN(0·08, 1·11)
Bc Biting rate (d−1) LN(0·46, 1·50)
βmh

d Transmission probability from vector to host per bite (bite−1) LN(0·71, 1·16)
μb

e Number of eggs at each deposit per capita (d−1) 6

Human parameter
βhm

f Transmission probability from host to vector per bite (bite−1) LN(0·71, 1·16)
ηh

g Mean viraemic rate (d−1) LN(0·24, 1·38)
νh

h Intrinsic incubation rate (d−1) LN(0·04, 1·17)
μh

i Human mortality rate (d−1) LN(2·96×10−8, 1·00)

Initial values used in the model
Nh Total human population in Kaohsiung 2759160
Eh(0), Ih(0) Exposed, infected human 1
Rh(0) Resistant human 0
me Female mosquitoes per human 6
ke Number of larvae per human 3
Am(0)

e Aquatic phase: k×Nh 8277480
Sm(0)

e Susceptible mosquitoes: m×Nh 16554960
Em(0), Im(0) Exposed, infected mosquitoes 0
Ke Maximal capacity of larvae: k×Nh 8277480

a Estimate based on Yang et al. [11].
b Estimate based on Halstead [28].
c Esitmate based on Pinho et al. [29].
d Estimate based on Newton & Reiter [24].
e Estimate based on Dumont et al. [25].
f Estimate based on Rosen et al. [30] and Watts et al. [31].
g Estimate based on Harn [32].
h Estimate based on Hsieh & Ma [33].
i Adopted from the Department of Statistics, Ministry of the Interior, ROC.
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with the ratio of susceptible mosquitoes to humans
(Sm/Sh) (Fig. 3 h, i). The critical value of Sm/Sh was
∼10, the point where an epidemic was just possible
at three temperature regimens, indicating that above
this point the equilibrium of dengue prevalence rap-
idly increased to their asymptotic values (Fig. 3i).

The dengue incidence rates during the summer sea-
son (August–October) in 2004–2009 were validated
against the model simulations (Fig. 4a–f). This study
calculated root-mean-squared errors (RMSEs) to
examine the model’s predictability of dengue cases.
The lower RMSE values indicate higher precise predic-
tions in comparison with observations. The results indi-
cated that the predictions were in apparent agreement
with the observed data (RMSEs were 0·22, 0·92, 2·00,
0·84, 3·63, and 2·36/100000 populations from 2004
to 2009, respectively) (Fig. 4g). Despite the simplicity
of the model, we found a fair quantitative agreement
between model predictions and observed data.
Overall, the present model captures the transmission
dynamics of the dengue incidence rate in Kaohsiung
during the summer season during 2004–2009.

Dengue infection risk estimates

The temperature-specific R0 values due to
dengue−mosquito−human dynamics were calculated
based on equations (T9)–(T12) (Table 1). A LN distri-
bution was used to generate log-likelihood estimates of
95% CIs for R0, indicating that median R0 estimates
were 1·77 (95% CI 0·67–4·81), 3·22 (95% CI
1·44–6·99), and 6·08 (95% CI 2·81–12·65), respectively,
corresponding to Tmin, Tmean, and Tmax regimens.

A four-parameter Hill equation was best fitted
to the data calculated from equation (2) to depict the
relationship between increased dengue incidence rate
and R0 in Kaohsiung with four fitted parameters
of λd,min=0·01 wk−1, λd,max=0·99 wk−1, K50=3·36±
0·07, and n=2·55±0·18 (r2=0·99) (Fig. 5a). Given
the reconstructed Hill model-based conditional pdf
describing the dose–response relationship of P(λd|R0)
(Fig. 5a) and the temperature regimen-specific R0 dis-
tributions (Fig. 5b–d), the exceedance risk probabilities
of dengue infection at Tmin, Tmean, and Tmax can then
be estimated followed by equation (4) (Fig. 5e).

0

5

10

15

20

25

30

35

40

B
iti

ng
 ra

te
 (d

–1
) 

7 
2004 

7 7 7 7 7 
2005 2006 2007 2008 2009 

Time (month)

(b) 

(a) 

Te
m

pe
ra

tu
re

 (°
C

) 

0

0·1 

0·2 

0·3 

0·4 

0·5 

0·6 

0·7 
Tmean  
Tmax  
Tmin  

Mean temp
Max temp
Mini temp

Fig. 2. (a) Time-series of monthly maximum, mean, and minimum temperature, and (b) mean biting rates varied
according to Tmin, Tmean, and Tmax in Kaohsiung during 2004–2009.

Dengue infection risk assessment and control implications 1065



Table 3 summarizes the estimates of increased den-
gue incidence rate at exceedance risks of 0·1, 0·5, and
0·9 at Tmin, Tmean, and Tmax. We found that there were

90% and 10% risk probabilities for average increased
dengue incidence rates exceeding 0·04 and 0·47, 0·19
and 0·76, and 0·54 and 0·93 wk−1 at Tmin, Tmean,

 

90
0

100

200

300

400

500

0

4

8

12

16

20

D
en

gu
e 

pr
ev

al
en

ce
 in

 h
um

an
s 

(p
er

 1
00

 p
op

ul
at

io
n)

S
us

ce
pt

ib
le

 m
os

qu
ito

es
nu

m
be

r (
S

m
)  

Susceptible human number 
(Sh)

(i ) 

Tmean

Tmax
Tmin

N
um

be
r 

(b) 

Time (day)

N
um

be
r 

B
iti

ng
 ra

te
 (d

–1
) (a)

0

0·1

0·2
0·3

0·4

0·5

0·6

(d ) (e) (f ) (g) 

0

2

4

6

8

10

12

90 0 360 540 720 900

2×105

4×105

6×105

8×105

0

0

1×106

2×106

3×106

1×106

2×106

3×106

4×106

5×106

0

0 30 60

0 20 40 60 80 100

0 30 60

0 180 360 540

0 180 3600 30 60 90

4×104

8×104

12×104

16×104

0

1×107

2×107

3×107

4×107

0
0 1×106 2×106

Infected human 
Exposed human 
Infected mosquitoes 
Exposed mosquitoes

Time (day) 

(h) 

(c) 

Tmin Tmean Tmax

180

Sm/Sh 

Fig. 3. Simulation of mosquito–human population dynamics estimated by (a) temperature regimen-specific mean biting
rate. The number of human and dengue populations based on mosquito–human dengue transmission model during
90 days (b, d, f) and at equilibrium (c, e, g), respectively, at Tmin, Tmean, and Tmax. (h) Relationship between the number
of susceptible humans and number of susceptible mosquitoes. (i) Relationship between dengue prevalence in humans and
ratio of susceptible mosquitoes to humans.

1066 C.-M. Liao and others



and Tmax, respectively (Table 3). Generally, our
results predicted that there was a 50% risk probability
for increased dengue incidence rates exceeding 0·47
and 0·81 wk−1 at Tmin and Tmax, respectively, in
Kaohsiung.

Control applications

To apply our study to vector control, we used the re-
duction of mosquito numbers as the parsimonious
vector control measure. We defined ε as the control
efficiency describing the proportional reduction in
the parasite’s basic reproduction number due to elim-
ination of susceptible mosquitoes as ε=1−R0C/R0,
where R0C is the basic reproduction number of the
mosquitoes after vector control by eliminating suscep-
tible mosquitoes. The results indicated that the weekly
increased dengue incidence rate can be decreased to
zero if the control efficiencies almost reach 0·3, 0·6,
and 0·78, at Tmin, Tmean, and Tmax, respectively
(Fig. 6). Our vector control application also implies
that R0 is a linear function of the number of adult
mosquitoes, and therefore, if the only effect of vector

control is to eliminate the density of mosquitoes then ε
will be equal to the proportional reduction in that
density.

DISCUSSION

Modelling perspectives

Our analysis reveals several features of dengue fever
risk prediction in Kaohsiung. The major findings
are: (i) the effect of biting rate plays a crucial role in
shaping R0 estimates, (ii) the mean biting rates
(±S.D.) were 0·13±0·06, 0·23±0·07, and 0·43±0·08
d−1 at Tmin, Tmean, and Tmax, respectively, (iii) R0 esti-
mates were 1·77 (95% CI 0·67–4·81), 3·22 (95% CI
1·44–6·99), and 6·08 (95% CI 2·81–12·65), respect-
ively, corresponding to Tmin, Tmean, and Tmax regi-
mens, (iv) the Hill equation can best describe the
relationship between dengue cases increasing rate
and R0, and (v) there was 50% risk of increased den-
gue incidence rate that exceeded 0·47 wk−1 at Tmean.

Generally, our average R0 estimates during
2004–2009 are in agreement with the published data
of 2·23 (95% CI 1·47–3·00) in Singapore during 2005
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[33], 3·09 (95% CI 2·34–3·84) in Colima, Mexico dur-
ing 2002 [16], and 5·10 (95% CI 2·61–10) in Brazil dur-
ing 2006–2007 [17]. In view of R0 formulation
[Table 1, equation (T10)], the ratio of initial suscep-
tible mosquitoes and the total human population is
vital in determining both R0 and the dynamics of in-
fection. It implies that R0 increases with the number
of mosquitoes, and decreases with the number of
humans. Thus for a successful spread and invasion

of dengue infection, a sufficiently large ratio of mos-
quitoes to humans must be reached, which can be de-
scribed mathematically by

Sm(0)/Nh .[(νh + μh)(ηh + μh)(μm + νm)μm]
/[νmνhB2βhmβmh].

Based on the Sm(0)/Nh ratio, the prevalence and pro-
portion of seropositives in the human population
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along with maximum disease prevalence can also be
estimated [21]. Moreover, R0 also captures key
components of the role of mosquitoes in pathogen
transmission, which is mainly influenced by environ-
mental, ecological, behavioural, and molecular factors
[10, 16]. Generally, the extrinsic incubation rate of
many vector-borne pathogens is also known to be
temperature sensitive [10].

Thus R0 is influenced by environmental tempera-
ture [34]. Beserra et al. [35] indicated that the favour-
able temperature for A. aegypti development was
between 21 °C and 29 °C, whereas for dengue lon-
gevity and fecundity, the temperature was between
22 °C and 30 °C. Thus climatic conditions are import-
ant predictors of dengue amplification due to the tight
relationship between mosquito development from egg
to biting adult, survival rate at each life stage, and
temperature-dependent feeding behaviour [11, 20].

We usually used constant temperature-based exper-
imental data to derive vector-borne disease parameter
values [34]. Moreover, the averaged weekly/monthly
temperature was also usually used in combination
with constant-temperature disease parameters for con-
structing the relationship between climatic factors
and vector-borne disease incidence for mathematical
modelling purposes. In fact, temperature fluctuated
throughout the day, therefore, mosquitoes and their
pathogens do not simply experience mean conditions.
In our study, we assessed the effect of temperature
range on the potential for dengue fever transmission
by female A. aegypti at Tmin, Tmean, and Tmax

defined by time-series dynamics of measured
temperature.

Although the present model has captured the trans-
mission dynamics of dengue incidence rate along with

the risk prediction in southern Taiwan during the
summer season for 2004–2009, there are potential lim-
itations of our study that warrant discussion. Limiting
data acquisition of daily or weekly confirmed dengue
cases resulted in monthly dengue incidence rate esti-
mates. Important limiting assumptions of the models
are that there is no vertical transmission of dengue
virus in A. aegypti. On the other hand, the mosquitoes
never recover from the infection since their infective
period ends with their death. Moreover, the model
considered only one serotype of dengue virus. In
light of the biting rate used in our study, we propose
that biting rate can be converted from gonotrophic
cycle (i.e. biting rate=1/gonotrophic cycle) in that
all mosquitoes are assumed to become infected at
the same first bloodmeal and only bite a human dur-
ing the gonotrophic cycle.

Mathematical models have long been recognized as
useful tools for exploring complicated relationships
that underlie infectious disease transmission [19, 21].
The accuracy of the predictions obtained from math-
ematical modelling depends on the accuracy of the
estimated parameters used in the model. To this
end, good parameter estimates are needed to under-
stand and model the potential spread of dengue
fever while the interpretation of data from experimen-
tal infection studies provides validation of mathemat-
ical model predictions for different dengue fever
infection scenarios. The complexity of the model is de-
termined by the purpose of the study and the amount
of information in the dataset. On the other hand, it
is not advantageous to use a more complex model
when a simpler model provides an adequate fit to

Table 3. Estimates of increase in number of dengue
cases (wk−1) (median with 95% confidence intervals)
at exceedance risk of 0·1, 0·5, and 0·9 in Kaohsiung
varied according to Tmin, Tmean, and Tmax

Exceedance risk

0·1 0·5 0·9

Tmax

0·93 (0·91–0·94) 0·81 (0·76–0·85) 0·54 (0·47–0·61)

Tmean

0·76 (0·70–0·80) 0·47 (0·39–0·54) 0·19 (0·15–0·24)

Tmin

0·47 (0·40–0·54) 0·16 (0·13–0·21) 0·04 (0·03–0·05)
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the data. Undoubtedly, many factors influence the re-
lationship between mosquito and human population
dynamics.

Implications on dengue vector control

Under the circumstance without existence of licensed
vaccine or dedicated therapy for dengue containment,
the most promising strategies to control the disease
involve targeting the predominant mosquito vector,
A. aegypti [18]. The best existing methods of control
such as mosquito control with chemical sprays and
treated bed nets can reduce the burden of disease sub-
stantially and can even eliminate the disease in some
epidemic regions [36].

The reduction in adult density depends upon the
present form of the density-dependent function regu-
lating mosquito populations [37]. Burattini et al. [22]
indicated that even a marked fall in the size of adult
mosquito populations may not be sufficient to stop
ongoing dengue epidemics. Yet, they showed that
the mixed strategy of adulticide and larvicide methods
seem to be very effective in reducing the number of
cases in the first weeks after implementing control
measures.

The major vector control measures may include
chemical spray (e.g. pesticide), treated bed net (i.e. in-
ducing adult mosquitoes to lay eggs on the net with
water below, therefore growing and being trapped
when the larvae become adult mosquitoes), and genetic
modification (e.g. parasitic microbe Wolbachia endo-
symbiotic in the A. aegypti mosquitoes to inhibit the
replications of dengue virus [38]). In this study, we
only provide common examples of vector control. In
addition to chemical control strategies, there are many
control measures that can be used to reduce dengue
prevalence without much cost where only notification
of public health policy is required, such as reducing
human–vector contact and removingwater storage con-
tainers. Specifically, removing water storage containers
is the most effective way to eliminate A. aegypti since
A. aegypti breed primarily in man-made containers in
Asia. On the other hand, reducing contact between
humans and the vector can be simply achieved by wear-
ing long trousers and long-sleeved shirts or staying
indoors with the windows closed. These control strate-
gies can sufficiently control a dengue outbreak and pro-
duce savings on the government’s budget. However,
cost-effective analysis should be considered to deter-
mine the optimal control strategy in future research.

Much work will need to be done on risk assessment,
community engagement, and regulatory protocols
[13, 39]. Moreover, potentially direct and indirect
effects on the abundance of other species and on eco-
system services should be considered [7, 11]. Recently,
Luz et al. [13] suggested that vector control policies
of dengue may need to be reassessed based on con-
tinuous larval control only. The ability to successfully
predict dengue incidence is generally believed to de-
pend on how well we can predict vector abundance.
Notably, because humans are the primary dengue
host, human behaviour may be as important as vector
abundance for accurate forecasts of pathogen amplifi-
cation and dengue infection risk [40].

In conclusion, dengue continues to impose a sub-
stantial burden on human health. We reconstructed
a well-developed dengue−mosquito−human popu-
lation transmission model and re-analysed dengue epi-
demiology to predict the risk of an increase in dengue
fever cases in the southern region of Taiwan. Given
that local surveillance data of climatic factors and
dengue cases were obtainable, the well-developed
population transmission model could easily be used
to estimate dengue prevalence in a specific city or
country. We also recognize that ecology of infectious
diseases in natural populations is ultimately complex
[19, 36]. However, we anticipate that our present
parsimonious model of dengue−mosquito–human
population dynamics in a homogeneous, constant en-
vironment can be used to determine what is required
to eliminate Aedes mosquitoes. Most importantly,
the conclusion from this study, combined with recent
estimates of the critical parameters in the laboratory,
is that this present approach could provide a method
for estimating the risk of dengue fever and guide
improvements in vector control methods or other dis-
ease control strategies.
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