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SUMMARY

Sweden reports large and variable numbers of human tularemia cases, but the high-risk regions
are anecdotally defined and factors explaining annual variations are poorly understood. Here,
high-risk regions were identified by spatial cluster analysis on disease surveillance data for
1984–2012. Negative binomial regression with five previously validated predictors (including
predicted mosquito abundance and predictors based on local weather data) was used to model
the annual number of tularemia cases within the high-risk regions. Seven high-risk regions were
identified with annual incidences of 3·8–44 cases/100 000 inhabitants, accounting for 56·4% of the
tularemia cases but only 9·3% of Sweden’s population. For all high-risk regions, most cases
occurred between July and September. The regression models explained the annual variation of
tularemia cases within most high-risk regions and discriminated between years with and without
outbreaks. In conclusion, tularemia in Sweden is concentrated in a few high-risk regions and
shows high annual and seasonal variations. We present reproducible methods for identifying
tularemia high-risk regions and modelling tularemia cases within these regions. The results may
help health authorities to target populations at risk and lay the foundation for developing an
early warning system for outbreaks.
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INTRODUCTION

The causative agent of the zoonotic disease tularemia,
Francisella tularensis subsp. holarctica (type B), occurs
almost exclusively in the Northern Hemisphere and is
one of the most infectious bacterial pathogens known
[1]. Tularemia has attracted interest because it is

considered a potential bioterrorism agent [2]. The
fate of F. tularensis subsp. holarctica between natural
outbreaks remains unknown but it has been hypo-
thesized that the bacterium persists in natural ecosys-
tems in water-associated protozoans [3–5]. Another
hypothesis suggests that small rodents, in particular
voles, are the reservoirs [6, 7]. Humans may become
infected through arthropod bites, handling infected
animal carcasses or tissues, ingesting contaminated
food or water, or inhaling contaminated aerosols
originating from dead animals. Tularemia is
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characterized by an uneven geographical distribution
with spatially limited natural foci of disease that
seem dependent on the close association between the
bacterium, bacterial hosts, vectors, and the environ-
ment [8]. Because of its intimate association with
local ecology and vectors, tularemia is one of the
infectious diseases that experts often consider to be
sensitive to climate change [9]. Zoonotic and vector-
borne diseases are considered particularly sensitive
to meteorological factors because these factors affect
vector and host population dynamics, and influence
pathogen transmission [10]. Recently, our research
group showed that human tularemia outbreaks
could be successfully modelled in a geographical
region of Sweden using local meteorological and
hydrological data; in that work mosquitoes were
implicated as likely disease vectors and prediction of
their abundance was instrumental for the model per-
formance [11].

Here, we applied spatial scan statistics on nation-
wide tularemia cases from 1984 to 2012 to identify
tularemia high-risk regions in Sweden and then mod-
elled the annual variation of tularemia cases in these
regions using five previously identified predictor vari-
ables [11].

METHODS

Tularemia case data

Data on tularemia cases, reported between September
1984 and December 2012, were retrieved from the
national system for communicable disease surveillance
at the Public Health Agency of Sweden. For each case,
the suspected location of disease contraction and the
disease onset date (or date of disease exposure if the
disease onset date was missing) was retrieved. Cases
with missing values or low accuracy data regarding
either the place of disease contraction or onset date
were not included in the subsequent analyses [12].
Demographic data on the Swedish population per
administrative region were obtained from Statistics
Sweden [13]. Tularemia incidence per 5-digit postal
code area was calculated using the underlying popula-
tion census data of 2012.

Identification of tularemia high-risk regions

Aggregations of tularemia cases closely grouped in
space, so called cluster areas, were identified using
the purely spatial analysis tool in Kulldorff’s

space–time scan statistics implemented in SaTScan
v. 9.2 (Kulldorff and Information Management
Services Inc.) [14]. Data were analysed assuming a
discrete Poisson distribution, using a circular moving
window with radius varying from 0 to 40 km. The
analysis used case data from 1984 to 2012 and the
5-digit postal code area as spatial unit. The 2012
population count per 5-digit postal code area was
used in SaTScan to estimate the population at risk.
The moving window was centred on the centroid
of the 5-digit postal code area [15]. Cluster areas
with P values <0·05, calculated through Monte
Carlo simulation [16] with 999 permutations, were
identified as statistically significant. When cluster
areas were <2·5 km apart they were merged to
define one single region constituted of all the
5-digit postal areas having centroids inside merged
clusters. Such regions with more than 80 tularemia
cases 1984–2012 were defined as high-risk regions,
labelled by the name of the main municipality or
county in the region, and characterized with regard
to the population size in 2012, the total number of
tularemia cases, the mean annual incidence during
the study period, the median and range of the
patients’ ages, gender distribution, and the seasonal
case distribution (median, first and third quartiles
of disease onset dates).

Modelling of the annual number of tularemia cases

For modelling of the annual number of tularemia
cases (Tul), we used an approach previously applied
to Dalarna County in Sweden employing negative
binomial regression with five predictor variables: the
number of tularemia cases the preceding year
(Tullag), the annual relative mosquito abundance
(RMA), the summer temperature the preceding year
(STlag) in degrees Celsius (°C), the present summer
precipitation (SP) in mm, and the number of cold
days (<−7·3 °C) with a thin layer of snow (<10 cm)
the preceding winter (CW) (see [11]). Hydrological
and meteorological data were retrieved from the
Swedish Meteorological and Hydrological Institute’s
website and used to estimate the environmental vari-
ables RMA, ST, SP, and CW. The daily RMA values
were predicted as described in Rydén et al. [11].

A geostatistical inverse distance weighting (IDW)
interpolation method was used to predict the en-
vironmental variables at unmeasured points. Briefly,
IDW estimates a variable Z(p) at a point p using
observations {Z(s1), . . . , Z(sk)} from some stations
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{s1, . . . , sk} such that:

Ẑ p
( ) =

∑k
i=1 Z si( )d p, si

( )γ
∑k

i=1 d p, si
( )γ ,

where d(p, si) is the distance from p to the station si
and where γ is a user defined smoothing parameter
[17]. For each high-risk region all variable interpola-
tions were made on a regular grid, with 254–382
grid points, covering the whole region, and consider-
ing γ= 2.

The regional annual variables were estimated in a
three-step procedure: (1) using IDW interpolation we
predicted the daily value of each variable at all grid
points; (2) the annual data were calculated for each
grid point by averaging (RMA, STlag) or summing
(SP, CW) the daily data; (3) for each region, the
annual variable value was obtained by taking the
mean of the annual grid points values.

To enable model comparisons between high-risk
regions, the RMA variable in [11] was replaced by
the standardized RMA variable (sRMA), defined as

sRMA = log2 RMA−mean log2 RMA
( )

SD log2 RMA
( ) ,

where mean and SD denotes the sample mean and
sample standard deviation of the RMA variable,
respectively (estimated over the period 1984–2012).

For each high-risk region (indexed by r) a regional
model was fitted using negative binomial regression
with the five predictor variables, i.e.

Tulr = exp β0r + β1r ln Tullagr
( )+ β2rsRMAr

(

+ β3rSTlagr + β4rSP+ β5rCWr
)
.

The performances of the fitted models were evalu-
ated considering Spearman’s correlation between the
fitted and observed values (ρ) and the model’s
pseudo-R2 [18].

The model’s ability to estimate regional disease out-
breaks (defined as 55 tularemia cases/year in a
region) was evaluated by the positive and negative
predictive values (PPV and NPV, respectively) which
were estimated using data from the whole study period
(1984–2012). A year was predicted to be a regional
outbreak year if the negative binomial regression
model predicted 55 tularemia cases/year in the
region. For each high-risk region the models’ PPV
and NPV were estimated as

PPV = TP
P

, NPV = TN
N

,

where TP, TN, P, N denote the true positives (i.e. the
number of years when an outbreak was predicted and
an outbreak occurred), true negatives, positive predic-
tions (i.e. the number of years outbreaks were pre-
dicted), and negative predictions, respectively.

Statistical analyses

The proportion test was used to study regional gender
differences and Wilcoxon’s rank sum test was used to
study regional differences with respect to age and
season. Throughout the study, pairwise correlations
between regional annual variables were investigated
using Spearman’s rank correlation (ρ). The Shapiro-
Wilk test was used to determine if the data followed
a normal distribution. Mantel’s test [19] was used
to investigate if the geographical distance between
high-risk regions (calculated using the Euclidean dis-
tances between the centroids of the regions) was asso-
ciatedwith the annual co-variation of some variables of
interest. Spearman’s correlation was used to quantify
the co-variation and 1 – ρ was used to estimate the cor-
relation distance between two regions. Henceforth, cor-
relations associated withMantel’s test are denoted by r.
Statistical analyses were performed using R v. 3.1.0 (R
Development Core Team, 2009) and the level of signifi-
cance was set to 0·05. Results were visualized using
ArcMap software in ArcGIS v. 10.0 (ESRI, Sweden).

Ethical statement

The authors assert that all procedures contributing to
this work comply with the ethical standards of the
relevant national and institutional committees on
human experimentation and with the Helsinki
Declaration of 1975, as revised in 2008. The study
was approved by the Regional Ethical Review
Board in Umeå, Sweden (2014-204-31M).

RESULTS

High-risk regions

Out of 4792 patients infected in Sweden between 1984
and 2012, 3644 passed the filtering for high-quality
data. The SaTScan method identified 34 tularemia
cluster areas (Fig. 1a, Supplementary Table S1). The
34 cluster areas had a population of 1 111 971 inhabi-
tants (11·6% of the Swedish population in 2012), their
combined area covered 11% of Sweden, and reported
2910 of the tularemia cases during the study period
(79·9% of the cases observed). Many of the 34 cluster
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areas were located close to each other and seven larger
tularemia high-risk regions could be identified (from
South to North): Örebro, Karlstad, Västerdalarna,
Ockelbo, Ljusdal, Östersund, and Boden, accounting
for 56·4% of the tularemia cases and comprising
9·3% of the Swedish population, and 14·2% of
Sweden’s area (Table 1, Fig. 1b). Neither the annual
national incidence nor the annual regional incidences
were normally distributed (Figure 2). The highest
mean annual incidence during the period 1984–2012
was observed in Ockelbo (44·0 cases/100 000 inhabi-
tants) and the lowest in Örebro (3·8 cases/100 000
inhabitants). The annual average incidence 1984–
2012 in Sweden, excluding the seven high-risk
regions, was 0·63 cases/100 000 inhabitants. The
patients infected in each of the high-risk regions
were similar with respect to age and gender (45–61%
male patients, median age 47–59 years), with the
exception that patients in the Östersund region had

higher median age, 59 years (P4 0·001) vs. the
other regions (Table 1).

Variation in the number of tularemia cases

The variation of the annual number of tularemia cases
(Tul) was prominent for all the high-risk regions with
most of the larger outbreaks occurring in the later
part of the study period (Fig. 3 and Supplementary
Table S2). By pairwise comparisons, annual variations
of Tul were found to be highly correlated between
the high-risk regions (ρ= 0·33–0·85, Supplementary
Table S3). High-risk regions located close to each
other were more similar with regard to annual case
variation than regions situated far from each other
(Mantel’s test, r= 0·63, P4 0·01). The majority of
the tularemia disease onset dates occurred from the
end of July to the beginning of September in all
high-risk regions, although the season occurred a little

Fig. 1. (a) Mean tularemia incidence (cases/100 000 persons per year) per zip code areas during 1984–2012 and spatial
distribution of tularemia cluster areas identified by SatScan using a 40-km maximum window radius size. (b) High-risk
regions for tularemia in Sweden 1984–2012. Main municipalities and stations for meteorological and hydrological data are
indicated.
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Table 1. Description of the seven identified high-risk tularemia regions (from south to north) of Sweden 1984–2012
with regards to population, number of tularemia cases, mean incidence during the study period, age, percent of male
patients, and the peak season

High-risk region Population*
Tularemia
cases

Mean
incidence†

Age, years
median (range) Males (%) Peak season‡

Örebro 527 803 581 3·8 51 (1–93) 54 5 Aug.–5 Sept.
Karlstad 143 682 256 6·1 50 (1–86) 46 31 July–6 Sept.
Västerdalarna 49 778 324 22·4 51 (1–86) 61 29 July–25 Aug.
Ockelbo 16 370 209 44·0 48 (2–86) 56 2 Aug.–1 Sep.
Ljusdal 66 251 385 20·0 47 (1–89) 61 4 Aug.–1 Sept.
Östersund 19 503 87 15·4 59 (2–90) 60 4 Aug.–17 Sept.
Boden 65 310 215 11·4 48 (1–84) 57 30 July–21 Aug.
Other§ 8 651 071 1587 0·63 51 (1–95) 59 31 July–5 Sept.

* Population census 2012.
†Cases/100 000 inhabitants/year.
‡The seasonal period in which 50% of the cases occurred.
§ All region in Sweden not being classified as high-risk regions.

Fig. 2. Boxplots (without outliers) of the tularemia annual incidence in Sweden and the seven tularemia high-risk regions.

Fig. 3. The observed number of tularemia cases for the seven tularemia high-risk regions of Sweden 1984–2012.
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later in Östersund (Fig. 4, Table 1). The annual
median dates of disease onset were positively corre-
lated for all pairs of regions and the correlation
increased as the distance between the regions
decreased (Mantel’s test, r= 0·41, P4 0·05).

Description of the predictor variables in the model

The annual variation of all predictors, except CW,
were similar in the high-risk regions, with the highest
pairwise correlations observed for STlag, followed by
sRMA, and SP (Supplementary Tables 4–7). Regions
located close to each other were more likely to display
higher covariation than regions located far from
each other (Mantel’s test, sRMA: r= 0·68, P4 0·01;
STlag: r= 0·55, P4 0·05; SP: r= 0·39, P> 0·05).

Covariation between the annual number of cases and
the predictors

The dependent variable Tul was positively correlated
with Tullag (ρ= 0·04–0·79) sRMA (ρ= 0·03–0·44),
STlag (ρ=−0·09 to 0·36) and SP (ρ= 0·09–0·80);
and negatively correlated with CW (ρ =−0·48 to
0·04) for all high-risk regions with two minor excep-
tions (Supplementary Table S8). There were no signifi-
cant correlations between the different predictor
variables (data not shown).

Modelling the annual variation of tularemia cases

The coefficients in the fitted models varied noticeably
between the high-risk regions, but some trends were
observed. The coefficients for the variables Tullag,
sRMA, STlag, and SP were positive for all regions
with three exceptions: the Tullag coefficient in
Ockelbo, and the STlag and SP coefficients in
Karlstad were all negative (Table 2).

The models were successful in modelling the annual
variation of tularemia cases in most of the high-risk
regions: a large fraction of the variation of Tul was
explained (pseudo-R2 = 0·33–0·76), the fitted and
observed Tul values were highly correlated (ρ = 0·54–
0·87), the estimated PPVs (reflecting the ability to esti-
mate regional outbreaks) were high for most regions
(PPV = 0·40–0·92), while the estimated NPVs were
high for all regions (NPV = 0·79–1·00) (Table 3).
Taking all performance measures into account, we
concluded that the modelling was able to describe
the annual variation of tularemia cases in the
Southern regions, Örebro, Västerdalarna, Ljusdal,

Ockelbo, and Karlstad, but was less successful in the
most Northern regions Östersund and Boden
(Table 3).

DISCUSSION

We demonstrated that by using nationwide surveil-
lance data, high-risk regions for contracting tularemia
could be identified. The annual tularemia cases within
these regions could be retrospectively modelled using
easily accessible meteorological and hydrological
data. The approach is broadly generalizable for
defining high-risk regions, estimating predictors on a
regional basis, and modelling the annual variation of
tularemia cases. The results validated that modelling
tularemia outbreaks is feasible in high-risk regions
of Sweden and lays the foundation for developing an
early warning system for outbreaks.

Historically, tularemia has repeatedly been de-
scribed as a disease with uneven geographical distribu-
tion but the regions with increased risk of contracting
tularemia have remained anecdotally defined. By tak-
ing the underlying population into account, we here
developed a systematic and objective approach for
identifying regions in Sweden where residents are at
higher risk of acquiring tularemia. The results show
that tularemia in Sweden is a highly geographically
concentrated disease, with the majority of cases occur-
ring within seven high-risk regions. We believe that
our findings may help public health authorities to
rationally assess the risk of tularemia in specific geo-
graphical locations and thereby provide more accurate
information and early warnings to the public.

Large variation in tularemia incidence among the
high-risk regions was identified, with the more densely
populated regions generally having lower incidences.
Importantly, there was also a very large local inci-
dence variation within the high-risk regions. These
findings were consistent with an ecological paradigm
of tularemia being a geographically focal disease
tied to disease vectors and hosts as was postulated
already in the 1950s [17]. We here showed that the
phenomenon of geographical focality readily trans-
lates into findings of large heterogeneity of disease
risks at small spatial scales for humans. The results
also support the many narratives of patients and phy-
sicians that the tularemia transmission is tied to
specific localities. The identification of high-risk
regions and geographical areas at smaller scales
could help future studies to resolve unanswered ques-
tions with regard to tularemia ecology and local
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persistence by directing environmental sampling to
these localities [20–22].

In previous work, the annual number of tularemia
cases (Tul) in the Swedish county Dalarna which
includes the high-risk region Västerdalarna identified
in this study, was successfully modelled. We here gen-
eralized the modelling approach so that it could be
used to model Tul in any region with sufficient num-
ber of cases. The approach utilized the tularemia
case counts the previous year and local hydrological
and meteorological data together with spatial inter-
polation to construct the regional predictor variables
the standardized relative mosquito abundance
(sRMA), the summer temperature (STlag), the

summer precipitation (SP), and a proxy for hostile
winter conditions for rodents, i.e. the number of
cold days with little snow cover (CW) [11].

We wanted to investigate if the variation of tular-
emia cases was similar in all the high-risk regions, if
the predictors used in the model were relevant for all
regions, and if the model could be used to model
Tul within the high-risk regions. We found that Tul
were highly correlated between the seven high-risk
regions and that the pairwise correlations decreased
as the distances between the regions increased. In add-
ition, all high-risk regions had similar seasonal pat-
terns with the majority of the cases occurring in
July–September. This similarity suggests that the

Fig. 4. Boxplots of reported dates of disease onset or diagnosis for the tularemia cases, reported between 1 June (day 154)
and 30 November (day 336), in the seven tularemia high-risk regions of Sweden 1984–2012. Under each box, first quartile,
median, and third quartile are reported.

Table 2. Estimated coefficients of the predictor variables in the fitted models explaining annual tularemia variation in
the seven high-risk regions of Sweden (1984–2012)

High-risk region Intercept Tullag sRMA STlag SP CW

Örebro −9·19* 0·73*** 0·75*** 0·18 0·023*** 0·10
Karlstad 10·11 0·99*** 0·82 −0·39 −0·014 −0·11
Västerdalarna −10·74* 0·37 0·43 0·67* 0·008 −0·09
Ockelbo −2·86 −0·19 0·36 0·10 0·010** 0·07
Ljusdal −7·60* 0·09 0·29 0·50* 0·009* −0·03
Östersund −11·47* 0·93** 0·75* 0·84* 0·003 0·13
Boden −5·73 1·16*** 0·20 0·35 0·005 −0·17

Predictors significantly different from zero are indicated: * P4 0·05, ** P4 0·01, *** P4 0·001.
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variation of Tul in different high-risk regions could be
explained by the same predictors. It also suggests that
the variation of Tul to a high degree was driven by the
same variables in all the high-risk regions. All the pre-
dictors in the model behaved as if they were essentially
independent and the predictors’ coefficients in the
regional fitted models, except for the predictor CW,
were overall positive. Altogether, these results suggest
that a high number of cases the previous year, high
relative mosquito abundance, high temperatures the
preceding summer; and high summer precipitation
are risk factors for regional tularemia outbreaks in
Sweden.

The models’ negative predictive values were high
for all high-risk regions meaning that non-outbreak
years were successfully identified and although the
positive predictive values were more variable, ranging
between 0·40 and 0·92, the results imply that the mod-
els are capable of distinguishing between years with
and without outbreaks. This capability would be prac-
tically valuable if it can be reproduced in future early-
warning systems. A drawback of the present models
was that they were fairly inaccurate in estimating the
magnitude of the outbreaks, which resulted in rela-
tively low pseudo-R2 values. This was most evident
for the two most Northern regions, Boden and
Östersund. These results may indicate that the model
was incomplete with one or several predictors missing,
in particular for these Northern regions. Boden
showed the lowest correlation between sRMA and
Tul (data not shown) which may reflect that the
regional prediction of sRMA was inadequate, that
mosquitoes to lesser extent play a role for transmitting

infection to humans, or that other routes of transmis-
sion have to be considered in this region (e.g. exposure
to infected animals). The procedure for estimating the
relative mosquito abundance using local hydrological
and meteorological data was developed for an area in
the middle part of Sweden, Dalarna, and it is unclear
how this procedure performs in regions located far
away. Correlation between sRMA and Tul was rela-
tively high in Östersund (but not significant) while
our model was inaccurate in this region, which may
suggest that another epidemiological cycle of trans-
mission, e.g. infection by inhalation of F. tularensis-
contaminated dust, occurs in parallel with the com-
mon mosquito transmission cycle in this region [20].
In a recent study from Finland it was shown that
abundance of voles, which are believed to be the
sources of infection in the inhalation-form of tular-
emia, highly correlated with tularemia incidence
among humans but with a time-lag of one year [23].
Unfortunately annual information on the regional
vole abundance is currently not available for Sweden
but an interesting future research direction is to
include proxy variables for vole abundance to
improve the current models.

We did not account for human behavioural factors
in the modelling and this may be an important short-
coming because of variation in the exposure of
humans to disease in different localities and due to
their behaviour, e.g. time spent in outdoor activities.
Regrettably, there was no data available validated to
reflect exposure to tularemia. Future research should
focus on improving the assessment of risk exposure
by using data reflecting where people spend their
time instead of using home addresses, for example
data from questionnaires or GPS-enabled devices
(e.g. mobile phones). Such data would define the
population susceptible to tularemia better than census
population.

We showed that a combination of surveillance and
meteorological data including lag patterns of one year
in the past can be used to predict summer tularemia
outbreaks. However, the ability of the model to rap-
idly detect seasonal outbreaks is limited by the lack
of some variables at the time of the prediction.
Examples of data that will not be available without
considerable lag are summer precipitation and river
flow (used in the prediction of RMA) from June to
August. At this stage of our research, the models can-
not be used as an early warning tool but it surely con-
stitutes a first step in the development of a reliable
system to be used by public health authorities.

Table 3. Performance of the fitted models explaining
annual tularemia variation in the seven high-risk regions of
Sweden (1984–2012) with regard to pseudo-R2,
Spearman’s correlation between the fitted and observed
annual number of tularemia cases (ρ), the positive predictive
value (PPV), and the negative predictive value (NPV).

High-risk region Pseudo-R2 ρ PPV NPV

Örebro 0·76 0·87*** 0·92 1·00
Karlstad 0·37 0·76*** 0·82 0·83
Västerdalarna 0·40 0·67*** 0·77 0·88
Ockelbo 0·46 0·56** 0·56 0·80
Ljusdal 0·38 0·74*** 0·59 0·86
Östersund 0·33 0·60*** 0·43 0·86
Boden 0·40 0·54** 0·40 0·79

Correlations significantly different from zero are indicated:
*P4 0·05, ** P4 0·01, *** P4 0·001.
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In conclusion, our study has identified where the
high-risk regions for acquiring tularemia in Sweden
are located. The results support a hypothesis of tular-
emia being tied to specific locations for long time per-
iods, with the annual variation of cases driven by local
ecological variables. In the coming years, increased
knowledge of the ecology, dispersal, and persistence
of tularemia will be needed for the identification of
more precise predictors to further improve the model-
ling of annual variation of cases. Even though we here
identified a useful model, testing of additional high
quality data and making inference analyses using
data in real-time will be required for developing a
functional early-warning system for tularemia
outbreaks.

SUPPLEMENTARY MATERIAL

For supplementary material accompanying this paper
visit https://doi.org/10.1017/S0950268816002478.
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