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Abstract
Neurons can exhibit abundant electrical activities due to physical effects of various electrophysiology environments. The

electromagnetic induction flows can be triggered by changes in neuron membrane potential, which can be equivalent to a

memristor applying on membrane potential. To imitate the electromagnetic induction effects, we propose a three-variable

memristor-based Wilson neuron model. Using several kinetic analysis methods, the memristor parameter- and initial

condition-related electrical activities are explored intensively. It is revealed that the memristive Wilson neuron model can

display rich electrical activities, including the asymmetric coexisting electrical activities and antimonotonicity phe-

nomenon. Finally, using off-the-shelf discrete components, an analog circuit on a hardware level is implemented to verify

the numerically simulated coexisting electrical activities. Studying these rich electrical activities in neurons can build the

groundwork to widen the neuron-based engineering applications.

Keywords Coexisting electrical activities � Antimonotonicity � Memristive electromagnetic induction � Analog circuit

implementation � Wilson neuron model

Introduction

In perspective, the ions transmission plays an important

role of information coding and dealing in biological neu-

ron. Thus, many mathematical neuron models have been

built by mainly considering the interaction between ion

channel currents and membrane potential (Hodgkin and

Huxley 1952; Morris and Lecar 1981; Chay 1985; Wilson

1999; Bao et al. 2020a; Xu et al. 2020). Under these con-

siderations, the physical effect of different electrophysiol-

ogy environments should be taken into account during the

modeling of neuronal activities (Wang et al. 2017; Ye et al.

2018; Xu et al. 2019; Yang et al. 2020). Especially, the

electrical field and its induced current can result by the

change of membrane potential during the exchange of

intracellular ions and extracellular ions (Lv et al. 2016).

Therefore, the effect of electromagnetic induction caused

by inner electrical field fluctuation should be considered in

exploring the neuronal activities. That is to say, the elec-

tromagnetic induction participates and affects the electrical

activity in a neuron. Ma et al. comes up with the idea that

the magnetic flux can be employed to describe the elec-

tromagnetic induction in the neuron (Ma and Tang 2017)

according to the Maxwell’s electromagnetic induction

theorem (Carpenter 1999). The flux-controlled memristor

is one category of memristor and its memductance is really

dependent on its crossing flux (Chua 2015; Xu et al. 2016).

The state equation of the flux-controlled memristor can be

restricted by its magnetic flux variation rate and applying

voltage. This is very similar to the interaction between the

electromagnetic induction and membrane potential of the

biological neuron. Thus, the flux-controlled memristor can

be reasonably employed to unify the physical effect of

electromagnetic physiology in the media of neuron (Wu

et al. 2016; Parastesh et al. 2018). Up to now, following the

pioneer achievements (Lv et al. 2016; Wu et al. 2016),

some fascinating neuron models with the consideration of

memristive electromagnetic induction have been raised (Ge

et al. 2018; Rostami and Jafari 2018; Bao et al. 2018b; Jin

et al. 2019; Kafraj et al. 2020; An and Qiao 2021).
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By introducing the flux-controlled memristor into

Hodgkin-Huxley neuron model to emulate the electro-

magnetic induction flow, dynamical responses with dif-

ferent modes and stochastic resonance were observed

(Wang et al. 2017). And then, the electromagnetic induc-

tion effects on the regulation of sleep wake cycle were

further studied in a simple wake-sleep neural network

coupled by glutamate synapse. It was found that the

average firing frequency can be modified by the intensity of

electromagnetic induction (Jin et al. 2019). Besides, the

memristive electromagnetic induction was considered in

Hindmarsh-Rose neuron model. These modes of electrical

activities can be softly altered with respect to the induced

current that depends on the variation of magnetic flow (Lv

et al. 2016; Mondal et al. 2019). With comprehensive

consideration of the electromagnetic induction and radia-

tion, high and low frequency stimulus, and Gaussian white

noise, mode transition of electrical activities and thought-

provoking phenomena were explored by bifurcation anal-

ysis (Ge et al. 2018). Furthermore, employing a discon-

tinuous flux-controlled memristor as electromagnetic

induction, a modified Hindmarsh-Rose neuron model was

derived, within which chaotic and hyperchaotic dynamical

behaviors were explored (Parastesh et al. 2018). After that,

to mimic the threshold effect of electromagnetic induction,

a threshold flux-controlled memristor-based Hindmarsh-

Rose neuron model was presented, from which the coex-

isting hidden bursting patterns were revealed (Bao et al.

2020b). Besides, the electrical mode transition in hybrid

Hindmarsh-Rose and Wilson neuron models with the

consideration of electromagnetic induction was investi-

gated (Liu et al. 2019). In addition, the coexisting firing

patterns and initial-dependent bifurcation routes were dis-

closed in two adjacent Hindmarsh-Rose neurons coupled

by memristive electromagnetic induction, within which the

electromagnetic induction was caused by the membrane

potential difference between two neurons (Bao et al.

2018b). Beyond these explorations, there still exist some

unsolved and valuable works in this pregnant issue.

Summarily, most of these explorations are numerically

executed on conductance-independent neuron models,

which are described by simple mathematical model to

express some specific behaviors without the consideration

of neuron physiological structures (FitzHugh 1961; Hind-

marsh and Rose 1982). But the conductance-dependent

neuron models are more precisely able to imitate the

neuronal activities with electrophysiological characteristics

of the neuron membrane potential and ion currents

(Hodgkin and Huxley 1952). Following this work, Wilson

built a more realistic four-variable neuron model in which

its ion conductances have quadratic polynomial forms to

restrict the dynamics to cubic nonlinearities (Wilson 1999).

Firing patterns and their forming mechanisms in the four-

variable Wilson neuron model were further revealed in

depth (Qi et al. 2013). Thereafter, a three-variable Wilson

neuron model was projected by taking no account of the

calcium ion current (Zhao et al. 2013; Liu et al. 2019).

Furthermore, without regarding the calcium ion current and

calcium ion mediated potassium ion hyperpolarizing cur-

rent, a two-variable Wilson neuron model was employed to

investigate the white-noise induced susceptibility (Steyn-

Ross et al. 2006) and then to explore the spatial coarse-

graining of spiking dynamics using a spatial blocking

technique (Steyn-Ross and Steyn-Ross 2016).

In this paper, we consider a conductance-dependent

three-variable Wilson neuron model with the memristive

electromagnetic induction described by a flux-controlled

memristor with the memductance of absolute function. The

adopted memductance function is different from the pre-

viously employed quadratic function [i.e. W(u) = a ? bu2

(Wang et al. 2017)] and hyperbolic tangent function [i.e.

W(u) = tanhu (Bao et al. 2020b)]. Abundant electrical

activities, coexisting electrical behaviors, and antimono-

tonicity phenomenon are numerically disclosed by

dynamics exploration. The two-variable Wilson neuron

model can be digitally realized on FPGA platform by

approximately implementing the nonlinearity with a

piecewise linear function (Imani et al. 2019; Nouri et al.

2019). Beyond the digital realization, the analog circuit

implementation for neuron model is more suitable for the

integrated circuit design of neuron network (Pinto et al.

2000) and can effectively promote some diverse neuron-

based engineering applications (Jiang et al. 2018). What’s

more, the analog circuit implementation can involve the

physical effects of parasitic parameters and display physi-

cal rather than numerical firing activities. Thus, the neuron

model should first be implemented in a physical hardware

platform. To this end, an electronic neuron for the proposed

memristive Wilson neuron model is implemented by ana-

log circuit and hardware measurements are executed to

verify the numerically revealed electrical activities.

The remainder of this paper is organized as follows. A

memristive Wilson neuron model is obtained by consid-

ering the electromagnetic induction, and then the memris-

tor parameter- and initial condition-related dynamical

behaviors are revealed by numerical simulations. Further-

more, the analog circuit-based hardware implementation

and experimental measurements are executed. Finally, the

conclusion is drawn.

Memristive Wilson neuron model

The two-variable Wilson neuron model was firstly sim-

plified from the Hodgkin-Huxley model (Wilson 1999),

which is mathematically described as
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Cm

dv

ds
¼ �m1ðvÞðv� ENaÞ � gKrðv� EKÞ þ I; ð1aÞ

dr

ds
¼ 1

sr
ð�r þ r1ðvÞÞ; ð1bÞ

where v denotes the membrane potential and r determines

the recovery variable. I is an externally applied steady

current. m!(v) denotes the Na? ion activation function and

r!(v) represents the equation state of recovery variable.

The forms for m!(v) and r!(v) are expressed as

m1ðvÞ ¼ 17:8þ 47:6vþ 33:8v2;

r1ðvÞ ¼ 1:24þ 3:7vþ 3:2v2:
ð2Þ

The flux-controlled memristors with the memductances

of quadratic function (Liu et al. 2019) and tangent function

(Bao et al. 2020b) have been used to describe the elec-

tromagnetic induction flows. These memristors used are all

with smooth nonlinear memductance functions. To perform

the non-smooth impacts in the electromagnetic environ-

ment, a flux-controlled memristor with absolute function

memductance W(u) = a - b|u| is employed to imitate the

electromagnetic induction effect on the membrane poten-

tial. Then, a memristive Wilson neuron model is con-

structed by replacing the externally applied steady current

with the current generated by the memristor. The mem-

ristive Wilson neuron model is mathematically obtained by

Cm

dv

ds
¼ �m1ðvÞðv� ENaÞ � gKrðv� EKÞ þ kða

� b uj jÞv; ð3aÞ

sr
dr

ds
¼ �r þ r1ðvÞ; ð3bÞ

su
du
ds

¼ k1v� u; ð3cÞ

within which u is the flux variable of the memristor and

k is the electromagnetic induction coupling strength. The

electromagnetic induction current IM-

= kW(u)v = k(a - b|u|)v is regulated by the variation of

magnetic flux. The proposed neuron model (3) is a purely

mathematical description and its dimensionless model

parameters are properly selected as listed in Table 1. Note

that the membrane potential v has been scaled to units of

mV/100 to restrict the constants in Eq. (2) within a rea-

sonable range (Wilson 1999; Liu et al. 2019). For the sake

of simplicity, dimensionless parameters are used in the

following numerical simulations.

Parameter- and initial condition-related electrical
activity

When the coupling strength k is selected as the

adjustable parameter, the bifurcation plots for initial

conditions [v(0), r(0), u(0)] = (0, 1, 0) and (0, - 1, 0) are

illustrated. MATLAB ODE45 algorithm with fixed time-

step 0.01 and time-interval [0.99, 1] is utilized to plot

bifurcation diagrams and Wolf’s Jacobi method (Wolf et al.

1985) with time-step 1 and time-end 20 is utilized to cal-

culate the finite-time Lyapunov exponents.

To disclose the electrical activities in model (3), one-

dimensional (1D) bifurcation diagrams and finite-time

Lypunov exponents are plotted in Fig. 1a, b, respectively.

In Fig. 1a, the trajectories colored in red and deep green are

triggered by the initial conditions [v(0), r(0), u(0)] = (0,

- 1, 0) and (0, 1, 0), respectively. The top figure of Fig. 1a

shows the bifurcation diagram in the region of k = [5, 10]

and the bottom figure gives a partial enlargement diagram

covering the range of k = [9, 10]. The top and bottom

figures in Fig. 1b give the finite-time Lyapunov exponents

for the two sets of initial conditions, respectively.

In Fig. 1a, the bifurcation diagrams show that the neu-

ron model (3) can generate abundant mode transition and

asymmetric coexistence of electrical activities as electro-

magnetic induction coupling strength k is varied. By these

numerical simulations, it is found that the asymmetric

coexisting electrical activities are only triggered by large

values of coupling strength k, i.e. k C 9.056. These elec-

trical activities are further confirmed by the finite-time

Lyapunov exponents depicted in Fig. 1b. Specially, the

region marked by I in Fig. 1b corresponds to the asym-

metric coexisting behaviors (Bao et al. 2018a) for the two

sets of initial conditions. It is also revealed that periodic

and chaotic electrical activities occur with the variation of

the coupling strength k. To confirm these electrical activ-

ities, four discrete values of k are selected to numerically

plot their phase portraits and sequences as shown in Fig. 2.

These are periodic electrical activity for k = 6, chaotic

electrical activity for k = 8.5, coexisting periodic and

chaotic electrical activities for k = 9.1, and coexisting

periodic electrical activities for k = 9.8, respectively.

To further disclose the electrical activities, two-dimen-

sional (2D) bifurcation diagrams depicted by checking the

periodicities of the membrane potential v under the two sets

of initial conditions [v(0), r(0), u(0)] = (0, - 1, 0) and (0,

1, 0) are drawn in the k – su parameter plane, as shown in

Fig. 3a, b, respectively.

In Fig. 3, the marks with different colors on the colorbar

located at the right-hand side are utilized to identify the

different electrical activities, among which the color

labeled by CH denotes chaotic electrical activity and the

other colors labeled by P01–P08 represent the periodic

electrical activities with different periodicities of period-1

to period-8 respectively. It is revealed that the memristive

Wilson neuron model can generate periodic electrical

activities with different periodicities and chaotic electrical

activities. At first glance, the electrical activities revealed
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by 2D bifurcation diagrams for the two sets of initial

conditions are very similar. But there exist some differ-

ences by carefully checking the electrical activities in the k

– su parameters plane, as shown in Fig. 4.

In Fig. 4, the marks with different colors on the colorbar

are utilized to identify the differences of coexisting

behaviors, among which the grey color labeled by 00

denotes the unanimous coexisting behaviors and the other

colors labeled by 01–08 represent the occurrence of dif-

ferent asymmetric coexisting behaviors for the same

parameters. i.e. 07 represents the asymmetric coexistence

of period-2 and chaos or asymmetric coexistence of period-

1 and period-8. Figure 4 is numerically obtained by

checking the electrical activities with respect to k and su
for the two sets of initial conditions. Besides, the differ-

ences of the coexisting behaviors become more pro-

nounced as the labeled number increased, which imply that

there exist abundant asymmetric coexisting electrical

activities in the proposed memristive Wilson neuron

model.

It is revealed that the neuron model (3) can generate rich

asymmetric coexisting behaviors under the two sets of

initial conditions. Herein, to further reveal the initial con-

ditions-related asymmetric coexisting electrical activities,

four sets of model parameters belonging to four different

regions of Fig. 4 are selected as examples to demonstrate

the asymmetric coexisting behaviors by local attraction

basins (Gu et al. 2015), as shown in Fig. 5. The local

attraction basins are plotted with the initial conditions u0

and r0 varying in the range of [- 2, 2], respectively. The

neuron model (3) supports rich asymmetric coexisting

behaviors as illustrated in Fig. 5. It can generate the

coexisting limit cycle with period-3 and chaotic electrical

activities for k = 8.5 and su = 0.7 and coexisting limit

cycle with period-4 and chaotic electrical activities for

k = 8.8 and su = 0.48 as shown in Fig. 5a, b, respectively.

Figure 5c, d illustrate the coexistence of limit cycles with

period-1 and period-5 electrical activities for k = 9.5 and

su = 0.36, as well as the coexistence of limit cycles with

period-2 and period-3 electrical activities for k = 9.8 and

su = 0.56, respectively. To present the asymmetric coex-

isting electrical activities more explicitly, phase portraits

and sequences for the four sets of model parameters are

plotted in Fig. 6. The initial conditions for the red and dark

green traces are the same as those utilized in Fig. 2.

Antimonotonicity phenomenon

The antimonotonicity phenomenon of generating and

annihilating periodic orbits (Dawson et al. 1992) is also

observed with the variation of coupling strength k. The

antimonotonicity phenomenon has been revealed in mem-

ristive Twin-T oscillator (Zhou et al. 2018), Jerk circuit

(Kengne et al. 2017), and non-autonomous series–parallel

inductor-capacitor circuit (Manimehan and Philominathan

2012), just to refer a few. The existence of periodic islands

in the parameter space is the essential condition to develop

period-doubling and reverse period-doubling bifurcations

(Xu et al. 2016).

According to numerous numerical simulations, the

antimonotonicity phenomenon is found under another set

of model parameters. To demonstrate the evolution of the

antimonotonicity phenomenon in the neuron model (3), a

set of bifurcation diagrams is drawn in Fig. 7 by adjusting

k for three discrete values su. Other model parameters are

specially fixed as Cm = 1, ENa = 0.5, EK = –0.95, gK = 26,

sr = 5, a = 0.5, b = 2, and k1 = 1. For su = 0.125, two

branches of chaotic bubbles are observed and the two

branches individually develop themselves. As su decreas-

ing, the chaotic bubbles evolve to period-4 bubble (i.e.

su = 0.120) and then to period-2 bubble (i.e. su = 0.118).

In a word, the chaotic bubbles gradually evolve to period-2

bubbles when decreasing su.

Hardware circuit implementation
and experimental measurement

Electronic neurons in a hardware form are significant to

develop applications in artificial neural networks (Bao

et al. 2021). Thus, the proposed three-variable memristive

Wilson neuron model (3) is synthesized by the off-the-shelf

discrete components on an analog circuit level. Thereafter,

the hardware circuit can be manually welded and experi-

mental measurements can be thereby performed to confirm

the numerically simulated electrical activities.

Table 1 Dimensionless parameter values and significations of the

memristive Wilson neuron model (Color table online)

Parameters Significations Values

Cm membrane capacitor 1

ENa reversal potential of Na+ ion channel 0.5

EK reversal potential of K+ ion channel –0.95

gK the maximal conductance of K+ ion channel 26

τr channel activation time constant of the K+ ion 5

τφ time scale of the flux variation 0.5

a memristor inner constant parameter 1

b flux-related memductance changing rate 3

k electromagnetic induction coupling strength 6

k1 time scale coefficient 1

1224 Cognitive Neurodynamics (2022) 16:1221–1231

123



Fig. 1 Numerically simulated bifurcation diagrams of the maxima membrane potential vmax and the finite-time Lyapunov exponents with respect

to k. a Bifurcation diagrams, b finite-time Lyapunov exponents (Color figure online)

Fig. 2 Phase portraits in v - u plane and sequences for the membrane potential v with respect to some discrete value of k. a k = 6, b k = 8.5,

c k = 9.1, d k = 9.8 (Color figure online)

Fig. 3 Electrical activities revealed by 2D bifurcation diagrams in k - su parameter plane. a Initial conditions of [v(0), r(0), u(0)] = (0, 1, 0),

b initial conditions of [v(0), r(0), u(0)] = (0, –1, 0) (Color figure online)
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To reduce the number of discrete components in analog

circuit implementation, we simplify the neuron model (3)

with the typical model parameters as

dv

ds
¼8:9� 24:7r � 26vr þ 6v� 30:7v2 � 33:8v3

þ kð1� 3 uj jÞv;
ð4aÞ

dr

ds
¼� 0:2r þ 0:74vþ 0:64v2 þ 0:248; ð4bÞ

du
ds

¼ 1

su
ðv� uÞ; ð4cÞ

where k and su are two adjustable parameters.

The analog circuit can be physically implemented

according to the mathematical model given in (4). The

memristor with absolute function memductance is imple-

mented by employing the saturation characteristic of the

operational amplifier Ub whose saturation voltage is Esat.

The memristor is realized as shown in the upper panel of

Fig. 8. The describing equation of the flux-controlled

memristor can be obtained as

RC
dVu

dt
¼ R

R1

Vv �
R

R2

Vu; ð5aÞ

i ¼ � 1

R3

� gagbEsat

R4

Vu

�
�

�
�

� �

Vv; ð5bÞ

where t = RCs is the physical time and RC is the integral

time constant. ga and gb are the gains of analog multipliers

Ma and Mb respectively.

The main circuit consists of two channels to integrate

the two ordinary differential equations of (4a) and (4b)

(Bao et al. 2017; Li et al. 2017], as drawn at the bottom of

Fig. 8. The main circuit in Fig. 8 has two dynamic ele-

ments, corresponding to two state variables of Vv, and Vr.

Therefore, the circuit state equations having the same

integral time constant in (5) can be established as

RC
dVv

dt
¼ � R

R5

V1 �
R

R6

Vr �
g3R

R7

VvVr þ
R

R8

Vv �
g2R

R9

V2
v

� g1g2R

R10

V3
v þ

R

R3

� gagbEsatR

R4

Vu

�
�

�
�

� �

Vv;

ð6aÞ

RC
dVr

dt
¼ � R

R15

Vr þ
R

R17

Vv þ
g2R

R16

V2
v �

R

R18

V2; ð6bÞ

RC
dVu

dt
¼ R

R1

Vv �
R

R2

Vu; ð6cÞ

where g1, g2, and g3, are the gains of analog multipliersM1,

M2, and M3, respectively, and V1 and V2 are two DC

voltages.

Comparing (4) and (6), we can obtain

R1¼suR;R2¼suR;R3¼
R

k
;R4¼

gagbEsat

3k
R;

R5¼� V1

8:9
R;R6¼

R

24:7
;R7¼

g3R

26
;R8¼

R

6
;R9¼

g2R

30:7
;

R10¼
g1g2
33:8

R;R15¼
R

0:2
;R16¼

g2R

0:64
;R17¼

R

0:74
;R18¼� V2

0:248
R:

ð7Þ

Set the integral time constant as RC = 0.1 ms, i.e.

R = 10 kX and C = 10 nF. The experimental measured

saturation voltages of AD711JN are Esat = ± 13.5 V. The

gains of analog multipliers are ga = 0.1 V–1 and gb = g1-
= g2 = g3 = 1 V–1. The two DC voltages are selected as

V1 = –8.9 V and V2 = –0.248 V. Thus, the resistances

R5 * R18 are calculated as R5 = R11 = R12 = R13 = R14-

= R18 = 10 kX, R6 = 0.405 kX, R7 = 0.385 kX,
R8 = 1.667 kX, R9 = 0.326 kX, R10 = 0.296 kX, R15 = 50

kX, R16 = 15.625 kX, and R17 = 13.513 kX. The resis-

tances R1 * R4 are adjusted to meet the selected param-

eters k and su in the numerical simulations for observing

the coexisting electrical activities.

With the circuit schematic in Fig. 8, an analog circuit is

practically set up by commercially available off-the-shelf

discrete components on a breadboard. The monolithic

capacitors and precise potentiometers, as well as the

operational amplifiers AD711JN and multipliers AD633JN

with ± 15 V voltage supplies are employed. The experi-

mental results are captured by a Tektronix four-channel

digital oscilloscope. It is emphasized that the desired dif-

ferent initial capacitor voltages are difficult to accurately

assign in the hardware circuit, which are randomly sensed

through repeatedly turning on the hardware circuit power

supplies (Xu et al. 2016; Bao et al. 2017). Luckily, the

regions of attraction for the asymmetric coexisting elec-

trical activities in local attraction basins are basically

linked up into a big single stretch, which give us the
Fig. 4 The different coexisting behaviors in k - su parameter plane

for the two sets of initial conditions [v(0), r(0), u(0)] = (0, –1, 0) and

(0, 1, 0). (Color figure online)
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Fig. 5 Local attraction basins in the u0 - r0 initial condition plane for different parameters. a k = 8.5 and su = 0.7, b k = 8.8 and su = 0.48,

c k = 9.5 and su = 0.36, d k = 9.8 and su = 0.56 (Color figure online)

Fig. 6 Phase portraits in v - u plane and sequences for the membrane potential v with respect to the four sets values of k and su. a k = 8.5 and

su = 0.7, b k = 8.8 and su = 0.48, c k = 9.5 and su = 0.36, d k = 9.8 and su = 0.56 (Color figure online)
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opportunity to easily sense the initial conditions belonging

to these regions of local attraction basins.

To confirm the asymmetric coexisting electrical activi-

ties in hardware experiment, the theoretical values of

resistors R1 * R4 are calculated to meet the selected four

sets parameters k and su by Eq. (7). In the hardware

experiments, only the four resistances R1 * R4 in the

analog circuit can be tuned. Corresponding to the theoret-

ical values (abbreviated as Theo. value) of the four resis-

tances, the experimental values (abbreviated as Exp. value)

of the four resistances are measured by Precision LCR

Meter, as listed in Table 2. As can be seen, the theoretical

and experimental resistances have some slight deviations.

These slight deviations are caused by the model idealiza-

tions, parasitic parameters, measurement errors, and so on.

The experimental values in hardware measurements can

contribute to the adjustment of the electronic neuron in

exploring its engineering applications. Corresponding to

the phase trajectories and time-domain waveforms in

Fig. 6, the asymmetric coexisting behaviors of limit cycle

with period-3 and chaotic electrical activities, limit cycle

with period-4 and chaotic electrical activities, limit cycles

with period-1 and period-5 electrical activities, as well as

limit cycles with period-2 and period-3 electrical activities

are captured, as illustrated in Fig. 9a–d, respectively.

Fig. 7 Bifurcation diagrams of

the maxima of the membrane

potential v with respect to k for

three discrete values of the time

constant su. (Color
figure online)

Fig. 8 Analog circuit schematic for implementing the memristive

Wilson neuron model. (Color figure online)
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Conclusion

In this paper, the electrical activities in the three-variable

Wilson neuron model with the consideration of electro-

magnetic induction were explored by the numerical simu-

lations and hardware experiments. Herein, the

electromagnetic induction effect is equivalent to a flux-

controlled memristor applying the membrane potential as

the empirical literatures done (Bao et al. 2020b; Ge et al.

2018). The numerical explorations revealed that the pro-

posed Wilson neuron model can generate rich mode

transition behavior and asymmetric coexistence of electri-

cal activities in responding to the memristor-related

parameters and initial conditions. These numerical explo-

rations reflected that the electromagnetic induction can

trigger rich electrical activities in biological neuron. Fur-

thermore, an analog circuit was synthesized and hardware

experiments were executed. The phase trajectories and

time-domain waveforms were captured from the experi-

mental prototype, and found to be consistent with the

numerical simulations of asymmetric coexisting electrical

activities. It should be stressed that the analog circuit

Table 2 Theoretical values and experimental values of the four adjustable potentiometers (Color table online)

Fig. 9 The experimentally captured trajectories in Vv - Vu plane and

time-domain waveforms for the four-representative coexisting electric

activities. a R1 = 7.072 kX, R2 = 7.091 kX, R3 = 1.182 kX, and

R4 = 0.521 kX, b R1 = 4.822 kX, R2 = 4.563 kX, R3 = 1.280 kX, and

R4 = 0.516 kX, c R1 = 3.612 kX, R2 = 3.515 kX, R3 = 1.056 kX, and
R4 = 0.453 kX, d R1 = 5.683 kX, R2 = 5.832 kX, R3 = 0.946 kX, and
R4 = 0.449 kX (Color figure online)
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implementation for Wilson neuron model has not been

reported previously. The designed analog circuit in this

paper is more feasible for the integrated circuit (IC) design,

which might promote a great convenience to the engi-

neering application of the conductance-dependent Wilson

neuron model. Remark that memristive electromagnetic

induction flow is introduced into Wilson neuron model to

imitate the neuron activities under electrophysiological

environment. Some novel results have been numerically

found and experimentally verified in analog circuit. How-

ever, whether these results are related to the clinical

manifestations of neurons under electrophysiological

environment deserves to be verified.
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