Skip to main content
. 2016 Nov 21;145(3):440–450. doi: 10.1017/S0950268816002594

Table 3.

Final negative binomial regression (‘forecasting’) model for monthly Ross River virus notifications in the Mildura local government area, Victoria, Australia. Trained on data for the period July 2000–June 2011, validated on data for the period July 2012–June 2015

Variable (units) Lag (months) IRR s.e. 95% CI P value
log2 (maximum vapour pressure, hPa) 1 13·7 6·01 5·76–32·4 <0·001
log2 (precipitation, mm) 4 1·44 0·13 1·21–1·71 <0·001
Number of days with precipitation >1 mm 6 1·16 0·08 1·01–1·33 0·036
Est. s.e. 95% CI P value*
Dispersion parameter (α) 1·05 0·28 0·62–1·78 0·009
Forecasting performance
Financial year Forecast cases (95% PI) Observed cases ρP Forecast outbreak alerts Observed outbreak alerts
2011/2012 30 (0–122) 27 0·59 2 3
2012/2013 11 (0–52) 30 0·32 2 6
2013/2014 19 (0–88) 16 0·58 1 1
2014/2015 14 (0–67) 37 0·38 0 6

IRR, Incidence rate ratio; s.e., standard error of IRR; CI, confidence interval; PI, prediction interval; ρP, Pearson's correlation coefficient.

AIC = 367·6142, n = 132, degrees of freedom = 5, log likelihood (model = −178·807; null model = −226·598), maximum likelihood R2 = 0·515, deviance-based goodness-of-fit (P = 0·81).

* P value for dispersion parameter estimated using a likelihood ratio test that α is non-zero.