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Pairwise genetic meta-analyses between schizophrenia and
substance dependence phenotypes reveals novel association
signals with pharmacological significance
Laura A. Greco 1,2, William R. Reay 1,2, Christopher V. Dayas1 and Murray J. Cairns 1,2✉

© The Author(s) 2022

Almost half of individuals diagnosed with schizophrenia also present with a substance use disorder, however, little is known about
potential molecular mechanisms underlying this comorbidity. We used genetic analyses to enhance our understanding of the
molecular overlap between these conditions. Our analyses revealed a positive genetic correlation between schizophrenia and the
following dependence phenotypes: alcohol (rg= 0.368, SE= 0.076, P= 1.61 × 10−6), cannabis use disorder (rg= 0.309, SE= 0.033,
P= 1.97 × 10−20) and nicotine (rg= 0.117, SE= 0.043, P= 7.0 × 10−3), as well as drinks per week (rg= 0.087, SE= 0.021,
P= 6.36 × 10−5), cigarettes per day (rg= 0.11, SE= 0.024, P= 4.93 × 10−6) and life-time cannabis use (rg= 0.234, SE= 0.029,
P= 3.74 × 10−15). We further constructed latent causal variable (LCV) models to test for partial genetic causality and found evidence
for a potential causal relationship between alcohol dependence and schizophrenia (GCP= 0.6, SE= 0.22, P= 1.6 × 10−3). This
putative causal effect with schizophrenia was not seen using a continuous phenotype of drinks consumed per week, suggesting
that distinct molecular mechanisms underlying dependence are involved in the relationship between alcohol and schizophrenia. To
localise the specific genetic overlap between schizophrenia and substance use disorders (SUDs), we conducted a gene-based and
gene-set pairwise meta-analysis between schizophrenia and each of the four individual substance dependence phenotypes in up to
790,806 individuals. These bivariate meta-analyses identified 44 associations not observed in the individual GWAS, including five
shared genes that play a key role in early central nervous system development. The results from this study further supports the
existence of underlying shared biology that drives the overlap in substance dependence in schizophrenia, including specific
biological systems related to metabolism and neuronal function.
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INTRODUCTION
Schizophrenia is a complex and debilitating psychiatric disorder
with a diverse array of symptoms and comorbidities including
substance dependence [1]. While the onset generally occurs
during early adolescence, schizophrenia is highly heritable, which
provides an opportunity to glean molecular insight into the
composition of dysfunctional networks underlying its pathophy-
siology and phenotypic diversity, including associated comorbid-
ities. Substance use disorders (SUDs) are also complex, heritable
traits with susceptibility linked to unique polygenic architecture
not shared with non-pathological substance use behaviour [2].
Twin studies have provided insights into the magnitude of total
SUDs heritability regardless of the substance [3]; alcohol (AD, 0.63),
cannabis (CD, 0.78) nicotine (ND, 0.72), cocaine (CoD, 0.61), and
opioids (OD, 0.61) [4].
While these SUDs arise independently of psychotic and affective

disorders, they are frequently comorbid. A 2018 meta-analysis by
Hunt et al. of 123 articles between 1990 and 2017 (n= 165,811)
found that the prevalence of any SUD in schizophrenia was 41.7%,
with 26.2% for cannabis, 24.3% for alcohol and 7.3% for stimulants
[5]. Some population studies have reported even higher use, with

72% of people with schizophrenia being daily cigarette smokers
[6], and nearly half using cannabis regularly [7]. Although data on
opioid use in schizophrenia is limited, it was found to be
significantly higher than the general population [8]. Substance
use and dependence is a significant complication for patients with
schizophrenia and often impedes treatment options. For example,
cigarette smoking has been shown to have a profound effect on
the metabolism of many psychotropic drugs, with plasma
concentrations of clozapine shown to be reduced in people who
smoke cigarettes. [9–11]. First-generation and short acting oral
antipsychotics have also been shown to increase substance use
and cravings, with alcohol use in patients worsening over time
[12, 13].
Despite the high heritability and prevalence of SUDs in

schizophrenia, genome-wide association studies (GWAS) for SUDs
lag those for other major psychiatric disorders. In comparison to
GWAS mega-analyses like schizophrenia and major depressive
disorder, there is still the need for larger cohorts for SUD
phenotypes to boost discovery power, particularly for psychosti-
mulants such as cocaine and amphetamines. Current GWAS on
SUD phenotypes have not revealed any clear novel biological
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pathways involved in these phenotypes, with limited loci found in
SUDs, thus more work in this area is needed. In terms of the
genetic relationship between SUD phenotypes and schizophrenia,
previous research has shown that the odds of substance use in
individuals with schizophrenia is higher than the general
population [6], Hartz et al. found that schizophrenia was
significantly genetically correlated with nicotine dependence,
cigarettes per day and ever/never smoking [14]. Furthermore,
Reginsson leveraged data from Icelandic subjects (N= 144,609) to
demonstrate the elevated SZ polygenic risk score was associated
with increased risk of alcohol and substance use disorders [15].
The largest GWAS to date for life-time cannabis use was
significantly genetically correlated with schizophrenia, with
Mendelian randomisation analysis showing evidence for a causal
positive influence of schizophrenia risk on cannabis use [16].
Despite the substantial amount of research supporting the shared
genetic overlap of SUDs and SZ, the aetiology of SUDs in SZ still
remains relatively uncharacterised. In the current study, we
employed pairwise meta-analysis GWAS to reveal genes poten-
tially underpinning substance dependence in schizophrenia, that
may not be apparent through investigation of the disorders
individually. Understanding the molecular determinants of
comorbid addiction in schizophrenia has the potential to identify
new therapeutic targets, which may lead to improved clinical
outcomes in those individuals with risk of these exacerbating
conditions.

MATERIALS AND METHODS
Genome-wide association studies (GWAS)
GWAS Summary statistics of European ancestry were obtained for
schizophrenia (N= 130,644) and substance use and dependence from
the Psychiatric Genomics Consortium (PGC), International Cannabis
Consortium (ICC) and GWAS & Sequencing Consortium of Alcohol and
Nicotine use (GSCAN). Substance use and dependence GWAS include
Alcohol Dependence (unrelated genotyped individuals) with alcohol
exposed controls (AD, Ncases= 8485, Ncontrols= 20,272) [17], Nicotine
Dependence UKB2 (ND, Ncases= 10,287, Ncontrols= 234,603) [18], Life-
time Cannabis Use excluding 23&me [16], (LCU, Ncases= 43,380,
Ncontrols= 118,702), Cannabis Use Disorder (unrelated genotyped indivi-
duals) [19] (CUD, Ncases= 14,080, Ncontrols= 343,726), Opioid Depen-
dence (unexposed controls) [20] (OD, Ncases= 3272, Ncontrols= 25,437),
which included individuals with no life-time OD diagnosis who were not
exposed to illicit or prescription opioids as controls, Cigarettes per day
[18, 21, 22] (CPD, N= 337,334), and Drinks per week [22] (DPW,
N= 941,280). All AD, CUD, and OD cases met criteria for a life-time
diagnosis of DSM-IV derived from clinician ratings or semi-structured
interviews, ND had the ICD-10-CM Diagnosis Code F17 recorded from in
their hospital records.

Genetic correlation and evidence of causation
Linkage disequilibrium score regression analysis (LDSC, v 1.0.1) was utilised
to estimate genetic correlation between schizophrenia and each SUD
phenotype [23]. Common SNPs (MAF > 0.05) in the GWAS summary data
were retained if they were available in the HapMap3 panel that excluded
the MHC region and were not otherwise excluded by the ‘munge_sum-
stats.py’ script in the LDSC framework. Genetic correlation between two
traits may be indicative of shared underlying biology but does not
necessarily imply that the relationship is causal. To evaluate evidence for a
causal relationship between SUD phenotypes and schizophrenia, we
constructed a latent causal variable model [24] (LCV), as has been
demonstrated elsewhere [24–28]. Briefly, the LCV model utilises the
genome-wide SNP-trait association Z-scores for two traits and the mixed
fourth moments (cokurtosis) of the respective distributions to assess
whether there is evidence for a causal effect of one trait on the other. As a
result, the LCV framework can calculate a metric termed the posterior
mean causality proportion (GCP), from which the sign can be used to infer
a potential causal direction. In practice, GCP > 0 implies that trait one is
partially genetically causal for the second trait, while GCP < 0 implies the
reverse. Given GCP > 0, for example, marginal SNP-trait one effect sizes
tend to be proportionally larger on trait two, but this is not observed in the

opposite direction—hence, the direction of causal effect can be estimated
as operating from trait one to trait two. We defined partial genetic causality
using the recommended threshold of a significantly non-zero |GCP | > 0.6,
as this was shown by O’Connor and Price in simulations to guard against
false positives [24]. It should be noted that the posterior mean GCP is not
an estimate of the magnitude of any potential causal relationship and
should not be interpreted as such—rather it evaluates the strength of
evidence for a putative causal relationship in either direction using
genome-wide SNP effects.

Gene-based association analysis
Gene-based association was performed on each disorder using MAGMA
version 1.07 (https://ctg.cncr.nl/software/magma). The MAGMA gene-
based method utilises P-values as input, whereby the test-statistic is a
linear combination of SNP-wise P-values. In comparison to univariate
GWAS, the burden of multiple-testing correction is dramatically reduced in
gene-based association analysis [29]. Gene-based association can also
greatly boost power by signal aggregation across variants in the target
regions when multiple causal variants influence the phenotype of interest
[30]. The default gene-based test was used, a modified version of Brown’s
method for combining P-values such that test-statistic inflation arising
from SNP-wise dependency due to LD within genes can be suitably
accounted for. The 1000 genomes phase 3 European reference panel is
used as the LD reference for this purpose. Variants were mapped to 18,297
autosomal protein-coding genes from NCBI hg19 genome-assembly.
Genes that arise from the major histocompatibility complex (MHC,
chr6:28477797–33448354) on Chromosome 6 were removed. Statistical
inference for a significantly associated gene for each disorder was set as
P < 2.7 × 10−6 to adjust for the number of genes tested via the Bonferroni
method.

Pairwise cross-disorder meta-analysis
The genic Z-score outputs from the gene-based association analysis for
schizophrenia and each substance dependence phenotype (AD, CUD, ND,
OD), which were probit transformation of the P-values, were meta-
analysed individually using MAGMA—that is, schizophrenia was meta-
analysed with AD, then with CUD, and so on. A weighted Z-test was
utilised for this purpose, which is based off the inverse normal (Stouffer’s)
method, whereby the weight (wi) was set as the respective GWAS sample
sizes [31]. Given the LD score regression (LDSR) intercept was markedly
non-zero for AUD with schizophrenia in the LDSR model (P < 0.01), which
may be driven by sample overlap, we compared our Stouffer’s method
meta-analytic P-values for schizophrenia with AUD to those derived from
the Cauchy combination test method [32]. In this method, the test-statistic
is a sum of the schizophrenia and AUD P-values, per gene, transformed to
approximate a Cauchy distribution, which is also flexible to incorporate
weights of the input study sample sizes. The test-statistic is insensitive to
correlations among the P-values that arise due to these P-values being
from the same sample due to the heavy tail of the Cauchy distribution,
with the combined meta-analytic P-value approximated using the
cumulative density function of the Cauchy distribution. We calculated
the Pearson’s correlation estimate, with 95% confidence intervals (CI),
comparing the negative logarithm base ten transformed P-values of both
methods.

Gene-set association analyses
Competitive gene-set analysis results were obtained using MAGMA. For
this analysis, 14,969 hallmark, 2921 canonical and 2598 regulatory miRNA
target gene ontology gene-sets from the molecular signatures database
(MsigDB, v7.4) were selected [33, 34]. A linear regression model is
constructed by MAGMA wherein genic association (transformed to Z) is
the outcome. Confounders that are adjusted for in this analysis include
gene-size and genic-minor allele count. Gene-set association analysis was
undertaken to find gene-sets where the common variant signal is
enriched relative to all other genes considered. Genes that share
biological or functional properties from a defined reference database
are aggregated into sets that include molecular interactions, regulation,
and products to determine pathways relevant to the phenotype of
interest. Multiple-testing correction for the gene-set analysis was
performed using the Benjamini–Hochberg (BH) procedure, with FDR <
0.05 designated as a significant gene-set association [35]. For functional
enrichment analysis of microRNA target gene-sets, we used the web
server g:Profiler [36].
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RESULTS
Evidence for partial genetic causality of alcohol dependence
on schizophrenia
LD score regression (LDSR) analysis revealed significant genetic
correlations between schizophrenia and several of the SUD
phenotypes after correcting for the number of tests performed
(Fig. 1a). Specifically, schizophrenia was positively genetically
correlated with AD (rg= 0.368, SE= 0.076, P= 1.61 × 10−6), CUD
(rg= 0.309, SE= 0.033, P= 1.97 × 10−20), ND (rg= 0.117, SE=
0.043, P= 7.0 × 10−3), and the substance use phenotypes CPD
(rg= 0.11, SE= 0.024, P= 4.93 × 10−6), DPW (rg= 0.087, SE=
0.021, P= 6.36 × 10−5) and LCU (rg= 0.234, SE= 0.029,
P= 3.74 × 10−15). We also found nominally positive genetic
correlation between schizophrenia and OD (rg= 0.184, SE= 0.075,
P= 0.0142), however, this did not survive multiple-testing

correction. LCV models were then constructed for the significant
traits for which their schizophrenia genetic correlation estimate
passed multiple-testing correction (AD, CUD, ND, CPD, DPW, and
LCU) to investigate whether any of the observed genetic
correlations between SUD and schizophrenia may constitute a
causal relationship (Fig. 1b, Supplementary Table 1). There was no
evidence for partial genetic causality of CUD, ND, CPD, DPW, and
LCU on schizophrenia, but there was moderate evidence that AD
was partially genetically causal for schizophrenia (GCP= 0.60,
SE= 0.22, P= 0.001). We note that while the SNP heritability
estimate for AD was significantly non-zero, the Z-score for AD (h2/
SE) was somewhat noisier (Zh

2= 5.98) than recommended by the
authors of the LCV method (Zh

2 > 7). As a result, this inference of
partial genetic causality needs to be cautiously interpreted in light
of this, with larger GWAS of AD diagnosed using DSM-IV/DSM-V or

Fig. 1 Genetic relatioships between substance use disorders and schizophrenia. a Genetic correlation forest plot between schizophrenia
and SUDs (AD, CUD, ND, and OD), rg calculated using linkage disequilibrium (LD) score regression. b Latent causal variable (LCV) model to test
for partial causality with posterior mean genetic causality proportion (GCP) estimates of each SUD on schizophrenia. Absolute magnitude of
the Z-score relates to the test of whether the posterior mean GCP estimate is significantly different than zero. The vertical line represents
genetic causality, with a posterior mean GCP > 0.6 implying partial genetic causality of trait 1 and trait 2, and inverse for GCP <−0.6. The
horizontal line represents an absolute Z-score of ~1.96, which is nominal uncorrected significance (P < 0.05) for a test of whether GCP value is
significantly non-zero.
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similar likely required to boost the precision of AD SNP heritability.
DPW did not show any evidence for a causal relationship with
schizophrenia like alcohol dependence. Interestingly, AD and DPW
showed genetic correlation (rg= 0.709, SE= 0.105,
P= 1.38 × 10−11), as did CUD and LCU (rg= 0.476, SE= 0.049,
P= 2.71 × 10−22) but there was no evidence of partial genetic
causality of DPW on AD (GCP= 0.05, SE= 0.56, P= 0.88) or CUD
and LCU (GCP= 0.02, SE= 0202, P= 0.976). No evidence of
genetic correlation was observed among ND and CPD (rg= 0.071,
SE= 0.054, P= 0.192). These results suggest that the underlying
mechanisms driving AD, CUD, and ND may not strongly present in
substance use observed in a population sample, although this
requires further investigation.

Gene-based multivariate association reveals 44 novel signals
for substance dependence and schizophrenia
Using aggregated gene-level association (MAGMA) on the
individual traits, we observed that 534 genes were associated
with schizophrenia alone after Bonferroni correction
(P < 2.7 × 10−6, Supplementary Table 2). For cannabis use disorder,
2 genes were significantly associated including, PDE4B
(P= 2.09 × 10−6) and FOXP2 (P= 9.30 × 10−7, Supplementary
Table 3), and one gene for nicotine dependence—ARHGAP22
(P= 2.42 × 10−6, Supplementary Table 4). While no genes were
associated with AD and OD after multiple-testing correction, 9
genes were significantly associated with life-time cannabis use:
LRRTM4 (P= 4.51 × 10−7), CADM2 (P= 1.14 × 10−13), AS3MT
(P= 9.43 × 10−7), NCAM1 (P= 1.44 × 10−9), ATXN2L
(P= 1.85 × 10−8), TUFM (P= 5.72 × 10−8), SH2B1 (P= 3.15 × 10−8),
ATP2A1 (P= 1.68 × 10−8), RABEP2 (P= 1.64 × 10−6), and SRR
(P= 1.61 × 10−6) (Supplementary Table 5) with none of these
genes shared with CUD.
The genetic architecture shared between schizophrenia and

substance dependence was further investigated using genic
pairwise meta-analysis (MAGMA) to identify potentially pleio-
tropic signals that do not reach conventional significance
thresholds in the individual GWAS (Fig. 2). The number of genes
that survived Bonferroni correction in each of the meta-analyses
was as follows: 444 genes for schizophrenia meta-analysed with
OD, 437 genes for schizophrenia meta-analysed with AD, 94
genes for schizophrenia meta-analysed with CUD, and 99 for
schizophrenia meta-analysed with ND. The top hit for schizo-
phrenia, HIST1H4 (P= 2.86 × 10−38), was also the most signifi-
cant for the schizophrenia meta-analysis with AD
(P= 2.70 × 10−31), and OD (P= 4.50 × 10−36). Whereas the most
significant gene observed in the CUD and schizophrenia meta-
analysis was ST3GAL3 (P= 9.68 × 10−16) and in the ND and
schizophrenia meta-analysis the gene ZFYVE21 (P= 1.11 ×
10−14). We then restricted these genes to those which were
also at least nominally significant (P < 0.05) in the individual
GWAS for schizophrenia and SUD but did not survive multiple-
testing correction for either of the respective univariable GWAS
(schizophrenia+ AD= 16, schizophrenia+ CUD= 15, schizo-
phrenia+ ND= 5, schizophrenia+ OD= 13, Supplementary
Tables 6–9). These genes are likely more biological salient, as
many of the other, which survived correction in the meta-
analyses that did not reach nominal significance in the
respective SUD GWAS were driven purely by schizophrenia
given its greater discovery power. Interestingly, five of these
genes were found in more than one bivariate meta-analysis;
specifically, (1) TRAF3IP2 and (2) MED19 in the schizophrenia+
AD, schizophrenia+ CUD, and schizophrenia+ ND meta-ana-
lyses; along with (3) a BDNF, (4) FUT2 and (5) IZUMO1 for both
the schizophrenia+ AD and schizophrenia+ CUD meta-analysis
(Table 1). In the schizophrenia with AUD meta-analysis, which
demonstrated evidence of sample overlap due to the non-zero
LDSR intercept, we found that leveraging the Cauchy distribu-
tion to ensure the meta-analytic P-values was not inflated by

sample overlap yielded highly similar results to the default
Stouffer’s method (r= 0.9744 [95% CI: 0.9737, 0.9752]).

Bivariate gene-set association meta-analysis uncovers novel
biological systems involved in schizophrenia and substance
use disorders
We investigated the involvement of 14,969 gene-sets (MsigDB
v7.4) in four categories including Biological Process (BP), Cellular
Component (CC), Molecular Function (MF), and Human Phenotype
Ontology (HPO), respectively. For the individual schizophrenia
GWAS, 84 gene-sets remained statistically significant after
multiple-testing correction (FDR < 0.05). No gene-sets passed false
discovery rate (FDR) correction for the individual substance
dependence phenotypes.
In the pairwise meta-analysis, 73 gene-sets were statistically

significant (FDR < 0.05), for schizophrenia meta-analysed with AD,
with 10 gene-sets not previously observed in the individual
schizophrenia GWAS (Supplementary Table 10), including long-
term synaptic potentiation (ngenes= 81, P= 5.71 × 10−5, FDR=
0.02), exocytic vesicle (ngenes= 196, P= 1.23 × 10−4, FDR= 0.03),
paroxysmal ventricular tachycardia (ngenes= 23, P= 1.70 × 10−4,
FDR= 0.03), peptidyl serine dephosphorylation (ngenes= 19,
P= 1.75 × 10−4, FDR= 0.04), hypoplasia of the olfactory bulb
(ngenes= 4, P= 2.12 × 10−04, FDR= 0.04), regulation of heart
contraction (ngenes= 221, P= 2.32 × 10−4, FDR= 0.04), and regula-
tion of peptidyl serine dephosphorylation (ngenes= 5,
P= 2.32 × 10−4, FDR= 0.04). The schizophrenia and CUD meta-
analysis yielded 33 statistically significant sets, with 12 not
observed in the individual SZ GWAS (Supplementary Table 11).
Some of these novel gene-sets of interest were; abnormal social
behaviour (ngenes= 140, P= 7.46 × 10−7, FDR= 0.002), aggressive
behaviour (ngenes= 165, P= 1.75 × 10−5, FDR= 0.018), hypoplasia
of the olfactory bulb (ngenes= 4, P= 7.24 × 10−6, FDR= 0.01), and
obsessive compulsive behaviour (ngenes= 90, P= 6.66 × 10−5, FDR=
0.04). There were 60 gene-sets passed FDR correction in the
schizophrenia meta-analysis with OD (Supplementary Table 12),
with 9 not previously seen in individual SZ GWAS, including
spherical high-density lipoprotein particle (ngenes= 8,
P= 6.84 × 10−5, FDR= 0.02), histone deacetylase complex (ngenes=
70, P= 9.25 × 10−5, FDR= 0.03), and aggressive behaviour
(ngenes= 165, P= 1.68 × 10−5, FDR= 0.04). Finally, schizophrenia
meta-analysed with nicotine dependence yielded the fewest
significant gene-sets (31 gene-sets, Supplementary Table 13),
however, 10 sets were still novel relative to what was observed in
each individual GWAS, such as: neurotrophin receptor binding
(ngenes= 11, P= 2.85 × 10−5, FDR= 0.02), glutamatergic synapse
(ngenes= 284, P= 4.00 × 10−5, FDR= 0.03), long-term synaptic
potentiation (ngenes= 81, P= 4.69 × 10−05, FDR= 0.03), and type I
pneumocyte differentiation (ngenes= 5, P= 7.70 × 10−5, FDR=
0.03). Interestingly, the human behaviour ontology set abnormal
aggressive impulsive or violent behaviour and aggressive behaviour
was common among schizophrenia meta-analysed with CUD, ND
or OD, while long-term synaptic potentiation (LTP) was also
common between schizophrenia and AD and ND.
We then considered the association of 2,598 microRNA (miRNA)

regulatory target prediction gene-sets with each individual GWAS,
followed by the bivariate meta-analyses (Supplementary Tables
14–18). There were 239 miRNA that passed FDR correction for the
individual schizophrenia GWAS, no miRNA regulator target gene-
sets passed FDR correction for any of the individual substance
dependence phenotypes. Notably, each of the meta-analyses
revealed a total of 17 microRNA regulatory target gene-sets, not
seen in the individual phenotypes, including six found in more
than one bivariate meta-analysis. One such interesting example
was the predicted target genes of miR-495, a microRNA that is
highly enriched in the nucleus accumbens and has been shown to
play a role in addiction-related behaviours [37]. MiR-495 survived
correction in both schizophrenia and AD meta-analysis (ngenes=
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Fig. 2 Pairwise genic meta-analyses of schizophrenia and SUDs. Manhattan plot for each meta-analysis that displays the −log10-
transformed P-value for association for genes, which were tagged by at least one SNP in the respective GWAS. The red line represents the
Bonferroni threshold for multiple-testing correction (P < 2.7 × 10–6). Genes highlighted on each plot were not Bonferroni significant in the
individual GWAS, with overlapping genes across meta-analyses labelled. a SZ and AD, b SZ and CUD c SZ and ND, d SZ and OD.
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231, P= 2.43 × 10−3, FDR= 0.03), and the schizophrenia and ND
model (ngenes= 231, P= 5.88 × 10−5, FDR= 0.01) but was only
nominally significant in the individual schizophrenia GWAS
(P= 0.007), supporting how this meta-analysis approach can
increase discovery power.
The miRNA miR-137 is one of the most well studied genes

implicated by schizophrenia GWAS, the regulatory targets of miR-
137 (ngenes= 487) were significantly enriched with schizophrenia
associated variation considering the individual schizophrenia
GWAS (P= 4.54 × 10−5, FDR= 0.004). However, meta-analysis of
schizophrenia with each of the substance dependence pheno-
types did not increase this association, suggesting the signal was
more localised to schizophrenia upon considering the currently
available GWAS. We hypothesised that the biology associated with
targets of miR-137 may be shared with that of the 17 novel miRNA
target sets implicated by the meta-analysis. To test this, we
evaluated which biological pathways and other ontological gene-
sets the targets of miR-137 were overrepresented in relative to the
17 novel miRNA target sets uncovered. We found that there were
several neuronal related processes enriched among the targets of
miR-137 and at least one of the 17 miRNAs’, such as neurogenesis,
nervous system development, and glutamatergic synapse and
several implicated in metabolic processes.

DISCUSSION
In this study we used genetic approaches to explore common
genes between schizophrenia and substance dependence using
GWAS that met strict criteria for a life-time diagnoses. As most
available substance use and misuse GWAS only measure a recent
state instead of a stable trait, and substance dependence is likely
neurodevelopmental in origin, most current SUD GWAS likely do
not capture life-time substance dependence. A 2020 study by
Zhou et al. on problematic alcohol use (PAU) [38] and a 2021 study
by Johnson et al. [39] on alcohol use disorder (AUD) also
investigated the genetic overlap with schizophrenia, using the
Million Veterans Program (MVP) Phase 1 summary statistics reliant
on Alcohol Use Disorders Identification Test (AUDIT-C), and the UK
biobank (UKBB) summary statistics that use AUDIT-P. Although
Zhou et al. showed genetic correlation among the entire MVP
AUD and PGC AD (rg= 0.98, SEM= 0.11, P= 1.99 × 10−19), the
AUDIT is still limited to the past 12-months [40, 41]. Though the
PGC summary statistics are smaller in sample size, they offer a

more precise assessment of alcohol dependence [17]. Further
work is required to refine phenotypes that index dependence and
balance available sample sizes verses the informativeness of the
metric.
In this study, we further supported previously known evidence

of genetic correlation between schizophrenia and these substance
dependence phenotypes, while there was further evidence of a
causal relationship between alcohol dependence and schizophre-
nia. Interestingly, there was no causal relationship between the
consumption of alcohol (drinks per week) and schizophrenia, or
between AD and DPW. This was consistent with the trans-
ancestral GWAS of alcohol dependence [17], which suggested
there is a distinction in the underlying molecular mechanisms
driving pathological and non-pathological behaviours for sub-
stance use and dependence, particularly within biological path-
ways implicated in the psychopathological aspects of problematic
drinking [42]. Additionally, it is also well known that psychotic
symptoms can occur in several clinical conditions related to
alcohol such as intoxication, withdrawal, alcohol-induced psycho-
tic disorder, and delirium [43]. Although registry data-sets come
with several limitations such as the threat of false-negatives due to
under-reporting of substance use, a study on 18,478 Finnish
inpatients found alcohol-induced psychosis was the most
common type of substance-induced psychotic disorder (SIPD)
[44], with a separate Swedish study that followed 7606 individuals
for 84 months between 1995 and 2015 found that for alcohol the
risk for SIPD was 4.7% [45]. Interestingly, 22.1% (95% CI=
17.6−27.5) of patients who had previously received a diagnosis
of alcohol-induced psychosis went on to develop schizophrenia
[46]. The putative causal relationship of AD on schizophrenia
warrants further epidemiological and biological interrogation.
There are also some important limitations to the use of LCV
models—specifically, they are bivariate in nature, and thus, cannot
model the effect of other plausible mediators or confounders,
while the posterior mean GCP estimate is also not a causal
estimate that could be afforded by approaches like Mendelian
randomisation [24]. However, the use of Mendelian randomisation
with a binary exposure like AD can be challenging [47], particularly
as only a handful of genome-wide significant SNPs have been
identified that could be suitable instrumental variables.
Strikingly, we also observed 44 genes associated with substance

dependence in schizophrenia that were not seen in the individual
GWAS. Five of these genes (TRAF3IP2, MED19, BDNF, FUT2, and

Table 1. The top ten significantly associated genes observed in the schizophrenia and substance dependence (AD, CUD, ND, and OD) MAGMA meta-
analyses that were nominally significant (P < 0.05) in the individual GWAS but did not pass multiple-testing corrections.

Gene symbol PSZ PSUD PMETA

MED27 6.47 × 10−5 ND, 1.425 × 10−5 SZ+ND, 8.64 × 10−9

BDNF 4.22 × 10−6 AD, 1.08 × 10−2 SZ+AD, 2.75 × 10−7

CUD, 1.39 × 10−4 SZ+ CUD, 3.42 × 10−8

IZUMO1 2.29 × 10−5 AD, 6.52 × 10−3 SZ+AD, 1.05 × 10−6

CUD, 1.13 × 10−4 SZ+ CUD, 7.67 × 10−8

HYAL3 2.06 × 10−5 CUD, 1.47 × 10−4 SZ+ CUD, 9.83 × 10−8

HMGN4 3.65 × 10−4 CUD, 2.63 × 10−5 SZ+ CUD, 1.00 × 10−7

EP300 1.18 × 10−5 AD, 9.72 × 10−4 SZ+AD, 1.36 × 10−7

SPECC1 8.28 × 10−6 AD, 1.99 × 10−3 SZ+AD, 1.51 × 10−7

PPP2R2A 2.95 × 10−6 OD, 9.82 × 10−3 SZ+OD, 1.78 × 10−7

MED19 1.16 × 10−5 AD, 2.82 × 10−2 SZ+AD, 1.74 × 10−6

CUD, 3.53 × 10−4 SZ+ CUD, 2.01 × 10−7

OD, 3.25 × 10−2 SZ+OD,, 1.99 × 10−6

FUT2 3.37 × 10−6 AD, 1.02 × 10−2 SZ+AD, 2.10 × 10−7

CUD, 4.18 × 10−3 SZ+ CUD, 2.55 × 10−6
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IZUMO1) were common hits in more than one of the paired
disorders, with the 3’ untranslated region (UTR) of FUT2 previously
reported by Jang et al. to be associated with continuous alcohol
and psychiatric disorder phenotypes [48], and a cross-disorder
analysis of pleiotropic SNPs on AUD and SZ by Johnson et al. that
identified 55 convergent loci also reported FUT2 as a nearby gene
to one of these loci [39]. TRAF3IP2, encodes nuclear factor-kappa-B
(NF-κB) activator 1 (Act1), an IL-17 receptor adaptor protein [49].
TRAF3IP2 plays a critical role in the activation of multiple pro-
inflammatory signalling pathways [50], particularly IL-17. IL-17 is a
negative regulator of adult hippocampal neurogenesis, with the
absence of IL-17 shown to significantly improve neurogenesis and
enhance synaptic function [51]. Prenatal IL-17 expression has been
shown to influence neurodevelopment because of its role in cell
differentiation, signalling, and survival [51]. Mediator complex
subunit 19 (MED19) is a physical and functional target of
RE1 silencing transcription factor (REST), with combined depletion
of MED19/MED26 shown to result in de-repression of REST targets
in vivo [52]. REST is the master transcription factor of neuron-
specific genes, particularly during postnatal brain development
[53], and has been shown to modulate μ-opioid receptor (MOR)
gene expression [54]. The Mu opioid receptor (MOR) is a key
modulator of the dopaminergic system, with the rewarding
properties of opioids and non-opioid drugs shown in Oprm1−/
− mice to be reduced or eliminated [55].
MED19 is also a mediator of peroxisome proliferator-activated

receptor gamma (PPARγ) transcriptional activity [56], which is
essential for adipogenesis and glucose uptake and storage [57].
Interestingly, in the schizophrenia and OD gene-set analysis, the
gene-set spherical high-density lipoprotein particle was enriched. In
humans, activation of PPARγ is generally associated with an
increase in plasma HDL-cholesterol [58]. Adipose tissue is an
endocrine gland, which secretes leptin and adiponectin, cytokines
with pro- and anti-inflammatory properties, respectively [59]. The
dysregulation of adipokine levels has been associated with
schizophrenia and other related disorders [60], with Olanzapine,
clozapine, and quetiapine shown to elevate the pro-inflammatory
cytokine, leptin [61]. Cocaine- and amphetamine-regulated
transcript (CART) production and action is also modulated by
leptin [62]. Moreover, there is evidence that schizophrenia genetic
risk among insulin and glycaemic related pathways could be a
target of therapeutic intervention [63, 64].
Brain-derived neurotrophic factor (BDNF) has long been linked

to neurodegenerative diseases and psychiatric disorders such as
substance dependence [65]. BDNF plays an important role in the
regulation of synaptic strength and plasticity in the brain [66],
glucose metabolism and the regulation of mammalian food intake
via signalling in hypothalamic circuits [67, 68]. Hyperphagic
obesity has been shown to develop in humans heterozygous for
BDNF [69, 70]. Notably, we also detected a novel, Bonferroni
significant association with BDNF upon meta-analysis of schizo-
phrenia with alcohol dependence and cannabis use disorder. In
the gene-set analyses, neurotrophin receptor binding was also a
novel ontological pathway significant for schizophrenia and ND.
Additionally, several of the novel 44 genes have also been found
to play important roles in metabolism. In mouse studies, protein
tyrosine kinase 2 beta (PTK2B) was found to play a critical role in
the differentiation of beige adipocytes [71], CD47–/– knockout
resulted in resistance to insulin desensitisation, glucose intoler-
ance and diet-associated weight gain [72]. Spherical high-density
lipoprotein particle was also a significant pathway in the
Schizophrenia and OD meta-analysis.
The ontologies enriched for the 17 microRNA regulatory target

gene-sets not seen in the individual phenotypes, that were
significant in the schizophrenia and substance dependence
analyses also revealed some biologically salient insights. For
instance, miR-5580 target genes were enriched in insulin receptor
signalling pathway and miR-7856 target genes were enriched in

several pathways implicated in the regulation of glucose
metabolism. miR-137 target gene-sets were also enriched in
several metabolic pathways including regulation of cellular
response to insulin stimulus. Literature has shown that microRNAs
may regulate gene networks involved in disorders like schizo-
phrenia [73]. miR-495 also directly targets the 3’ UTR of BDNF, with
overexpression of miR-495 found to suppress cocaine self-
administration in mice [37].
This study explores the molecular determinants of shared

vulnerability in SUDs and SZ, however, this work has several
limitations. Firstly, the binary SUD phenotypes used different
diagnostic criteria; specifically, AD, CUD, and OD used the DSM-IV
and DSM-V, while ND was derived from inpatient ICD-10 codes.
Second, as there is significant heterogeneity in the cases and
controls, it is difficult to determine if the phenotypes in the
samples studied were using other substances or had a history of
dependence to other substances. As a result, significant enrich-
ment of genes and gene pathways for the shared SZ and SUD
genetic signals may arise due to either a comorbidity and/or
pleiotropy with other dependence phenotypes and do not imply
causal biology that would necessarily be beneficial to either
schizophrenia and the substance use disorder phenotypes. The
studies where case numbers are smaller could also result in an
inflated effect size of associated variants, and our shared genes
may be the result of being in linkage disequilibrium with the
causal gene. The difference between exposed and unexposed
controls is also a potential confounder, particularly for the OD
GWAS, as OD only requires exposed controls have a history of
opioid use (prescription and/or illicit), it does not account for
potential behavioural differences in subjects who have been
exposed to prescription opioids as compared to those which are
illicit. Future GWAS of polysubstance dependence would also be
invaluable to disentangle some of the complex biological drivers
of these disorders. Lastly, the findings in this study are limited to
European/caucasion populations only, and give an incomplete
picture of the genetic underpinnings of SUDs comorbid with
schizophrenia.
Despite the significant disease comorbidity in schizophrenia

and substance dependence, previous GWAS for these disorders
failed to reveal large overlap between genome-wide significant
hits. We demonstrate that the increase in power afforded through
our pairwise meta-analysis approach was able to identify shared
genetic signals, including new genes and biological pathways
relevant to both the neurobiology of addiction and psychosis.
These novel genes and biological systems should be used in
future analyses to refine whether causal variation is mapped to
these genes, and whether any of these signals could warrant
therapeutic intervention.
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