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SUMMARY

Accurate forecasting of seasonal influenza epidemics is of great concern to healthcare providers
in temperate climates, since these epidemics vary substantially in their size, timing and duration
from year to year, making it a challenge to deliver timely and proportionate responses. Previous
studies have shown that Bayesian estimation techniques can accurately predict when an influenza
epidemic will peak many weeks in advance, and we have previously tailored these methods for
metropolitan Melbourne (Australia) and Google Flu Trends data. Here we extend these methods
to clinical observation and laboratory-confirmation data for Melbourne, on the grounds that
these data sources provide more accurate characterizations of influenza activity. We show that
from each of these data sources we can accurately predict the timing of the epidemic peak 4–6
weeks in advance. We also show that making simultaneous use of multiple surveillance systems to
improve forecast skill remains a fundamental challenge. Disparate systems provide complementary
characterizations of disease activity, which may or may not be comparable, and it is unclear how a
‘ground truth’ for evaluating forecasts against these multiple characterizations might be defined.
These findings are a significant step towards making optimal use of routine surveillance data for
outbreak forecasting.
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INTRODUCTION

Despite the regularity with which seasonal influenza
epidemics occur in temperate climates, the timing, dur-
ation and impact of these epidemics vary substantially
from year to year. This presents an annual challenge for

healthcare providers to deliver timely and proportionate
responses.Beingable topredictkeyattributes of an incipi-
ent seasonal influenza epidemic therefore represents an
extremely valuable decision-support capability.

Previous studies have shown that Bayesian estima-
tion techniques (‘filters’) can yield accurate predictions
of epidemic peak timing many weeks in advance for
US cities, by linking mechanistic infection models
with Google Flu Trends (GFT) data [1], and by com-
bining GFT data with viral isolation data [2].
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We have previously tailored these methods for
metropolitan Melbourne (Australia) and GFT data,
showing that forecasts with similar accuracy can be
obtained [3]. However, the relationship between
GFT data and actual influenza incidence is tenuous
in the United States [4] and there is no reason to ex-
pect the contrary in Australia. Ideally, epidemic fore-
casts should instead be generated from data that is as
closely related to actual incidence as possible. There
are several sources of influenza and influenza-like
illness (ILI) surveillance data for metropolitan
Melbourne, and our group has previously evaluated
the statistical biases in these systems [5].

In this study we applied a Bayesian forecasting
method (the bootstrap particle filter) to each of the
surveillance systems in turn and compared the result-
ing forecast skill. We then fused data from all three
systems simultaneously to evaluate whether forecast-
ing skill was improved by accounting for all of avail-
able data, compared to fusing data from any single
system.

METHODS

Surveillance systems

The surveillance systems considered in this study were:

. Victorian Department of Health & Human Services
(VDHHS) laboratory-confirmed influenza notifica-
tions [6].

. Victorian Sentinel Practice Influenza Network (Vic-
SPIN, previously known asGeneral Practitioner Senti-
nel Surveillance, GPSS) reports of ILI prevalence in
patients at participating sites [6, 7].

. National Home Doctor Service (NHDS, previously
known as Melbourne Medical Deputising Service,
MMDS) reports of ILI prevalence in home visits,
which are provided on weekends, public holidays,
and after-hours on weekdays [6].

Data for the 2010–2014 influenza seasons were used
(see Figs 1 and 2). We removed two outliers in the
NHDS data (November 2013 and January 2014)
and one outlier in the VicSPIN data (October 2011,
174 patients, 2·9% with ILI symptoms). Although
the total number of patients seen each week by GP
clinics recruited in the VicSPIN schemes varies from
week to week (μ = 6900, σ= 1000) there is a clear lin-
ear relationship between the number of patients with
ILI and the percentage of patients with ILI (R2 =
0·9863). This suggests that these two measures of

influenza activity are almost equivalent and should
yield near-identical forecasts.

A previous analysis of these same systems for
2009–2012 [5] made the following observations for
the 2010–2012 seasonal influenza outbreaks:

The data obtained from each of these systems ex-
hibit over-dispersion (relative to the Poisson distribu-
tion) to different degrees and were subsequently
modelled as independent negative binomials. The
NHDS and VicSPIN data were found to have greater
over-dispersion than the VDHHS data, presumably
due (at least in part) to the presence of other ILIs
(e.g. rhinoviruses).

Baseline activity and epidemic duration varied
across seasonal influenza outbreaks (2010–2012); the
only significant effect of surveillance system was a
slightly lower baseline activity for the NHDS.
Surveillance systems did, however, exhibit a signifi-
cant effect on final size, with much smaller final
sizes for VicSPIN and NHDS.

Peak timing was also sensitive to surveillance sys-
tem: the VicSPIN and NHDS peaks occurred 2
weeks and 1 week earlier than the VDHHS peak, re-
spectively (2010–2012). This cannot be explained by
testing or reporting delays, since it was observed
when using the date of presentation for all three sys-
tems. Both syndromic surveillance systems reported
two local maxima in the 2014 season, occurring 3–4
weeks apart; the first coinciding with the VDHHS
peak in late August. The second local maxima was
smaller than the first for the VicSPIN data, but was
larger than the first for the NHDS data, meaning
that the VicSPIN and VDHHS peaks coincided and
the NHDS peak occurred 4 weeks later.

Influenza transmission model

We used an SEIR compartment model with homoge-
neous mixing to represent the infection process [equa-
tions (1)–(4), parameters listed in Table 1]. This model
admits stochastic noise in flows between compart-
ments [equations (5)–(8)] and in model parameters
[equation (9)]. An epidemic starts with a single sto-
chastic exposure event [equation (10)] that occurs
with daily probability pseed and is introduced into a
completely susceptible population.

dS
dt

= −αSI − ζ S − θseed, (1)

dE
dt

= αSI + ζ S + θseed − βE − ζE, (2)
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dI
dt

= βE + ζE − γI − ζ I , (3)

dR
dt

= γI + ζ I , (4)

ζ (S,E,I ) � N (μ = 0, σ = σ(S,E,I )), (5)

σS = κF ·
�����
αSI

√
, (6)

σE = κF ·
����
βE

√
, (7)

σI = κF ·
���
γI

√
, (8)

dα
dt

,
dβ
dt

,
dγ
dt

� N (μ = 0, σ = κP), (9)

θseed =
1
N

if S(t) = 1 and θ(t) , pseed

0 otherwise.

⎧⎨
⎩ (10)

Model estimation

We used the bootstrap particle filter to identify which
realizations of the transmission model were the most
likely to yield in silico observations consistent with
the weekly surveillance data. For each of the three sur-
veillance systems, and for each of the 2010–2014 cal-
endar years, a finite set of model vectors (‘particles’)
were used to approximate the continuous model-space
likelihood distribution. Each particle contains both
the state variables and model parameters of the trans-
mission model [equation (11); parameter values are

drawn from the prior distributions listed in Table 1].
Initially, all particles have identical weights [equation
(12)], which are subsequently adjusted in proportion
to the likelihood of giving rise to each observation
[equations (13)–(14)]. When too much of the probabil-
ity mass accumulates in a small subset of the particles,
the mass is redistributed by resampling the particles in
proportion to their weights. This is performed using
the systematic method, as described by Kitagawa [8],
when the effective number of particles [equation
(15)] falls below the threshold Nmin (defined in
Table 1).

xt = [S(t),E(t), I (t),R(t), α(t), β(t), γ(t)]T , (11)

wi(0) = Npx
( )−1

, (12)

w′
i(t|yt) = wi(t− 1) · P(yt|xit; k), (13)

wi(t|yt) = w′
i(t) ·

∑Npx

j=1

w′
j(t)

( )−1

, (14)

Neff (t) =
∑Npx

j=1

w′
j(t)

[ ]2( )−1

. (15)

Observation models

For each of the three surveillance systems, we charac-
terized the annual signal as comprising a background
rate of presentation pbg, and an observation

Fig. 1. The data obtained from each surveillance system for metropolitan Melbourne. Outliers (hollow circles) were
removed prior to forecasting. NHDS, National Home Doctor Service; VDHHS, Victorian Department of Health &
Human Services; VicSPIN, Victorian Sentinel Practice Influenza Network.
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probability pid that represents the probability of an in-
fection being symptomatic and observed, and acts as a
scaling factor between model incidence and the surveil-
lance data. We assume that these parameters remain
constant for the duration of each influenza season.
Note that interpretation of the background rate is
system-dependent. For laboratory-confirmed cases, it

represents the low level of endemic activity observed
outside of the influenza season (presumably due to im-
portation events and limited subsequent transmission).
These cases are treated as observation noise and are
not represented as infections in the transmission
model. For ILI surveillance systems, it also includes
any other pathogen that results in influenza-like
symptoms.

The probability that an individual becomes infec-
tious (pinf) during the interval (t− Δ, t] is defined as
the fraction of the population that became infectious
over that interval [equation (16)]. The probability of
a case being observed by a given system is therefore
the sum of the probabilities of two mutually exclusive
events [equation (17)]: becoming infectious and then
being identified, or contributing to the background
signal. We modelled each surveillance system as a
(conditionally independent) negative binomial in
order to define the likelihood of an observation yt
for a given particle xt. The dispersion parameter k
controls the mean-variance relationship for each sur-
veillance system [equations (18)–(19)].

pinf (t,Δ) = S(t− Δ) + E(t− Δ) − S(t) − E(t), (16)

pili(t,Δ) = pinf (t,Δ) · pid +[1− pinf (t,Δ)] ·Δ · pbg, (17)

P(yt|xt; k) =
Γ(yt + k)
Γ(k) · yt!

· ( pk)k · (1− pk)yt, (18)

Fig. 2. The surveillance data, normalized yearly for comparison between systems. NHDS, National Home Doctor Service;
VDHHS, Victorian Department of Health & Human Services; VicSPIN, Victorian Sentinel Practice Influenza Network.

Table 1. Parameter values for (i) the transmission
model; (ii) the bootstrap particle filter; and (iii) the
observation model

Meaning Value

α(0) Force of infection R0 · β
R0 Basic reproduction number ∼U(1,2)
β(0) Incubation period (days−1) ∼[U(0·5,3)]–1

γ(0) Infectious period (days−1) ∼[U(0·5,3)]–1

pseed Daily probability of initial exposure 1/36
κF Scaling factor for flow noise 0·025
κP Scaling factor for parameter noise 0·005
θ(t) Stochastic variable for seeding an

initial exposure
∼U(0,1)

Npx Number of particles 3600
Nmin Minimum number of effective

particles
0·75·Npx

N Population of metropolitan
Melbourne

4 108 541

Δ Observation period (days) 7
pbg Background observation rate varies
pid Observation probability varies
K Dispersion parameter varies; 101–103
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pk = k
k +N · pili . (19)

For the NHDS and VicSPIN data we fixed the back-
ground observation rate pbg over the 2010–2014 calen-
dar years, since the out-of-season ILI levels remained
relatively stable over this period. However this was not
the case for the VDHHS notifications data, which exhib-
ited substantial annual changes in out-of-season notifica-
tion counts. Accordingly, we estimated the mean
out-of-season notification rate separately for each year
(by calculating the mean over the first few calendar
months) and defined background observation rates rela-
tive to this annually varying quantity (see Table 2). Note
that the out-of-season notification rate increased sub-
stantially over this 5-year period (a mean annual in-
crease of 6·2 notifications per week, R2 = 0·78). This is
consistent with observations that increased testing has
caused notification counts to substantially increase in re-
cent years, independently of disease burden [9–12].

For all three surveillance systems, we assessed fore-
casting performance over a wide range of observation
probabilities (pid).

Epidemic forecasts

Given a sequence of observations {y1, . . ., yk} and
prior distribution for the initial particle x0, the boot-
strap particle filter (or any other Bayes filter) can be
used to estimate the posterior distribution for xk. By
taking a finite number of samples from the posterior
and simulating forward in time, an ensemble of trajec-
tories is obtained. With a particle filter, the existing
particles serve as the posterior samples and their
weights wi(t) represent the likelihood of each trajec-
tory. A probabilistic forecast is obtained by estimating
the expected values of future observations �y(t)

[equation (20)]. Here, we report the median, 50%
and 90% credible intervals for �y(t).
�y(t) = {N · pili(t,Δ)} ∀ x(i)t . (20)

Because each forecast comprised estimates of weekly
incidence for every 7-day period from the forecasting
date until the end of the year, peak forecast incidence
could occur on any weekday, even though all of the
surveillance data are reported weekly. Accordingly,
we defined forecast accuracy as the weighted fraction
of all trajectories whose peak occurred within 10
days of the observed peak, equivalent to rounding to
the nearest reporting day (i.e. ±3 days) and then ap-
plying a threshold of ±1 week.

Similar to our previous forecasting study, we took
the mean of these fractions over the 8 weeks prior
to the observed peak – similar in concept to calculat-
ing the area under a ROC curve – to ‘score’ observa-
tion models for a given influenza season, and
subsequently ranked observation models by their
mean scores over the 2010–2014 seasons. The simula-
tion and ranking scripts, and instructions for their use,
are included in the Supplementary material.

RESULTS

Annual forecasting performance

The best forecasting performances obtained from each
surveillance system over the 2010–2014 influenza sea-
sons are shown in Figure 3 and allow us to make sev-
eral observations about the variation between seasons.
The 2010 season was particularly mild and short,
making it difficult to distinguish from the background
signal. This is demonstrated by the low forecasting
scores for 2010 across all three systems and for all obser-
vation probabilities; the best forecasts were obtained at
the minimum observation probabilities, indicating that
this was the only way to relate the transmission model
to such a small epidemic. In contrast, high forecasting
scores were obtained for 2011 and 2012 across all three
surveillance systems (k5 10, best results for k= 100).
Good forecasts were also obtained from the VDHHS
datafor2013and2014,but the syndromicsystemsyielded
poorer performances for these seasons; theVicSPIN fore-
casting scores were moderate for 2013 and low for 2014,
while the NHDS forecasting scores were low for both
seasons.

Retrospective peak timing forecasts for each the
2010–2014 influenza seasons, using the single best ob-
servation model for each surveillance system, are

Table 2. Estimated mean out-of-season VDHHS
influenza notification rates for each influenza season,
and the associated background observation rates used
for the observation models (‘−5’, ‘+0’, ‘+5’; defined
relative to the mean estimates)

Year Estimate ‘−5’ ‘+0’ ‘+5’

2010 15 10 15 20
2011 32 27 32 37
2012 28 23 28 33
2013 32 27 32 37
2014 46 41 46 51

VDHHS, Victorian Department of Health & Human
Services.
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shown in Figure 4. The forecasts for 2010 again dem-
onstrate that the 2010 season was particularly difficult
to forecast, since it was a particularly mild and brief
season. The variance of the 2010 NHDS forecast
oscillated over time and, while it remained stable
and accurate in the final 2 weeks prior to the peak,
the variance was sufficiently large to suggest little, if
any, confidence in the prediction. The 2010 VDHHS
forecast was narrow and stable in the final 4 weeks
prior to the peak, but the prediction was inaccurate
(5 weeks later than the actual peak). The 2010
VicSPIN forecast only became narrow in the week
prior to the actual peak, and was also inaccurate (3
weeks late). For each of the remaining seasons
(2011–2014), accurate predictions of the peak timing
were obtained well in advance from the influenza
case notifications. The GP sentinel surveillance data
(VicSPIN) yielded accurate forecasts for the 2011,
2012 and 2013 seasons, but the timing of the 2014
peak was much later than predicted. The home doctor
surveillance data (NHDS) yielded accurate forecasts
for the 2011 and 2012 seasons, but the timing of the
2013 and 2014 peaks were much later than predicted.

Furtherexaminationof the forecasts showninFigure4
also allows us to identify when we can expect to place
confidence in the model predictions. When the credible
intervals for the peak timing are broad, the predictions
are clearly uncertain and may even reflect uncertainty
in the mere presence of an epidemic. When the credible
intervals for thepeak timingbecomeverynarrow, several
different outcomes can be observed:

. The credible intervals subsequently widen, indicat-
ing a loss of confidence (e.g. NHDS 2010); the cred-
ible intervals may narrow again at a later time (e.g.
VicSPIN 2011).

. The predicted timing is both stable and accurate (e.g.
VDHHS 2011–2014).

. The predicted timing is stable but is inaccurate (e.g.
VDHHS 2010); this may indicate particle degener-
acy (i.e. when the particles have failed to thoroughly
explore the model space).

. The predicted timing does not remain stable, even
though the credible intervals remain narrow (e.g.
NHDS 2013, VicSPIN 2014); this typically indi-
cates the lack of a clear epidemic signal or particle
degeneracy.

With the exception of the very mild 2010 season, it is
clear that confidence should be placed in the epidemic
forecasts when the credible intervals are narrow (i.e.
when the forecast variance is low) and the predictions
remain stable in response to subsequent observations.

Net forecasting performance

The mean forecasting performance for each observa-
tion model over the 2010–2014 seasons is shown in
Figure 5. Each curve represents a series of observation
models that have the same background observation
rate and dispersion parameter, and differ only in
their observation probabilities. These curves all ex-
hibit a bell shape, indicating that optimal forecasts
(those with the best mean performance over these sea-
sons) are obtained only within a small range of obser-
vation probabilities. It is therefore paramount to be
able to estimate the appropriate observation probabil-
ity during (or prior to) the nascent stage of an epidem-
ic, in order to maximize the likelihood of producing
reliable forecasts. As the dispersion parameter is
increased (i.e. as we assume that there is less variance
in the observed data) the curves retain a bell shape and

Fig. 3. Annual forecasting performance for the three surveillance systems (shown for each value of the dispersion parameter k
and with a single background rate for each system), illustrating for which seasons reliable forecasts could be obtained in the 8
weeks prior to the peak when using the optimal observation probability. NHDS, National Home Doctor Service; VDHHS,
Victorian Department of Health & Human Services; VicSPIN, Victorian Sentinel Practice Influenza Network.
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Fig. 4. Retrospective forecasts for the 2010–2014 influenza seasons in Melbourne, as produced by the single best
observation model for each system (i.e. the same observation model was used for every season). These plots show the
confidence intervals of the peak timing predictions (y-axis) plotted against the forecasting date (x-axis) for the period prior
to the actual peak. Peak timing was accurately predicted in general; exceptions were 2013 and 2014 for the NHDS data,
2010 for the VDHHS data, and 2010 and 2014 for the VicSPIN data. NHDS, National Home Doctor Service; VDHHS,
Victorian Department of Health & Human Services; VicSPIN, Victorian Sentinel Practice Influenza Network.

Fig. 5. The mean forecasting performance over the 2010–2014 influenza seasons for each surveillance system as a function
of the observation probability pid, shown for each value of the dispersion parameter k and with a single background rate
for each system. NHDS, National Home Doctor Service; VDHHS, Victorian Department of Health & Human Services;
VicSPIN, Victorian Sentinel Practice Influenza Network.
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the forecasting performance is increased. However the
curves also become less smooth and exhibit sensitivity
to small changes in the observation probability. This
indicates we are approaching the point where there
is greater variability in the observed data than in the
observation model (i.e. that the observation model is
becoming under-dispersed) and too much information
is being inferred from each datum. This suggests an
approximate upper bound on k.

The single best observation model – the one with
the highest mean score in Figure 5 – used the
VDHHS data and the estimated out-of-season notifi-
cation rates (‘+0’, refer to Table 2), with k= 100 and
an observation probability of pid = 0·00225 (∼1 in
450 ‘actual’ cases). Since such fine-tuning is not prac-
tical when forecasting a live epidemic, it is critical to
identify how to obtain robust, near-optimal forecasts.
It is clear from Figure 5 that the forecasts obtained
from the VDHHS notifications data consistently out-
performed the NHDS and VicSPIN forecasts, suggest-
ing that the VDHHS data might more precisely
characterize each seasonal influenza outbreak than the
other (syndromic) surveillance systems. Near-optimal
forecasts were obtained from the VDHHS data over a
reasonably broad range of observation probabilities
(0·001254 pid4 0·003).

Retrospective forecasting of the 2009 H1N1 pandemic

Having identified the observation models that pro-
duced the best forecasts for the 2010–2014 seasonal
influenza epidemics, we then used these observation
models to produce retrospective forecasts for the
2009 H1N1 pandemic in Melbourne, as characterized
by the same surveillance systems. Initially, laboratory
testing of all suspected influenza patients was author-
ized [13]. From June, however, testing was only
recommended only for those with moderate or severe
disease and those in particular risk groups [13].
Accordingly, the influenza notifications data for
2009 has a huge peak at the end of May (1025
confirmed cases) as a result of the elevated ascertain-
ment, and a second, smaller peak on June 21 (533
confirmed cases) that we assume is the ‘true’ peak in
this data. To provide appropriate observations to the
particle filter, it was necessary to scale the case counts
for the weeks ending 24 May, 31 May, and 7 June.
For simplicity we scaled these counts by 1/4 on the
grounds that the resulting epidemic curve looked rea-
sonable (we did not fit this scaling factor or explore
other values). Note that it is not clear how to make

such a ‘correction’ during an actual outbreak, particu-
larly in the absence of denominator data, as is the case
for influenza testing in Australia. As shown in
Figure 6, we were able to obtain accurate predictions
of the peak timing from each surveillance system 3–4
weeks in advance of the observed peak.

This indicates that it is not unreasonable to cali-
brate observation models against seasonal influenza
outbreaks in order to generate forecasts during future
pandemic events. Of course, a truly novel or especially
virulent strain may confound these observation mod-
els, due to changes in, e.g. population susceptibility,
health-seeking behaviours, and testing and surveil-
lance recommendations. Spurious or suspect observa-
tions may also be ignored or adjusted once it becomes
apparent that they are questionable (presumably with-
in a few weeks of being reported) to improve forecast
robustness.

Forecasting with multiple data sources

Having identified the observation models that pro-
duced the best forecasts for the 2010–2014 influenza
seasons, we also evaluated the forecasting perform-
ance for each of these seasons when we used all
three data sources simultaneously; this required a
definition of the ‘true peak’ for each season. In 2009
all three surveillance systems reported the same peak
timing, but this did not occur in any of the 2010–14
seasons. Since the VDHHS influenza notifications
data is the most direct observation of influenza activ-
ity, we used this data to define the ‘true peak’. The
likelihood of the set of simultaneous observations
{yit, . . . , ynt } for a given particle was defined by equa-
tion (21); we assumed that, given the true incidence,
all of the observation processes are independent.

P({y1t , . . . , ynt }|xt; k) =
∏n
i=i

P(yit|xt; k). (21)

The out-of-season and peak notification levels vary
from year to year (Fig. 1). It is understood that the
influenza burden varied over the 2010–2014 seasons
(e.g. 2010 was particularly mild) and therefore a vari-
ation in peak magnitude is to be expected. However
the syndromic surveillance systems reported substan-
tially less year-to-year variation in burden than was
observed in the VDHHS data, and FluCAN hospital
admissions data (not shown here) also suggest that
the peak notification levels are not representative of
the relative burden of each season [14–18]. The
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consistency of the syndromic surveillance data might
therefore be expected to provide additional insight
into each influenza season (particularly in the early
stages) and therefore improve the forecasting perform-
ance, when compared against forecasts generated sole-
ly from the VDHHS notifications data.

The resulting forecasts demonstrate that simply
using observations from all three surveillance systems
does not necessarily improve the forecasting perform-
ance and, indeed, can even reduce performance.
Differences were only observed in two of the five
influenza seasons. In 2011, using all three data sources
substantially improved the forecast accuracy in the 5
weeks prior to the peak, and also reduced the forecast
variance. In 2013, the use of all three data sources
reduced the forecast accuracy 2–5 weeks prior to the
peak and increased the forecast variance over this
same period.

The peak timing predictions for both sets of fore-
casts in these two seasons are shown in Figure 7.
The intervals where they differ substantially in accur-
acy and variance are illustrated by the vertical dashed
lines. These plots demonstrate that the inclusion of the

two syndromic data sources have a minimal effect on
the forecast predictions.

The most salient point to draw from these observa-
tions is that the use of multiple data sources does not
necessarily provide any benefit over using a single data
source of good quality. This suggests that complemen-
tary data streams may need to capture very different
aspects of disease activity and may only provide useful
information at specific stages of an epidemic. For
example, FluCAN reports hospitalizations with
confirmed influenza at several sentinel hospitals in
Victoria [14–18], but weekly cases are sufficiently
few that this may only provide additional information
if additional hospitals can be recruited.

DISCUSSION

Principal findings

VDHHS laboratory-confirmed influenza notification
counts consistently yielded more accurate and earlier
forecasts of peak timing than did the data from either
of the syndromic surveillance systems. For all three

Fig. 6. Retrospective forecasts for the 2009 H1N1 pandemic in Melbourne. The top row shows the surveillance data from
each system (VDHHS notification counts modified as described in the text); black points indicate the time at which the
variance in peak timing predictions rapidly decreased, the grey regions indicate values less than the background rate. The
bottom row shows the confidence intervals of the peak timing predictions (y-axis) plotted against the forecasting date
(x-axis) for the period prior to the actual peak. Peak timing was accurately predicted 3 weeks prior to the actual peak
(NHDS and VicSPIN data) and 4 weeks prior to the actual peak (VDHHS data). NHDS, National Home Doctor
Service; VDHHS, Victorian Department of Health & Human Services; VicSPIN, Victorian Sentinel Practice Influenza
Network.
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systems, observation models were identified that yielded
good forecasts across all five of the influenza seasons
under consideration (2010–2014, median effective re-
production number Reff = 1·1−1·35). These same obser-
vation models also yielded accurate predictions of the
peak timing for the 2009 H1N1 outbreak in
Melbourne, 3–4 weeks in advance of the observed
peak (although the notification counts had to be
adjusted to account for drastic changes in testing levels).
Simultaneously fusing data from all surveillance systems
did not appreciably improve forecasting performance.

These results suggest that (a) confirmed influenza
cases are a more reliable data source for influenza
forecasting than are syndromic data sources; (b) syn-
dromic surveillance data are nevertheless capable of
yielding good forecasts; (c) in the event of a pandemic,
where testing levels may vary substantially (e.g.
influenced by actual and perceived threat [11]), syn-
dromic surveillance data may be a more stable
data source for forecasting purposes. We further

hypothesize that synthesis of data from multiple
sources may only improve forecast performance if
these sources characterize complementary aspects of
disease activity (e.g. hospitalizations, healthcare-
seeking behaviour).

These findings are consistent with those reported by
Thomas et al. [5], who observed that the choice of sur-
veillance system significantly affected the inferred epi-
demic curve, peak timing, final epidemic size, and
baseline influenza activity, even after adjusting for
age, geographical region, and year. They also
observed that the syndromic data were significantly
more over-dispersed than the notifications data (indi-
cating greater variability in syndromic case counts)
which is consistent with the relative forecasting
performances of the three systems as reported here.
Furthermore, their findings were consistent with previ-
ous observations in Victoria and throughout Australia
that testing rates have increased since 2009, while ILI
rates have not increased proportionately [10].

Fig. 7. A comparison of peak timing predictions when using data from all three surveillance systems (‘All data’) and when
only using Victorian Department of Health & Human Services (VDHHS) notifications data (‘VDHHS data’). The
intervals where these two sets of forecasts differed in accuracy and variance are indicated by the vertical dashed lines.
Using all available data is seen to have a minimal effect on the peak timing predictions.
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Study strengths and weaknesses

A key strength of this study is that we have evaluated
the forecasting performance obtained from each sur-
veillance system over each of the available influenza
seasons, and can contrast and compare their predict-
ive powers. This is a clear demonstration of how the
data collection characteristics of any real-world sur-
veillance system can be evaluated on its ability to
yield precise and accurate forecasts, and could con-
ceivably inform future surveillance investment efforts
to further develop this predictive capacity.

Perhaps the greatest weakness of this study is that
we only have five influenza seasons (i.e. five samples
per surveillance system) against which to evaluate
the forecasts. Since no two influenza seasons are
exactly alike (Fig. 1), it would be instructive to have
a larger collection of seasonal influenza epidemics at
our disposal. Since we expect that these surveillance
systems may exhibit changes in ascertainment and
other characteristics over time, it would be preferable
to have similar data for the same influenza seasons in
other Australian cities than to have data from the
same surveillance systems for the past, say, 20 years.

Comparison with other studies

In contrast to other infectious disease forecasting stud-
ies, we have compared multiple sources of surveillance
data for their ability to yield accurate predictions of
epidemic peak timing well in advance, and have iden-
tified relative strengths and weaknesses of each system
for this purpose. Other studies have used a single data
source [1, 19, 20] or a primary data source that was
modulated by a secondary data source (‘ILI+’) [21,
22]; in both cases single datasets were used to generate
and evaluate the forecasts.

The ‘ILI+’metric, where weekly ILI rates are multi-
plied by the percentage of influenza-positive tests for
that week, is intended to better represent influenza in-
cidence [21, 22]. However, negative tests are not notifi-
able in Australia and are generally reported only by
public laboratories, which represent a diminishing
proportion of Victorian influenza notifications [9].
Therefore, ‘ILI+’ may not be appropriately represen-
tative of influenza incidence in Victoria.

In a previous study, we generated retrospective fore-
casts for seasonal influenza outbreaks in metropolitan
Melbourne using GFT data [3]. In both studies we
have observed that choosing an appropriate value
for the dispersion parameter (k) is a critical balancing

act. If the dispersion is too high (i.e. k is too small),
not enough information is inferred from the data. If
the dispersion is too low (i.e. k is too large), too
much confidence is placed in the data and particle de-
generacy is frequently observed. With GFT data we
obtained optimal forecasts with a moderate amount
of dispersion (k = 10), while in this study we obtained
optimal forecasts when assuming that the data are less
dispersed (k = 100). This is evidence that each of the
surveillance systems considered in this study provide
better characterisations of seasonal influenza activity
than does the GFT data.

We have shown that using laboratory-confirmed
influenza cases yielded more reliable forecasts than
were obtained using syndromic data. This conclusion
may appear both obvious and necessary, since RT–
PCR tests are inherently more specific than are syn-
dromic ILI diagnoses. However, this data source is
also highly susceptible to changes in ascertainment
(as shown by the change in out-of-season notification
levels from year to year) and only captures the very tip
of the true disease prevalence (the ‘burden of illness
pyramid’ [23, 24]), while the syndromic surveillance
systems exhibited greater stability in both the
out-of-season ILI levels and the magnitude of the sea-
sonal peaks. One drawback of using laboratory-
confirmed cases is the inherent delay, since specimens
must be collected from patients, sent to laboratories,
tested, and then reported to the VDHHS. However,
in this retrospective setting, more precise forecasts
were obtained, and further in advance, when using
this data than when using syndromic surveillance data.

Accordingly, while we may have expected that the
confirmed influenza cases would be the best data source
for forecasting, it was certainly not a guaranteed out-
come. And indeed, in the event of a pandemic where
testing recommendations may differ greatly from sea-
sonal influenza, it appears much easier to calibrate
the observation models for the syndromic surveillance
systems than for the confirmed influenza cases.

The true value of these forecasting methods lies in
(i) accurately predicting the behaviour of future epi-
demics while they are in a nascent stage; and (ii) of
equal importance, being able to identify when we
should place great confidence in the predictions. Our
results indicate that we should have confidence in
the peak timing predictions when (and only when)
the variance in these predictions is small and the
predictions remain stable. These findings are
consistent with other infectious disease forecasting
studies [1–3, 21, 22, 25, 26].
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Meaning and implications

We have demonstrated that several existing surveil-
lance systems that routinely operate in metropolitan
Melbourne provide sufficient characterisation of sea-
sonal influenza activity to permit accurate predictions
of the epidemic peak many weeks in advance. In con-
trast to our previous study, which used GFT data, the
insights and findings of this study are derived from
direct, transparent measures of disease activity in the
community. This allows us to place much greater
confidence in the relevance and accuracy of the results.
By also having separate measures of the predicted tim-
ing and the confidence in the predictions, these fore-
casting methods are particularly informative to
healthcare providers, and may prove useful in guiding
resource allocation (e.g. staffing levels) in future
influenza epidemics.

Beyond the accuracy of the forecasts presented in
this manuscript and the guidelines for gauging confi-
dence in interpreting these forecasts, this study also
demonstrates how to assess the predictive power of
surveillance systems and, as such, can offer a measure
of the relative ‘knowledge value’ of each system. An
assessment framework of this kind can be used not
only to compare different real-world systems, but
also to evaluate a suite of hypothetical surveillance
systems (via appropriate in silico experiments) in
order to identify optimal data collection strategies
and to inform future surveillance investment efforts.

Further work

Since each of these surveillance systems has unique
characteristics and captures a different ‘view’ of the
underlying influenza epidemic [27], it seems reason-
able to expect that the forecasts could be substantially
improved by synthesising the observations from each
system into a single data stream for the particle
filter, since this would allow the filter to incorporate
a greater body of knowledge about each influenza sea-
son. The simplest manner in which this could be
achieved is to re-weight the particles in response to
all available observations at each time-step [i.e. as-
suming conditional independence as in equation
(21)], using a single ‘best’ observation model for
each surveillance system.

However, it is not clear how to sensibly evaluate
forecasts obtained with such an approach since (i)
the timing of the epidemic peak can differ substantial-
ly between systems (e.g. by 4 weeks in the 2014 season)

and so there is no single ‘true peak’; and (ii) forecasts
cannot be directly compared against the data from
any one system, since the ‘best’ particles will be
those that best agree with all three systems simultan-
eously. So while it is simple to run a Bayesian filter
against the data from all three systems for any given
influenza season, it is not at all apparent how one
might sensibly evaluate the performance of these fore-
casts. In particular, it does not seem sensible to define
the ‘true peak’ as the average of the peaks reported by
each system, since the systems are observing funda-
mentally different aspects of each influenza epidemic.
One possible solution is to evaluate forecasts against a
single data source [28], selected on the grounds that is
understood to be, e.g. the most representative of the
true epidemic. However, using the VDHHS notifica-
tions data as the best metric for forecast evaluation,
we demonstrated that this approach does not guaran-
tee any improvement in forecasting performance
and may indeed achieve the opposite outcome.
Techniques for estimating true incidence exist [29]
and have been applied to, e.g. the 2009 H1N1 pan-
demic in the UK [30, 31] and the United States [32],
but are better suited to retrospective analyses than to
providing a benchmark for forecast evaluation during
an epidemic.

The extension of existing forecasting methods to
combine data from disparate surveillance systems
and define how to best evaluate the resulting forecast
performance is a vital future development if these
methods are to inform the preparation and delivery
of proportionate healthcare responses in the future.
It should also provide important insights into the
‘knowledge value’ of existing systems and help to
guide future surveillance investment efforts.

SUPPLEMENTARY MATERIAL
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