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Human gut microbiota produce a variety of molecules, some of which enter
the bloodstream and impact health. Conversely, dietary or pharmacological
compounds may affect the microbiota before entering the circulation. Char-
acterization of these interactions is an important step towards understanding
the effects of the gut microbiota on health. In this cross-sectional study, we
used deep metagenomic sequencing and ultra-high-performance liquid
chromatography linked to mass spectrometry for a detailed characterization
of the gut microbiota and plasma metabolome, respectively, of 8583 partici-
pants invited at age 50 to 64 from the population-based Swedish CArdio-
Pulmonary biolmage Study. Here, we find that the gut microbiota explain up to
46% of the variance of individual plasma metabolites and we present 997
associations between alpha diversity and plasma metabolites and 546,819
associations between specific gut metagenomic species and plasma metabo-
lites in an online atlas (https://gutsyatlas.serve.scilifelab.se/). We exemplify the
potential of this resource by presenting novel associations between dietary
factors and oral medication with the gut microbiome, and microbial species
strongly associated with the uremic toxin p-cresol sulfate. This resource can be
used as the basis for targeted studies of perturbation of specific metabolites
and for identification of candidate plasma biomarkers of gut microbiota
composition.

The bacteria, archaea, viruses, protozoa, and fungi that reside in the composition of small molecules in plasma, i.e. the plasma

gastrointestinal tract are collectively referred to as the gut microbiota.
The gut microbiota is shaped by all lifetime exposures of an individual
including diet, disease history, antibiotics, and other medication’; and
by intrinsic factors, such as age and host genetic variation”. Conversely,
observational studies suggest a role of gut microbiota composition in
chronic disease development e.g. cardiovascular disease, obesity, and
type 2 diabetes, but evidence of causality and mechanistic under-
standing of these effects are largely absent®”. Modification of the

metabolome®, has been suggested as a potential mediator of gut
microbiota effects on human health, as gut microbiota produce and
modify a number of molecules, some of which are taken up into the
bloodstream. Consequently, characterization of the interactions
between gut microbiota and host plasma metabolites could provide
crucial insights into the effects of the gut microbiota on human health.

Previous studies®™ reporting associations between the gut
microbiota and the circulating metabolome have been hampered by
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either small sample size (e.g. <1000 samples), limited data on health-
related traits, or limited resolution of gut microbiota composition (e.g.
16S rRNA sequencing) and metabolome data (e.g. NMR profiling).
While these studies have shown that the gut microbiota composition is
associated with at least a portion of the plasma metabolome, major
questions remain. Specifically, since statistical power has been limited,
moderate effect sizes or associations of rare species with metabolites
have not been possible to assess. Further, there is an imminent need
for a public resource of these associations as a useful tool to help the
researchers better understand the gut microbiota - plasma metabo-
lome interplay.

Here, we applied state-of-the-art high resolution deep metage-
nomic sequencing and mass spectrometry-based metabolite profiling
to analyze samples from 8583 individuals from SCAPIS, a well-
characterized population-based study. We generated the searchable
GUTSY Atlas (https://gutsyatlas.serve.scilifelab.se/) of robust associa-
tions between the gut microbiota and host plasma metabolome
including functional metabolic modules.

Results

Gut microbial species and plasma metabolite profiling of the
SCAPIS study

SCAPIS" is a prospective population-based observational study of
30,154 men and women living in six municipality regions in Sweden. A
randomly selected sample of individuals aged 50 to 64 based on the
population register were invited during the years 2014 to 2018 to
participate in the baseline investigation. We focused on data and
samples obtained at two study sites, Malmo6 and Uppsala, where fecal
samples were collected at home, and from which DNA was successfully
extracted, whole-genome shotgun-sequenced, and taxonomically and
functionally profiled in 9818 samples. In addition, 8957 fasting venous
plasma samples collected during study site visit were successfully
profiled using ultra-high-performance liquid chromatography linked
to mass spectrometry. Overall, data for 8583 participants that had high
quality metagenomics and metabolomics data as well as complete
information on main model covariates were used for all analyses. The
taxonomic profiling resulted, at the super kingdom level, in 1520
bacterial, 4 archaeal, 2 eukaryotic, and 2 unclassified metagenomic
species, from now on called species, which were identified based on
their microbial gene profile, with an average of 325 species per sample
(range: 26-663, Supplementary Data 1). The metabolite profiling pro-
vided data on 1321 metabolites, of which 1052 were annotated from
114 subclasses of metabolites, with an average of 1153 measured
metabolites per sample (range: 982 to 1254, Supplementary Data 2).
The main sociodemographic and clinical characteristics of these 8583
participants are shown in Table 1. The characteristics of the present
study sample were similar to those of the complete study sites of
SCAPIS-Uppsala and SCAPIS-Malmo. However, since the study sample
for metabolomics was enriched for participants with complete data,
there were fewer participants who had missing lifestyle information in
the Malmo subsample compared with the complete SCAPIS-Malmo
study sample (Supplementary Data 3).

Metabolite signatures of microbial diversity

We first investigated the association of microbial alpha diversity with
individual plasma metabolites. Alpha diversity was estimated using the
Shannon diversity index, a measure of overall microbiota richness and
evenness previously reported as inversely associated with markers of
metabolic health®. We observed that alpha diversity was positively
associated with 565, and negatively associated with 432, of the 1321
plasma metabolites in models adjusted for age, sex, place of birth,
study site, microbial DNA extraction plate, and metabolomics delivery
batch (Fig. 1 and Supplementary Data 4). There were 109 associations
with an absolute Spearman’s p>0.15 and 17 associations with an

Table 1| Main sociodemographic and clinical characteristics
of the Malmoé and Uppsala SCAPIS study sites included in the
current study

Malma(n = 3811) Uppsala(n =4772)

Age 57.4 (4.3) 57.7 (4.4)
Sex: female 2009 (52.7%) 2451 (51.4%)
Place of birth
Scandinavia 2976 (78.1%) 4295 (90.0%)
Non-Scandinavian Europe 543 (14.2%) 184 (3.9%)
Asia 202 (5.3%) 193 (4.0%)
Other 90 (2.4%) 100 (2.1%)
Body mass index, kg/m? 27.2 (4.5) 27.0 (4.4)
Systolic blood 122 (16.4) 125 (15.9)
pressure, mmHg
Estimated glomerular 84.5 (12.1) 87.0 (11.5)

filtration rate

Smoking status

Current 640 (16.8%) 431(9.0%)
Former 1460 (38.3%) 1461 (30.6%)
Never 1678 (44.0%) 2638 (55.3%)
Missing 33 (0.9%) 242 (5.1%)

Fiber intake, g/kcal® 0.012 (0.004) 0.012 (0.004)

Coffee intake

<1 times/d 518 (13.6%) 580 (12.2%)
1-2 times/d 1291 (33.9%) 1384 (29.0%)
3-4 times/d 1431 (37.5%) 2116 (44.3%)
>4 times/d 548 (14.4%) 672 (14.1%)
Missing 23 (0.6%) 20 (0.4%)
Any antibiotics, last 12 months 786 (20.6%) 896 (18.8%)
Hypertension medication® 775 (20.3%) 883 (18.5%)
Cholesterol medication® 319 (8.4%) 352 (7.4%)
Diabetes medication® 170 (4.5%) 161 (3.4%)
Dispensed prescription 163 (4.3%) 143 (3.0%)

for metformin, last 12 months

Dispensed prescription for 452 (11.9%) 396 (8.3%)

omeprazole, last 12 months

Continuous variables are provided as mean (standard deviation) and categorical variables as
n (%).

“Fiber intake, adjusted for total energy intake.

°Self-reported medication last 2 weeks.

absolute Spearman’s p>0.30. Significance was based on p-values
adjusted for multiple testing, which we report as g-values, using the
Benjamini-Hochberg method' at a 5% false discovery rate. Regarding
annotated metabolites, we observed the strongest positive associa-
tions for the metabolite 5alpha-androstan-3beta,17alpha-diol disulfate
(p=0.44, p-value <107%), a sulfated steroid; and 3-phenylpropionate
(hydrocinnamate) one of the main phenolic metabolites present in
human feces” (p=0.39, p-value =4.0 x 102%), and cinnamoylglycine
(p=0.39, p-value=5.6x10"%). All three are previously reported
strongly positively associated with alpha diversity’ and the two latter
with lower risk of type 2 diabetes”. These observations indicate that
gut microbial diversity is robustly associated with a range of specific
plasma metabolites and motivated the ensuing detailed investigations
of specific gut microbiota species.

Associations of gut microbiota with plasma metabolome show
large variation across groups of microbial species and
metabolites

We used a series of nested cross-validated ridge regression models to
assess the variance in each plasma metabolite explained by the
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Fig. 1| Partial Spearman’s rank correlation between species alpha diversity and
1321 plasma metabolites adjusted for age, sex, place of birth, study site,
microbial DNA extraction plate, and metabolomics delivery batch. The asso-
ciation of Shannon diversity index based on deep metagenomic sequencing of fecal
samples and 1321 plasma metabolites measured with ultra-high performance liquid
chromatography linked to mass spectrometry in 8583 participants aged 50 to 65 of
the Swedish CArdioPulmonary biolmage Study. There were 565 significant positive
associations and 432 significant negative associations after adjusting for multiple
testing using Benjamini-Hochberg’s method at 5% false discovery rate. Green,
positive associations; blue, negative associations; gray, indicates the non-
characterized metabolites. Labels are shown for the 2 most positively and nega-
tively correlated characterized metabolites. The dashed line represents the multi-
ple testing threshold. The p-values were capped at 107, Source data are provided
as a Source Data file.

variation of the gut microbiota. We observed that the variance of 1168
of the 1321 metabolites was partly explained by variation in the gut
microbiota (Fig. 2a and Supplementary Data 5). We detected the lar-
gest variance explained (46%) for an uncharacterized common meta-
bolite with the provisional identifier X-11850. The main feature mass-
to-charge ratio (m/z), retention-time index (RI), and measurement
platform for all uncharacterized and characterized metabolites are
reported in Supplementary Data 2. However, MS/MS spectral data are
not shared by the external laboratory (See Data Availability Statement).
The variance explained by gut microbiota species was >10% for 133
metabolites and >25% for 22 metabolites, such as uremic toxin p-cresol
sulfate (=36%) and the coffee metabolite quinate (r?=27%). For tri-
methylamine N-oxide, TMAO, the end-product of diet-microbiota
interaction, which has been suggested involved in cardiovascular and
kidney disease pathogenesis®®, we found a rather low variance
explained by the gut microbiota (r*=1.7%). These observations high-
light the large heterogeneity in associations of gut microbiota com-
position with plasma metabolites.

Associations of gut microbiota with plasma metabolome are

many and robust over a range of lifestyle and health factors

We next assessed the links between 1528 microbial species and 1321
metabolites using a series of partial Spearman’s rank correlations,
adjusting for age, sex, place of birth, study site, microbial DNA
extraction plate, and metabolomics delivery batch. We identified sig-
nificant associations (g-value <0.05) in 546,819 (27%) of all tested
species-metabolite pairs, of which 298,982 were in the positive
direction and 247,837 in the negative direction (Fig. 2b and Supple-
mentary Data 6). There were 10,965 associations with an absolute
Spearman’s p > 0.15 and 439 associations with an absolute Spearman’s
p>0.30. In Supplementary Data 6 we also report results from a sen-
sitivity analysis, where we additionally adjusted for the Shannon
diversity index as a measure of alpha diversity. This analysis is poten-
tially less susceptible to false positives due to the compositionality of
the microbial species data, at the cost of increased risk of model

misspecification and bias, i.e. alpha diversity can potentially act as a
mediator or collider. Additionally, adjustment for alpha diversity can
result in reduced power due to collinearity of microbial species with
alpha diversity. While all species and metabolites had at least one
observed association, many species (n=623) were associated with a
broad range (>30%) of metabolites. Conversely, 504 metabolites were
associated with a broad range (>30%) of species. The associations
between species and metabolites were not generally affected by stra-
tification at the tertiles of body mass index (BMI), systolic blood
pressure, estimated glomerular filtration rate” (eGFR, a measure of
kidney function), fiber intake, nor by exclusion of smokers and indi-
viduals who had been prescribed antibiotics within a year of sampling
or taken medication for hypertension, dyslipidemia and/or diabetes
(Pearson correlation of Spearman’s p from non-stratified vs stratified
models r>0.91, Supplementary Fig. 1), findings which alleviated con-
cerns about major confounding effects by these factors. However, we
did find lower correlation of results within participants with low (<1
times per day, r=0.87) or high coffee intake (>4 times per day,
r=0.87), current smokers (r=0.84), and participants with cholesterol
(r=0.81) or diabetes medication (r=0.64). This could be explained by
lower precision of the estimates as groups were smaller (n: 331-1220),
or by effect modification by these factors for some associations.
Generally, metabolites for which the variance explained by gut
microbiota was high also had a high number of associations with
individual species (Fig. 2c). Overall, these observations show a plethora
of associations between gut microbiota species and the metabolome
that are in general robust over a range of lifestyle and health factors.

Certain species are associated with multiple metabolites, often
within the same class of metabolites

We observed several examples of the same microbial species having
both strong positive and negative associations with metabolites within
the same subclass of metabolites, indicating that these species might
affect specific processes (Fig. 2b). One observed example is Haemo-
philus parainfluenzae, a bacterial species previously linked to bile tract
infections™, that was strongly positively associated with the primary
bile acid salt cholate and negatively associated with the secondary bile
acid deoxycholic acid 12-sulfate. To investigate whether this was a
more general pattern, we grouped single metabolites into metabolite
subclasses, and assessed whether alpha diversity and individual spe-
cies were linked to several metabolites of the same subclass, where
each subclass contained at least 5 metabolites. Overall, we found evi-
dence supporting the enrichment of two specific metabolite sub-
classes for alpha diversity (positive: vitamin A metabolism, negative:
secondary bile acid metabolism, g-value < 0.05, Supplementary Data 7)
and of 59 unique metabolite subclasses for 1402 microbial species
(3505 total enrichments, g-value<0.05, Supplementary Data 8).
Among the 10 strongest enrichments, we observed nine enrichments
for secondary bile acids in the species-metabolome associations
(positive: Eubacteriales sp. MGS:0662, Enterocloster asparagiformis,
Oscillospiraceae sp. MGS:0104, Anaerotignum faecicola; negative:
Intestinibacter bartlettii, Intestinibacter sp. MGS:0194, Turicibacter
sanguinis, Clostridium disporicum and Peptostreptococcaceae sp.
MGS:0200). Given these findings, we set out to leverage the atlas to
identify species influencing the rate of deoxycholic acid formation
from cholic acid by 7a-dehydroxylation, which is one of the main first
steps in the formation of secondary bile acids from primary bile acids.
Previous research has detected bile acid 7a-dehydroxylation activity in
a limited group of bacteria in the clostridial rRNA cluster XIVa in the
Lachnospiraceae family in the Eubacteriales order”. To identify
potential new species with 7a-dehydroxylation activity, we assessed
gut species correlated with low plasma levels of the precursor cholic
acid and increased levels of the product deoxycholic acid. Both the
primary bile acid cholic acid (denoted cholate in the atlas) and the
secondary bile acid deoxycholic acid (deoxycholate) had a high
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variance explained by the microbiota (r* =18% and 22%, respectively),
indicating a strong impact of the variation in microbiota composition.
Of the 20 species with strongest negative correlation with cholate and
20 species with strongest positive correlation with deoxycholate,
seven were in common. We confirmed these findings using a model
with deoxycholate/cholate ratio as outcome (all p-values<10™%).

Variance explained

These species were all from the Eubacteriales order and include novel
findings indicating a role in bile acid metabolism such as Anaero-
truncus colihominis, Intestinibacillus sp. Marseille-P4005, Oscillibacter
sp. PEA192, Flavonifractor plautii and Mediterraneibacter glycyr-
rhizinilyticus, and two Lachnospiraceae species previously linked to
bile acid metabolism: Enterocloster citroniae and Blautia obeum.
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Fig. 2 | Associations of gut microbiota with plasma metabolome show great
variation across groups of species and metabolites. a The variance in 1168 of the
1321 metabolites partly explained by variation in the gut microbiota from 8583
individuals aged 50 to 65 of the Swedish CArdioPulmonary biolmage Study. Models
were fitted for each metabolite using ridge regression using nested 10-fold cross-
validation. The variance explained was calculated as the cross-validated r* statistic.
Metabolites were grouped by metabolic pathway and the vertical line represents
the median of the variance explained for each group. The metabolite with the
largest variance explained for each group is annotated. b Partial Spearman’s rank

correlations between 1528 gut microbial species and 1321 plasma metabolites
adjusted for age, sex, place of birth, study site, microbial DNA extraction plate, and
metabolomics delivery batch. Depicted are the Spearman’s p for 298,982 sig-
nificant positive associations and 247,837 significant negative associations after
adjusting for multiple testing using Benjamini-Hochberg’s method at 5% false
discovery rate. Associations were grouped by taxonomic phylum. ¢ Variance
explained versus number of associated species for 1321 plasma metabolites.
Metabolites were grouped by metabolic class. Shown in black is the locally esti-
mated scatterplot smoothing line. Source data are provided as a Source Data file.

Collectively, our results indicate that certain related species are asso-
ciated with multiple metabolites within the same class of metabolites;
this was especially prominent for secondary bile acids and their
precursors.

Functions shared by several species are linked to single meta-
bolite abundance

Different microbiota species may share genetic elements that enable
them to perform the same metabolic function. We hypothesized that
such genetic elements shared by several species affect single meta-
bolite levels. We therefore mapped microbial genes to 103 gut meta-
bolic modules (GMM), in order to associate microbial metabolic
function with species associated with single metabolites. In total, we
found an enrichment of 90 unique microbial functions for 1295 plasma
metabolites (18,339 total enrichments, g-value < 0.05, Supplementary
Data 9). Among the microbial functions with strongest enrichments,
those functions encoding enzymes catalyzing the degradation of
amino acids and monosaccharides such as threonine (e.g. with genti-
sate), serine (e.g. with 1-(1-enyl-palmitoyl)-2-arachidonoyl-GPE (P-16:0/
20:4)), sucrose (e.g. with chenodeoxycholate), ribose (e.g. with tyr-
amine O-sulfate), and fructose (e.g. with pantothenate) were most
prominent. Overall, these findings support that certain functions
shared by several species are common in species that are associated
with plasma metabolite abundances.

The above analyses clearly show the existence of specific asso-
ciations between gut microbiota and the host plasma metabolome.
Below, we present detailed data of the association of selected
microbes and metabolites as case examples of information that can be
mined using the GUTSY Atlas of associations of the plasma metabo-
lome with gut microbiota. We focused on microbiota associations with
the uremic toxin p-cresol sulfate, as an example of a bacteria-derived
metabolite implicated in human health; and with omeprazole and
metformin, which are common medications that are thought to have
profound effects on the microbiota; and with coffee metabolites, as an
example of a common dietary component reported to have large
effects on the microbiota. A summary of all the results for these
metabolites can be found in Supplementary Data 10.

Faecalibacterium prausnitzii and Intestinimonas massiliensis are
strongly associated with the uremic toxin p-cresol and pheny-
lacetylglutamine, but in opposite directions

In the current study, we observed that 36% of the variation in p-cresol
sulfate plasma levels was explained by the variation in gut microbiota
— one of the highest proportions of explained variation of all meta-
bolites. The bacterial metabolite p-cresol is classified as a uremic toxin
and is produced during bacterial tyrosine fermentation in the large
intestine and accumulated in patients with kidney failure, and its levels
are associated with worse outcomes® . In a germ-free mouse model
of chronic kidney disease, transplantation of fresh microbiota from
end-stage renal disease patients led to increased serum levels of p-
cresol sulfate and other uremic toxins compared to serum samples
from mice transplanted with microbiota from healthy donors®. This
was interpreted to mean that the aberrant gut microbiota in renal
patients aggravates the disease by modulating uremic toxin levels, and

highlights the importance of better characterization of the uremic
toxin-producing microbiota. In our data, lower eGFR was associated
with higher levels of 10 established and proposed uremic toxins
(Spearman’s p-value <1072, Supplementary Data 11). We found that p-
cresol sulfate and the related metabolite p-cresol glucuronide as well
as the glutamine-derived phenylacetylglutamine”’ showed much
stronger associations with several species from the Eubacteriales order
(p-values = <1072%), including novel positive associations with Intesti-
nimonas massiliensis, than other established and proposed uremic
toxins, such as hippurate, indoxyl sulfate, TMAO, and 3-carboxy-4-
methyl-5-propyl-2-furanpropanoic acid (Supplementary Fig. 2). This
association supports that members of the Eubacteriales order, for-
merly called Clostridiales, is one of the most prolific phenol
compound-generating bacterial subgroups that produce p-cresol sul-
fate as a tyrosine fermentation end product®. Importantly, we also
found several strains of Faecalibacterium prausnitzii strongly inversely
associated with p-cresol levels and phenylacetylglutamine. Interest-
ingly, F. prausnitzii was one of the depleted species in the microbiota of
renal patients, compared to healthy controls®, and its reduced levels
have been linked to more severe stages of renal disease”. We per-
formed additional models stratified by eGFR, and found slightly
stronger associations in the individuals with lower kidney function
(Supplementary Fig. 2). In summary, we identify a number of species
that are strongly positively or negatively associated with p-cresol and
phenylacetylglutamine levels, which sets the foundation for future
studies into perturbation of the gut flora to reduce uremic toxins.

Increased abundance of oral bacteria and enrichment of func-

tions related to carbohydrate metabolism in omeprazole users
Omeprazole is a selective proton pump inhibitor (PPI) commonly used
for treatment of acid-related upper gastroduodenal diseases, and sold
over-the-counter as well as by prescription. We compared dispensed
omeprazole prescriptions with the plasma levels of omeprazole, and
observed that out of the 329 (4%) participants with detectable plasma
levels of omeprazole, 67% had a dispensed prescription for omepra-
zole in the past 12 months, while for the 8254 participants with non-
detectable levels, 8% had a prescription (Fisher’s exact test p-value =
4.0 x10™¥). In the present study, we observed strong positive asso-
ciations between presence of omeprazole in plasma and bacteria
belonging to the Veillonella genus (e.g., V. parvula, V. dispar and V.
atypica) and Streptococcus genus (e.g., S. anginosus, S. oralis subsp
oralis, S gordonii, S. salivarius, S. parasanguinis and S. mutans), all parts
of the normal oral microbiota. This expands previous findings from a
recent studies™*° that reported that PPl use was associated with an
increased abundance of several taxa common to the oral flora, such as
Veillonella and several Streptococcus species. Interestingly, V. parvula
is reported to have a mutualistic relationship with S. mutans by co-
aggregating and transforming metabolic products of other
carbohydrate-fermenting bacteria®. With regards to the potential
function of omeprazole-associated bacteria, we found that functional
modules linked to degradation of fructose, ribose, lactate and treha-
lose were strongly enriched (all p-values <107°) for bacterial species
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omeprazole and no other types of PPI, earlier studies have demon-
strated similar effects of different PPI types on the gut microbiota>*°.
Taken together, the current study provides strong support for the
notion that PPI use is associated with consistent alteration of gut
microbiota, characterized by the increased abundance of bacteria
common in the oral flora with an enrichment for bacterial functions
related to carbohydrate metabolism.

Profound changes of the gut microbiota composition and high
abundance of bacteria carrying genes enabling amino acid
metabolism with metformin treatment

Metformin is a widely used anti-diabetic drug that has been associated
with profound changes in the gut microbiota composition, and also
with gastrointestinal side effects such as bloating and discomfort***,
We compared dispensed metformin prescriptions with the plasma
levels of metformin (metformin is not metabolized in the body), and
observed that out of the 371 (4%) participants with detectable plasma
levels of metformin, 78% had a dispensed prescription for metformin
in the past 12 months, while for the 8212 participants with non-
detectable levels, only 0.2% had a prescription (Fisher’s exact test p-
value =<107%%%), Here we identified 462 species, whose abundances
were associated with plasma metformin, of which an increased abun-
dance of Escherichia marmotae and E. coli, and decreased abundance
of Romboutsia timonensis, Intestinibacter sp. MGS:0194 and Intestini-
bacter bartlettii were the strongest associations. These top findings are
in accordance with earlier studies reporting a significant enrichment of
E. coli in the gut microbiota of metformin users"*>** and a decreased
abundance in R. timonensis and I. bartletii”, as well as with a recent
randomized trial that showed that metformin treatment in over-
weight/obese individuals results in an increased abundance of E. coli
and a decreased abundance of /. bartlettii at 6 and 12 months of met-
formin treatment®. Further, an increase of Ruminococcus torques was
reported at both time points in that study*, which is also supported by
an earlier study” and our study (p-value = 3.8 x 107°), R. timonensis is a
new species that was recently isolated from the human gut® and has
not been associated with use of metformin prior to the Mueller et al.
study*. In species associated with metformin, we found strong posi-
tive enrichments for bacterial functional modules involved in amino
acid metabolism, namely the degradation of isoleucine and alanine,
which are previously reported to increase during metformin
treatment®*”. In addition, we found functional modules involved in
carbohydrate metabolism, such as the degradation of fructose and
trehalose, in line with data from an intervention study®. Taken toge-
ther, our results confirm and expand previous findings that metformin
treatment is associated with profound changes of the gut microbiota
composition, and that bacteria carrying genes enabling amino acid and
carbohydrate metabolism are in higher abundance in metformin users.

Coffee metabolites have strong positive associations with spe-
cies from the Eubacteriales order

Coffee is one of the most widely consumed beverages in the world and
has a complex and not fully elucidated relationship with human
health®. The PREDICT1 (n=1098) study revealed a large number of
diet-microbiota associations, of which the strongest combined asso-
ciations were found for coffee intake'. We sought to further investi-
gate the links between microbiota characteristics and coffee using the
GUTSY Atlas data by investigating 12 established coffee metabolomic
biomarkers**°. In our data, higher levels of these 12 coffee metabolites
were all associated with higher self-reported coffee intake in a dose-
dependent manner (Spearman’s p-value<10*, Supplementary
Data 12). We observed that 21 individual species in different combi-
nations represented the eight most strongly associated species for
each of these 12 biomarkers (as depicted in Supplementary Fig. 3).
These 21 species were all from the Eubacteriales order from the

Ruminococcaceae, Oscillospiraceae, Lachnospiraceae and Clos-
tridiaceae families, except S. salivarius. Three species were annotated
at the species level: C. phoceensis, Anaeromassilibacillus sp. Marseille-
P3371 and S. salivarius, which were all associated in the positive
direction with all the 12 coffee biomarkers. C. phoeensis was first
identified in the gut microbiota of a healthy 28-year-old man in
Marseille and has not previously been linked to any phenotypes.
Anaeromassilibacillus sp. Marseille-P3371 has been found to be affec-
ted by a low-protein diet in a dietary trial of chronic kidney disease
patients. The commensal bacterium Streptococcus salivarius is one of
the early bacteria colonizing the oral and gut mucosal surfaces. This
species is proposed to have positive effects in the oral cavity and upper
respiratory tract; it may inhibit colonization of other pathogens such
as S. pyogenes* and virulent Streptococcus species involved in tooth
decay such as S. mutans®, and also has anti-inflammatory character-
istics. It is currently not known why the abundance of certain gut
bacteria is positively associated with coffee intake. It does not seem to
be driven by smoking behavior (Supplementary Fig. 3), but it may be
related to the metabolism of these bacteria. Of note, coffee is rich in
antioxidants** and affects gut motility, which could also affect the
sampling and the bacterial community*. In summary, we report novel
association of previously reported coffee biomarkers with the abun-
dance in the gut microflora with a set of bacteria from the Eubacter-
iales order and with S. salivarius.

Discussion

We performed the largest and most detailed association study of the
gut microbiota and host plasma metabolites to date and present the
results as the online GUTSY Atlas, which can be used as the starting
point for targeted studies of perturbation of specific microbial spe-
cies and to identify candidate plasma biomarkers of gut flora com-
position. The analysis revealed 546,819 associations of individual
microbial species with metabolites, and confirmed and substantially
expanded previous studies in the area®'™. This resource is non-
targeted and therefore encompasses large parts of the described and
undescribed human gut microbial community and the plasma
metabolome, enabling researchers with varying interests to benefit
from the data.

We observe a large variation in the association of gut microbiota
species with plasma metabolites, where certain metabolites such as p-
cresol and secondary bile acids have strong associations with multiple
bacterial species, and others, such as nucleotides, have few associa-
tions. We report that certain species are associated with multiple
metabolites within the same class of metabolites; this was especially
prominent for secondary bile acids and their precursors, secondary
bile acids are produced by the gut bacteria and involved in fat and oil
digestion*®.

We also detect a number of novel observations in terms of
specific biomarkers, metabolites and drugs, such as the association
of coffee biomarkers with a set of bacteria from the Eubacteriales
order and with S. salivarius, which is regarded as a competitor to
more pathogenic strains of the genus Streptococcus. These results
support previous findings that coffee intake, one of the most con-
sumed beverages globally, has effects on the composition of the gut
microbiota, which warrants further investigations in the possible
links with health.

We find a number of species strongly associated with p-cresol
levels. P-cresol is regarded as an important uremic toxin, produced
during bacterial tyrosine fermentation in the large intestine and
accumulated in patients with kidney failure. This causes further
damage to the kidney, and can only be marginally removed by
dialysis?**, We identify several substrains of F. prausnitzii with variable
association with p-cresol, indicating that certain strains may have lar-
ger effects than others. The results from the GUTSY Atlas could hence
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be used as a foundation for designing future studies of gut flora per-
turbation in chronic kidney failure to reduce uremic toxins with the
purpose to decrease kidney disease progression.

Our study provides strong support for the notion that PPI use is
associated with consistent alteration of gut microbiota, characterized
by the increased abundance of bacteria common in the oral flora with
an enrichment for bacterial functions related to carbohydrate meta-
bolism. To find oral species in the gut microbiota is not uncommon.
Recent research has shown that about 40% of the common species
(>10% prevalence) are shared between the oral and gut microbiota
communities, although the relative abundance differed greatly
between these two sites*. PPI use is common in the population and
found associated with a number of traits in observational studies, such
as small intestine bacterial overgrowth. The health impact of PPI-
related changes of the gut microbiota warrants further investigation.

Our findings also confirm many of those reported in the pre-
viously largest high-resolution gut microbiome - plasma metabolome
study from the TwinsUK adult twin registry (n = 859)%. For example, for
the top 10 associations annotated to the species level in the TwinsUK,
nine were available in our study of which seven were replicated, i.e.,
associations between F. prausnitzii and p-cresol sulfate, p-cresol glu-
curonide, phenylacetylglutamine and deoxycholate, Methano-
brevibacter smithii and threonate, Roseburia inulinivorans and p-cresol
sulfate, and E. coli and phenylacetylglutamine. Interestingly, their top
finding of a strong association of Barnesiella intestinihominis with
plasma levels of sebacate (decanedioate) was not replicated in our
study, although both the species and the metabolite were present in
our data. Further, in the current study, the gut microbiota explained
46% of the variance in the uncharacterized molecule X-11850 and
explained >25% of the variance in other metabolites, such as coffee
metabolite quinate (»=0.27) and uremic toxin p-cresol sulfate
(*=0.36). This aligns with the recent study by Bar et al.', which ana-
lyzed these associations using similar methods but in two smaller
Israeli cohorts (n =491, replication in 1004 participants from TwinsUK
and 245 from IMI-DIRECT)™. For example, in the study by Bar et al.,
X-11850 exhibited the second highest variance explained (*=0.49),
and quinate (7> = 0.45) and p-cresol sulfate (> = 0.41) were also among
the top 10 highest variance explained. The identified large overlaps
with previous studies and the current study indicates that findings are
in general robust over different populations and analytical platforms.
Given the improved statistical power in the current study, we expan-
ded the number of findings from 254 associations of the TwinsUK
study to 546,819 associations in the GUTSY Atlas, also including
associations of moderate effect size and for more rare species. We also
confirm and expand previous findings that metformin treatment is
associated with profound changes of the gut microbiota composition,
and that bacteria carrying genes enabling carbohydrate metabolism
are in higher abundance in metformin users, in line with data from an
intervention study®.

Strengths and limitations

The major strengths of the current study are the sample size, high-
resolution data and the easy-to-use companion website. While we
replicated the findings of other studies, confirming the quality of the
generated data, we also identified many novel associations between
oral medication and the gut microbiome, and microbiota species
strongly associated with levels of the uremic toxin p-cresol sulfate. The
cohort analyzed in the current study is more than three times bigger
than the previously largest study in which gut microbiota were ana-
lyzed by 16S sequencing and associated with NMR-based plasma
metabolome profiling (n=2309)” and 10 times bigger than that of a
previously largest study in which gut microbiota were analyzed by
high-resolution metagenomics and associated with mass
spectrometry-based plasma metabolome profiling (n=859)%, which

allowed us to also assess associations of moderate size and with rare
metabolites and species. Another strength is the deep phenotyping of
the SCAPIS study, which allowed detailed sensitivity analyses of
potential confounders and effect modifiers'*. We also observed strong
concordance between lower kidney function and higher uremic toxin
levels, between dispensed prescriptions and plasma levels of drugs,
and between self-reported coffee intake and plasma coffee metabolite
levels. Consequently, the presented association atlas is based on a
large well-characterized sample and state-of-the art analytical methods
for microbiota and metabolomics which will enable well-powered
in silico exploration of the potential metabolic effect of various bac-
teria of interest and for identifying candidate plasma biomarkers of gut
flora composition.

However, some limitations of the present study should be
recognized. First, the study population comprises mostly
Scandinavian-born participants aged 50-65 of predominantly Eur-
opean descent. While the top findings for this cohort were similar to
those of samples for the UK (mean age: 65 years) and Israel (age:
18-70 years), generalizations for other species-metabolites associa-
tions to other populations and age groups need further investigation.
Second, the observational nature of the cross-sectional study design
makes residual confounding a potential issue and causal inference
difficult. Nonetheless, for food-derived metabolites, such as the
coffee metabolite quinate, and drugs, such as omeprazole and met-
formin, the causal direction from the medication/food intake to the
gut microbiota is most likely, although it could still be confounded by
factors that co-vary with the food and medication type. Conversely,
for metabolites produced by the gut microbiota, such as secondary
bile acids, we assume the causal direction from the gut microbiota to
the plasma metabolome. Any causal links should, however, be ver-
ified in the future by using experiments or causal inference methods,
such as Mendelian randomization*®*°, Third, similar to previous
studies, the associations were analyzed using rank-based non-para-
metric models, which hinders the interpretation of actual effect sizes.
Fourth, due to the compositionality of the microbial species data,
there might be an inflated number of false positives in our main
model. We therefore also report the results of a sensitivity analysis
additionally adjusted for alpha diversity, which is potentially less
susceptible to this issue, at the cost of increased risk of bias and lower
power. Metagenomic sequencing methods that can accurately
quantify the actual levels of microbial species will be required to fully
solve this issue. Fifth, although the number of annotated metabolites
and species is high in this study, many of the identified associations
were between unknown metabolites and species for which no refer-
ence genome is currently available, which makes the interpretation
of some of the novel findings in context challenging. We plan to
update the companion website as additional metabolites and species
are characterized in the future.

In summary, we here identified a vast number of robust associa-
tions between the gut microbiota and the plasma metabolome, and
report these to the community in the GUTSY Atlas, a comprehensive
online resource for an interactive investigation of the associations.
These findings add to the knowledge of the vast interactions of the gut
microbiota and human metabolism and will generate insights into
human biology and identification of potential novel biomarkers of gut
flora composition. We anticipate that the GUTSY Atlas will be of
immense benefit for the scientific community, reducing the need for
collecting and analyzing their own samples.

Methods

Study sample

SCAPIS is a prospective population-based study of 30,154 men and
women, aged 50-65 years, living in six municipality regions in Sweden.
It was designed with the main aim to improve risk prediction and
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understanding of cardiovascular disease, chronic pulmonary
obstructive disease, and related metabolic disorders'. After a pilot
study in 2012, recruitment was initiated in 2014 and completed in 2018.
Individuals were randomly recruited from the population register, with
a participation rate of 50%.

The present study is based on a subset of the 11,287 participants
from Uppsala (n =5036) and Malmo study sites (n = 6251). Participants
at both centers followed a 3-day-visit scheme, where anthropometric
measurements, dietary questionnaire, and blood draw were per-
formed at visit 1 and blood pressure measurements at visit 2. Fecal
sampling and health and lifestyle questionnaires were completed at
home between visits 1 and 2. Once collected, fecal samples were stored
at —20 °C until visit 2. The average number of days between visits 1 and
2 were 15 days for Uppsala and 11 days for Malmo.

Of these 11,287 participants, 9831 had their fecal samples pro-
cessed for metagenomics analysis. However, 12 samples were excluded
as they provided a low DNA yield and/or had features interfering with
the library preparation even after one attempt of re-extraction each.
Furthermore, one sample with only 1473 reads mapped to the sig-
nature genes was removed after sequencing. Hence, 9818 participants
were deemed to have high-quality fecal metagenomics data (Uppsala,
n=4838; Malmo, n=4980).

Out of the 8962 SCAPIS plasma samples processed for metabolome
profiling, two samples were lost during processing, two samples were
excluded whose data were determined to be outliers based on principal
component analysis, and one sample was excluded based on clearly
discordant levels of glucose, cholesterol, and creatinine compared to
the reference laboratory measurement. Hence, 8957 participants
(Uppsala, n =4979; Malmo, n =3978) were deemed to have high-quality
plasma metabolomics data. The metagenomics and metabolomics data
were then combined, yielding an overlapping dataset of 8616 partici-
pants (Uppsala, n=4787; Malmo, n=3829). We further excluded 33
participants (Uppsala, n=15; Malmo, n =18) with missing data for cov-
ariates in the main model, yielding a final study sample of 8583 parti-
cipants (Uppsala, n=4772; Malmo, n=3811) in the present study.

All study participants provided a signed informed consent at the
first site visit. The study adheres to the Declaration of Helsinki and was
approved by the Swedish Ethics Review Authority (Etik-
provningsmyndigheten Dnr 2010-228-31M, Dnr 2018-315). The parti-
cipants received no compensation for their participation.

Gut microbiome sample collection and preprocessing

At the first visit, participants received a pre-packaged fecal sample col-
lection kit (barcoded tubes, gloves, Ziploc bags, and a paper collection
bowl) including instructions on how to collect the sample at home. The
participants were asked to store the samples at -20 °C in the home
freezer until the study site visit. The participants were asked to store the
samples at —20 °C in the home freezer until the study site visit. Of the
8538 samples that were part of this study, 8131 samples were returned at
visit 2 (Uppsala, n=4629; Malmo, n=3502), 221 (Uppsala, n=107;
Malmo, n=114) samples were received within a week after visit 2, and
139 (Uppsala, n=31; Malmo, n=108) 8 days or later after visit 2. Once
received in the laboratory, the samples were kept at -20 °C for 0-7 days
until transport to the central biobank for storage at —-80 °C. Finally, the
samples were shipped on dry ice to Clinical Microbiomics A/S (Copen-
hagen, Denmark) for metagenomics analysis. Samples were analyzed in
a random order and 158 samples were analyzed in replicate.

Fecal DNA was extracted using NucleoSpin® 96 Soil kit (740787;
Macherey-Nagel; Germany). Negative and positive controls were inclu-
ded. Samples were subjected to 5 min of bead beating at 2200 rpm, with
1.2 pg of DNA obtained on average per sample. The sequencing of
metagenomes was performed using 2 x 150 bp paired-end sequencing
on lllumina Novaseq 6000 system (Illlumina, USA). On average, 26.3
million read pairs (7.9 Gb) were generated per sample for Malmo sam-
ples, and 25.3 million read pairs (7.6 Gbp) were generated per sample for

Uppsala samples. Sequencing reads with adapters, containing >10%
ambiguous bases, those with >50% bases with Phred quality score <5,
and reads mapped to the human reference genome GRCh38 were
removed using Bowtie 2 v02.3.2°° with default settings. The remaining
reads (median: 24.8 x 106, minimum: 8.2 X106 read pairs per sample)
were assembled using MEGAHIT v1.1.1°' and mapped using BWA mem
v0.7.16a> to a newly created gene catalog of 14 million non-redundant
microbial genes from three main sources: data from the present study
and the Malmo offspring study®, data from Pasolli et al.**, and 3488
publicly available genomes of isolated microbial strains relevant to the
human gut microbiome®**’, Metagenomic species were defined as co-
abundant gene groups from the gene catalog that fulfilled previously
established quality criteria®. In each species, 100 highly correlated and
distinct signature genes were identified and used for abundance pro-
filing. Overall, 1985 species were identified in the gene catalog. The
number of gene counts for every sample mapped to the signature genes
of a species determined the count number of that species. However, the
count number was set to zero for any species with reads mapping to <3
of its signature genes. Species relative abundances were calculated by
dividing the counts of each species by the effective length of its sig-
nature genes, and then normalizing each sample to sum to 100%. The
species relative abundances were (natural) log+l transformed, and
species with at least 100 non-zero measurements were included in fur-
ther analyses. After quality control, 1528 species were included, with an
average of 325 per sample. Shannon diversity was calculated using the
vegan®® v2.5-7 R package on downsized data to avoid confounding by
read depth. The reads in each sample were downsized by random
sampling without replacement from the gene count table correspond-
ing to the signature genes to 210,430 reads. One sample with only 1473
reads mapped to the signature genes was discarded. For taxonomic
annotation, catalog genes were compared to those in the NCBI RefSeq®°
database (https://www.ncbi.nlm.nih.gov/refseq/, downloaded on 2 May
2021). Species-level taxonomy was assigned to metagenomic species
with >75% of genes with >95% sequence similarity to a single species. For
the genus, family, order, class, and phylum annotations, different
thresholds were used (=60, 50, 40, 30, and 25% of genes; with >85, 75,
65, 55, and 50% sequence similarity, respectively).

For functional annotation, catalog genes were annotated to the
gut metabolic modules v1.07°' (https://github.com/raeslab/GMMs,
GMM) database using EggNOG-mapper®? v2.0.1. Potential functional
profiles were determined for species that contained at least 2/3 of the
enzymes/protein genes needed for the functionality of a particular
GMM module. If an alternative reaction pathway within a module
existed, only one such reaction pathway was required. All reaction
pathways were required for modules with fewer than four steps.

Plasma metabolome sample collection and preprocessing

Venous blood samples were collected from the participants during the
study site visit after an overnight fast. The samples were stored at -80 °C
in the biobank until shipping to Metabolon Inc. for plasma metabolome
analysis (Durham, NC, USA)®’. Samples were handled and analyzed in
random order together with different quality control standards, namely,
pure water, solvents used for metabolite extraction, a pool of human
plasma samples maintained by Metabolon Inc., and a pool of study
participants’ samples. Proteins were removed by methanol precipitation
with vigorous shaking using Glen Mills GenoGrinder 2000 and cen-
trifugation. To maximize metabolite identification, four processes were
used in parallel: reverse phase (RP)/ultrahigh performance liquid
chromatography-tandem mass spectroscopy (UPLC-MS/MS) with
negative-ion mode electrospray ionization (ESI), hydrophilic interaction
chromatography (HILIC)/UPLC-MS/MS, and two separate RP/UPLC-MS/
MS resolutions with positive-ion mode ESI. Peak identification and
quantification, and quality control were performed using Metabolon’s
hardware and software. For each metabolite, for each instrument plate
(144 samples), the peak measurement areas were divided by the median
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peak area of samples in that batch. Metabolite measurements that failed
to reach the detection threshold were imputed from the minimum
observed value for that metabolite. Metabolites were annotated by
matching to Metabolon’s library of more than 3300 purified standards
and unknown compounds based on the RI, m/z, and chromatography
data. As part of the annotation process, two types of metabolic pathways
were assigned to each metabolite: (1) “metabolite class”, which includes
broad metabolic pathway terms, and (2) “metabolite subclass”, which
includes narrow metabolic pathway terms. Metabolites with at least 100
measurements above the detection threshold were included in the
present study. Metabolites other than drug metabolites were (natural)
log+1 transformed. Metabolites classified as drugs in the xenobiotics
class by Metabolon were converted to binary values (present or absent).
Overall, 1321 metabolites that passed quality control were included in
the analyses. Of those, 269 metabolites were not annotated, 238 meta-
bolites were not confirmed with an internal standard, 142 metabolites
were not measured in at least one of the 3 metabolomics delivery bat-
ches, and 76 metabolites were only measured for 8582 of the 8583
participants, since one of the samples was lost during processing for the
hydrophilic  interaction = chromatography  (HILIC)/UPLC-MS/MS
measurement.

Phenotype processing

Self-reported coffee intake was collapsed from a total of 8 categories
to 4 categories (<1, 1-2, 3-4, and >4 cups per day). Place of birth was
determined by collapsing self-reported country of birth into cate-
gories Scandinavia, non-Scandinavian Europe, Asia, or other. Metfor-
min (ATC codes A10BAO2, A10BD20, A10BDO7, A1OBDOS5, and
A10BDO03), omeprazol (ATC code A02BCO1), and antibacterials for
systemic use (ATC codes JO1) dispensed prescriptions were retrieved
from the Swedish Prescribed Drug Register using the period from
12 months prior to visit 1in SCAPIS. Estimated glomerular filtration rate
was calculated with the CKD-EPI Study equation”. To adjust for total
energy intake, fiber intake was divided by total energy intake.

Statistical analysis

Analyses were performed and plots were created with R v4.1.1
(https://cran.r-project.org/). Partial Spearman’s rank correlations
were calculated for Shannon diversity index and each metabolite
using the ppcor®* v1.1 R package. Correlation estimates were adjusted
for age, sex, place of birth (Scandinavia, non-Scandinavian Europe,
Asia, or other), study site (Uppsala or Malmdo), microbial DNA
extraction plate, and metabolomics delivery batch, which denotes
three batches of samples (two from Uppsala and one from Malmo)
that were profiled separately, and later normalized jointly. Microbial
extraction plate and metabolomics delivery batch were nested in
study site, and therefore study site, microbial extraction plate and
metabolomics delivery batch were combined into one categorical
batch variable by combining the labels. The categorical variables with
more than two levels (place of birth and batch) were converted to
dummy variables and the dummy variable of the last category was
removed before analysis. Association p-values were adjusted for
multiple testing using the Benjamini-Hochberg method at 5% false
discovery rate. Similarly, for each species, partial Spearman’s rank
correlations were calculated for each metabolite and adjusted for
age, sex, place of birth, study site (Uppsala or Malmé), microbial DNA
extraction plate, and metabolomics delivery batch as the main
model, and additionally adjusted for Shannon diversity index as a
sensitivity analysis. Further sensitivity analyses were performed for
the main model by stratification of the participants by tertiles of body
mass index, systolic blood pressure, estimated glomerular filtration
rate, fiber intake, and by exclusion of smokers and participants who
had been prescribed antibiotics within a year of visit 1 or taken,
according to the health and lifestyle questionnaire, medication for
hypertension, dyslipidemia, and/or diabetes in the last two weeks.

Ridge regression models were used to estimate the proportion of
variance of each metabolite explained by gut microbiota based on a
nested 10-fold cross-validation approach using the gimnet® v4.1-3R
package. For each iteration, the data was split into 10 folds. Nine of the
folds were used as training folds and one as a hold-out fold. The 9
training folds were in turn split into 10 additional folds, and a grid
search was performed to find the lambda corresponding to the lowest
cross-validated mean squared error. The performance of the model
with this lambda was then tested on the hold-out fold. This procedure
was performed 10 times, each time changing the hold-out fold, and the
average training mean squared error, the average test mean squared
error and the average test r* were reported.

For 50 uncharacterized metabolites found to have highest var-
iance explained by the microbiome, additional searches for the two
most common ion adducts (M +H and M + Na for positive, M-H and
M-CI for negative mode) with a 5 parts per million tolerance for dif-
ference in m/z in METLIN®® were performed. This search did not yield
any additional conclusive annotations, as there were several different
matches for each m/z value.

Enrichment analysis of ranked association p-values (ties broken by
absolute t-statistic) was performed using the fgsea®” v1.19.2 package for
positive and negative Spearman’s p separately as one-sided tests. The
enrichment p-values for positive and negative coefficients were com-
bined and adjusted for multiple testing using the Benjamini-Hochberg
method at a 5% false discovery rate. Enrichment analysis was done
using GMM modules and metabolite subclasses, with a minimum of 5
metabolites or species per group, respectively.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

De-hosted anonymized metagenomic sequencing data generated in
this study have been deposited in the European Nucleotide Archive
under accession number PRJEB51353 (https://www.ebi.ac.uk/ena/
browser/view/prjeb51353). Metabolomics analysis was performed at
Metabolon, TX, USA, who deposited spectral data from the first ana-
lytical stage (MSI1) for 125 anonymized samples from SCAPIS-Uppsala
in MetabolLights under accession number MTBLS407. However, MS/
MS spectral data are not shared by Metabolon to the research com-
munity. Additional individual-level data are available under restricted
access as they contain sensitive personal information that are pro-
tected under privacy laws, and access can be obtained following
ethical approval from the Swedish Ethical Review Board (https://
etikprovningsmyndigheten.se/; the application procedure and
instructions are provided in the link) and data access approval from
the SCAPIS Data access board (https://www.scapis.org/data-access/;
the application procedure and conditions are provided in the link).
These data may only be used for research, and are not available for
commercial use. Underlying data for all figures are provided in the
Source Data file and available at https://github.com/MolEpicUU/
GUTSY Atlas®®. A companion website to the article containing the full
results of the current study and further study-related searchable
material can be accessed via https://gutsyatlas.serve.scilifelab.se/.

Code availability
Code related to the analyses in this study are available at https://
github.com/MolEpicUU/GUTSY_Atlas.
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