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Abstract
Convolutional Neural Networks (CNN) have recently made considerable advances in the field of biomedical signal

processing. These methodologies can assist in emotion recognition for affective brain computer interface. In this paper, a

novel emotion recognition system based on the effective connectivity and the fine-tuned CNNs from multichannel

Electroencephalogram (EEG) signal is presented. After preprocessing EEG signals, the relationships among 32 channels of

EEG in the form of effective brain connectivity analysis which represents information flow between regions are computed

by direct Directed Transfer Function (dDTF) method which yields a 32*32 image. Then, these constructed images from

EEG signals for each subject were fed as input to four versions of pre-trained CNN models, AlexNet, ResNet-50,

Inception-v3 and VGG-19 and the parameters of these models are fine-tuned, independently. The proposed deep learning

architectures automatically learn patterns in the constructed image of the EEG signals in frequency bands. The efficiency of

the proposed approach is evaluated on MAHNOB-HCI and DEAP databases. The experiments for classifying five emo-

tional states show that the ResNet-50 applied on dDTF images in alpha band achieves best results due to specific

architecture which captures the brain connectivity, efficiently. The accuracy and F1-score values for MAHNOB-HCI were

obtained 99.41, 99.42 and for DEAP databases, 98.17, and 98.23. Newly proposed model is capable of effectively

analyzing the brain function using information flow from multichannel EEG signals using effective connectivity measure

of dDTF and ResNet-50.

Keywords Electroencephalogram � Emotion recognition � Effective connectivity � direct Directed Transfer Function

(dDTF) � Deep Learning (DL) � Convolutional Neural Network (CNN)

Introduction

Emotion is a mental state that arises from external stimulus

such as watching images, video clips, and hearing music

clips. It strongly affects human life and influences on

decision making and perception. Nowadays, investigation

of emotion has become an important topic in many areas

such as affective brain computer interface (aBCI) (Atkin-

son and Campos 2016; Iacoviello et al. 2015), diagnose

psychophysiological disorders (Akar et al. 2015; Li et al.

2015), e-learning and entertainment (Alarcao and Fonseca

2017). Sadness, happiness, fear, anger, disgust and surprise

are six basic emotions that introduced by Ekman as basic

emotional models (Ekman 1992). The other famous emo-

tional model is based on valence and arousal concepts

(Russell 1980). Valence means positive and negative

emotional feeling and arousal means low and high
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elicitation level of emotion. There are multiple brain

mapping techniques to investigate emotional states such as

functional Magnetic Resonance Imaging (fMRI), Magne-

toencephalography (MEG), and electroencephalography

(EEG). Among these techniques, EEG is the most conve-

nient way due to high time resolution, user friendly,

inexpensive and available in academicals and clinical

environments. Also, EEG is widely used in other brain

studies such as monitoring depth of anesthesia (Afshani

et al. 2019; Shalbaf et al. 2020), depression (Saeedi et al.

2020a,b) and seizure detection (Sadati et al. 2006; Mohseni

et al. 2006a,b; Acharya et al. 2018).

There are several nonlinear EEG-based methods that are

used in emotion recognition. Among these methods, Cor-

relation Dimension (CD) (Yuvaraj and Murugappan 2016;

Soroush et al. 2018, 2019, 2020), Fractal dimension (FD)

(Soroush et al. 2018, 2019, 2020; Akar et al. 2015),

recurrence quantification analysis (RQA) (Soroush et al.

2018, 2019, 2020; Yang et al. 2018), and entropy (Soroush

et al. 2018; Soroush et al. 2019; Soroush et al. 2020; Zhang

and Zhang 2016; Jie et al. 2014; Zheng et al. 2017) are the

most used. Another nonlinear multi-channel EEG-based

method for emotion recognition is brain connectivity

measures. Brain connectivity is a multivariate tool that

provides valuable information from brain network during

processing tasks and it includes two categories: functional

connectivity (FC) and effective connectivity (EC) (Mullen

2010).

Lee and Hsieh computed three FC measures, phase

synchronization index (PSI), Coherence (Coh) and Corre-

lation (Corr) from 19 channels of EEG and recognized

three emotional states of negative, positive and neutral

using the Quadratic Discriminant Analysis classifier (Lee

and Hsieh 2014). Thammasan et al. (2017) estimated these

mentioned FC measures from 32 EEG channels of DEAP

database and classified them into two classes of negative

and positive valence and low and high arousal using Sup-

port vector machine (SVM) and decision tree methods. Liu

et al. (2018) estimated another FC measure, Mutual

Information (MI) from 32 channels of EEG from DEAP

database and then used SVM and Random Forest (RF)

classifiers to recognize two classes of low and high arousal

and positive and negative valence. Also, Li et al. (2019)

estimated another FC measure, PLV from 32 channels of

EEG from the two databases of DEAP and MAHNOB-HCI

and then classified three emotional states of negative,

positive and neutral using the Graph regularized Extreme

Learning Machine and SVM methods.

Shahabi and Moghimi (2016) estimated EC measure,

Direct Transfer Function (DTF) from 14 EEG channels

during listening to music excerpts and classified three

emotional states of melancholia, joy and neutral using the

SVM. Moreover, Zhang et al. (2017) estimated the Granger

Causality (GC) value from candidate EEG channels from

each brain region and then computed the significant inter-

action matrix to investigate two emotional states of nega-

tive, and positive. Finally, Rouzbahani and Nasrabadi

(2017) estimated two EC methods of GC and DTF from

multiple EEG signals and investigated the topography and

similarity of three emotional states of sadness, happiness

and neutral. However, most of the studies focused on

feature extraction and classification have moderate success

and ultimately, finding a solution for this subject remains a

challenging task.

With developments in neural network architecture

design and training, there has been a developing interest in

the utilization of deep learning (DL) methods especially the

Convolutional neural network (CNN) due to well gener-

alization, flexibility and feature learning abilities (Roy

et al. 2019; Guo et al. 2016). It is a widely used method in

medical applications (Litjens et al. 2017). The input of

CNN models must be 2D image. So, by converting EEG

from signal space to image space, we can use the benefits

of deep learning methods especially CNN for EEG clas-

sification. These methods are used for processing EEG

signals with very success (Atkinson and Campos 2016;

Iacoviello et al. 2015; Akar et al. 2015; Li et al. 2015;

Afshani et al. 2019; Shalbaf et al. 2020; Saeedi et al.

2020a). CNNs are also used in recognition of emotion from

EEG signals (Wang et al. 2019; Yang et al. 2018, 2019).

Zeng et al. (2019) proposed a specific DL network to

improve the recognition rate of emotional states using the

SincNet-R. Shen et al. (2020) proposed a novel emotion

recognition system based on combination of CNN and

Long Short-Term Memory (LSTM) from 4-dimensional

spatial, temporal and frequency components of multi-

channel EEG signals. The other types of deep learning are

Stacked Autoencoders (SAE) and LSTM that are used in

emotion recognize from EEG signal (Xiaofen et al. 2019).

In contrast to the mentioned work used CNNs for

emotion recognition (Yang et al. 2018, 2019; Zeng et al.

2019; Shen et al. 2020), the main contribution of this paper

is the method to build 2-dimensional (2-D) image from

1-dimensional (1-D) EEG signals using brain effective

connectivity measures (namely direct Directed Transfer

Function (dDTF) and Partial Directed Coherence (PDC)) to

be fed into pre-trained CNN architecture to recognize the

five emotional states (four quarters of valence-arousal

model and neutral) from two EEG public databases of

DEAP and MAHNOB-HCI during watching music video

clips and ordinary emotional video clips, respectively.
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Materials and methods

Emotional states

The two-dimensional valence-arousal emotional model has

four quarters (Russell 1980) (Fig. 1). The first quarter

includes emotions such as excitement and happiness with

high valence and high arousal (HVHA) values. The second

quarter includes emotions like fear or angry with low

valence and high arousal (LVHA) values. Emotions such as

sadness, boredom and depression are in the third quarter,

having low valence and low arousal (LVLA) values.

Contentment and calmness are the fourth emotions which

have high valence and low arousal (HVLA) values. Neutral

is at the middle of axes. In this paper, the four quarters and

neutral are considered as five emotional classes.

MAHNOB-HCI database

In MAHNOB-HCI database, thirty-two recorded channels

of EEG according to 10–20 international system from 27

volunteer (15 females and 12 males at ages from 19 to 40)

during watching emotional video clips were used (Soley-

mani and Pantic 2013). These participated volunteers are

undergraduate students at postdoctoral fellows with dif-

ferent cultures, languages and educations. EEG signals

ware recorded by the Biosemi active II system with the

sampling frequency of 256 Hz. Twenty video clips were

selected from commercially produced movies to evoke the

following emotions: fear and disgust in LVHA, sadness in

LVLA, joy in HVHA, amusement in HVLA and neutral.

The lengths of video clips are considered from 34.9 to

117 s to be efficient to evoke one emotion according to

psychologist’s recommendation (Rottenberg et al. 2007;

Schaefer et al. 2010). Then, each subject rated value of

valence and arousal concepts based on Self Manikin

Assessment (SAM) from 1 to 9 scales (1 for low value and

9 for high). In this study, the values of valence and arousal

greater than 5 considered as HVHA class, valence and

arousal values lower than 5 considered as LVLA class,

valence values greater than 5 and arousal values lower than

5 classified as HVLA class and valence values lower than 5

and arousal values greater than 5 considered as LVHA

class. The neutral has valence and arousal values of 5.

DEAP database

In DEAP database, thirty-two EEG channels according to

10–20 international recording system from 32 subjects (16

males and 16 females in the age ranges from 17 to 37)

while watching music video clips were recorded (Koelstra

et al. 2011). The original sampling frequency was 512 Hz

and then was downsampled to 128 Hz at preprocessing

step. 40 music video clips with the length of 60 s were used

to evoke four emotional states and neutral state. After

watching music video clips, subjects rated value of valence

and arousal based on SAM from 1 to 9 scales. The class

labels were considered as previous explanation in MAH-

NOB-HCI database.

Pre-processing step

EEG signals of 32 channels from two databases MAH-

NOB-HCI and DEAP were preprocessed using the

EEGLAB toolbox (version 2021.0) in MATLAB software

(version 2019a). In preprocessing step of MAHNOB-HCI,

EEGs were re-referenced by the averaging method and

passed through three FIR filters low pass, high pass and the

notch with cut off frequencies of 0.5, 45 and 49–51 Hz,

respectively. Also, blinking, squeezing and motion artifacts

were removed manually. Finally, EEG signals from 3

subjects were removed due to high amounts of artifacts and

HVHALVHA

HVLALVLA
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Arousal (high)

Happy
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Sleepy 
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Fig. 1 Valence-arousal

emotional model and five

emotional classes
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further processing were done on the remaining 24 subjects.

All of these steps except average re-referencing step were

done for DEAP database.

Effective connectivity

There are various methods to convert the 1D signal to a 2D

image, namely, non-data-driven approaches like known

transformations such as Continuous Wavelet transform

(CWT) (Chaudhary et al. 2019), Short- Time Fourier

Transform (STFT) (Chaudhary et al. 2019) as time–fre-

quency representation and model-based approaches like

time series modelling, Hidden-Markov-Models (HMMs),

connectivity-based methods and system theory approaches

like recurrent plots and Poincare maps. The basic question

this research was supposed to answer was ‘‘Are connec-

tivity-based approaches as effective as transformation-

based approaches in turning 1D signal to the image to be

used successfully for emotion recognition via CNNs or

not?’’. Brain effective connectivity concept provides

valuable information from the brain network during pro-

cessing tasks. Effective connectivity describes casual or

asymmetric dependencies of separate brain regions (Mul-

len, 2010). This method describes the information flow of

brain regions between different EEG channels at a specific

frequency component to convert a 1-D EEG signal into a

2-D image.

The most famous method for estimating effective con-

nectivity is Granger-Causality which can be computed in

the frequency domain (Shahabi and Moghimi 2016). To

achieve this, the estimation of parameters of Multi-Vari-

able Auto-Regressive (MVAR) model for an individual

signal data is required. The window length and the model

order were two important parameters to estimate the

MVAR model from EEG signals. The window length was

selected using the Variance-Ratio Test to preserve sta-

tionarity of EEG signals. The model order was chosen to

minimize the Akaike Information Criterion (AIC). The

sliding window length or step size of this window was

examined in a try and error manner and finally, it was

selected to provide large numbers of image as much as

possible to train CNNs better and consequently to have

higher performance. Then, based on selected parameters,

the estimated model was validated using whiteness of

residuals, consistency percent, and stability exams (Mullen

2010). Given M channels of EEG data with the lengths of

T , i.e., X ¼ x1; x2; . . .; xTf g, MVAR process of order p

represents as follow (Korzeniewska et al. 2003; Saeedi et al

2020a):

xt ¼ vþ
Xp

k¼1

Akxt�k þ ut ð1Þ

where v is an (M 9 1) vector of intercept terms i.e.,

v ¼ v1. . .vM½ �0, Ak are (M 9 M) model coefficient matrixes

and ut is a white noise process with zero mean and non-

singular covariance matrix R.
Rearranging terms results in:

ut ¼
Xp

k¼0

Âkxt�k ð2Þ

where Âk ¼ �Ak and Â0 ¼ �I.
After applying the Fourier transform to both sides:

U fð Þ ¼ A fð ÞX fð Þ ð3Þ

where

A fð Þ ¼
Xp

k¼0

Âke
�i2pfk ð4Þ

By multiply Eq. (4) at Aðf Þ�1
and rearrange terms we

have:

X fð Þ ¼ Aðf Þ�1U fð Þ ¼ H fð ÞU fð Þ ð5Þ

where X fð Þ is the (M 9 M) spectral matrix of the multi-

variate process, U fð Þ is a random sinusoidal shocks matrix

and H fð Þ is the transfer matrix of the system. The spectral

density matrix of the process is determined as follows:

S fð Þ ¼ X fð ÞXðf Þ� ¼ H fð ÞRHðf Þ� ð6Þ

The matrices of S fð Þ;A Fð Þ and H fð Þ are used to define

several measures of effective connectivity. The dDTF and

PDC are common multivariate extensions of the Granger-

causal concept, that are used in this study since they have

shown effectiveness in neuroscience studies (Korze-

niewska et al. 2003; Kus et al. 2004; Astolfi et al.

2007, 2008; Tafreshi et al. 2019; Shalbaf and Maghoudi

2020; Maghsoudi and Shalbaf 2020; Ghahari et al 2020;

Kohan et al 2020; Saeedi et al 2020a).

dDTF measure

dDTF is an estimator of brain effective connectivity con-

cept that are based on frequency-domain of conditional

Granger-Causality (Mullen 2010). The dDTF from channel

j to channel i at frequency f is estimated by following

equation (Korzeniewska et al. 2003; Saeedi et al 2020a):

dDTFij ¼
jHij fð Þj2

P
f

PM
k¼1 jHik fð Þj2

� Ŝij fð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ŝii fð ÞŜjj fð Þ

q ð7Þ

We extract five frequency ranges for dDTF measure by

averaging the frequency spectrum as follows: delta (0.1–4),

theta (4–8), alpha (8–13), beta (13–25) and gamma

(25–45).
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PDC measure

In addition to dDTF, PDC is another estimator of brain

information flow that has been used in many neuroscience

studies (Astolfi et al. 2007, 2008; Tafreshi et al. 2019).

Given N simultaneous recorded signals, PCD determines

the relation between two signals among them, concerning

the influence of all others. PDC from ith EEG channel to

jth EEG channel at frequency f is estimated according to

Eq. (8) (Tafreshi et al. 2019):

pij fð Þ ¼ Aij fð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
m¼1 Amj fð ÞA�

mj fð Þ
q ð8Þ

where Aij fð Þ is the description of elements of the autore-

gressive coefficients matrix (aij) in the frequency domain

and computes as follows:

Aij fð Þ ¼ dij �
Xp

r¼1

aij rð Þe�j2pfr ð9Þ

where p denotes the order of the model. The value of PDC

measure is from zero to one. Similar to dDTF measure,

PDC at the mentioned frequency bands were represented.

All calculations of two dDTF and PDC measures were

done in MATLAB (The Mathworks, Inc., Natick, MA,

USA) via the Source Information Flow Toolbox (SIFT)

version 0.1a (Mullen 2010).

Convolutional neural network and pre-trained
versions

CNN is a specific type of neural networks which widely

utilized in biomedical signal processing and classification

applications (Saeedi et al. 2020a; Faust et al. 2018; Craik

et al. 2019; Deng and Yu 2014). This network contains a

convolutional layer, pooling layer, batch normalization,

fully connected (FC) layers and finally a softmax layer

(Guo et al. 2016). High level deep features are extracted in

convolutional layers. Then, pooling layers reduces the size

of feature maps using maximum or average operators and

the most significant features are extracted. Finally, FC

layers prepare extracted features to be classified by softmax

layer. Softmax is a simple function in the last layer which

decides the probability of belonging the input to one of the

classes. Rectified Linear Unit (ReLU) activation function is

used after each convolutional and fully connected layer to

strengthen the network for solving nonlinear problems.

Due to good properties of CNNs (generalization, flexibility

and etc.), this kind of deep network are used to improve

classification accuracy. Four popular pre-trained CNN on

ImageNet database named AlexNet, VGG-19, Inception-v3

and ResNet-50 are used in this study to classify five

emotional states from EEG signals.

AlexNet

AlexNet which has been won the ILSVRC2012, is a simple

CNN with a few convolutional layers (Krizhevsky et al.

2012). It has 5 convolutional layers, three pooling layers

with maximum operator and three fully connected layers.

AlexNet allows 227 9 227 color images as input and

provides 61 million parameters. Figure 2a shows the

structure of the AlexNet in compact form.

VGGNet

Visual Geometry Group or VGGNet has been the runner-

up of ILSVRC2014 (Zisserman 2014). This network has

similar structure to the AlexNet but deeper than that; it has

sixteen (VGG-16) or nineteen (VGG-19) weighted layers.

VGG-19 allows 224 9 224 color images and provides 144

million parameters. Figure 2b shows the structure of

theVGG-19 in compact form.

Inception-v3

Inception version 3 or Inception-v3 is the runner up of

ILSVRC2015 (Szegedy et al. 2016). The name, Inception

comes from the embedded Inception module that has four

parallel convolutional layers; by this work, the efficiency

increases. Inception-v3 has 23.9 million parameters and

accepts input color images with the size of 299 9 299.

Figure 3 shows the structure of Inception-v3 in compact

form.

ResNet-50

Residual network (ResNet) is the winner of ILSVRC2015

(He et al. 2016). ResNet has many stacked identity shortcut

connections that help to solve the vanishing gradient

problem of CNNs. ResNet has multiple versions with

various convolutional layers, 18, 34, 50, 101 and 152; as

increases the number of weighted layers, increases the

performance; however, network complexity and computa-

tional load increase and requires stronger hardware.

Among these versions, ResNet-50 was selected due to

better performance and hardware restriction. ResNet-50

allows color images with the size of 224 9 224 and has

25.6 million parameters. Figure 4 shows the structure of

ResNet-50 in compact form.
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Evaluation criteria

The tenfold Cross-Validation method was used to evaluate

recognition performance. In this regard, independently,

four versions of the pre-trained CNNs were fine-tuned on

ninefold of dDTF images and evaluated on onefold. Then,

images were shuffled and this procedure repeated 10-times

and the accuracy, precision, recall and F1-score measures

were computed (Sokolova and Lapalme 2009). Finally, the

values of mean and standard deviation were reported.

Results

EEG signals of 32 channels from two databases MAH-

NOB-HCI (27 subjects) and DEAP (32 subjects) were

preprocessed using the EEGLAB toolbox (version 2021.0)

in MATLAB software (version 2019a). Finally, EEG sig-

nals from 3 subjects were removed due to high amounts of

artifacts and further processing were done on the remaining

24 subjects. As the lengths of EEG signals from this

database differ from 34.9 to 117 s, we selected the least

length of 30 s to be processed. The length of EEG signal

from DEAP database was 60 s. Then, EEGs were nor-

malized with zero mean and standard deviation and then

used to fit a MVAR model. In MAHNOB and DEAP

database, the model orders are selected 10. We have

selected the window length and step size equal to 5 and 1 s

for MAHNOB-HCI database. Therefore, 26 windows were

created from signal with the length of 30 s. Also, we have

selected the window length and step size equal to 6 and 1 s

for DEAP database. Therefore, 55 windows were created

from signal with the length of 60 s. Consequently, dDTF

and PDC measures based on parameters of calculated

MVAR model are estimated on 32 EEG channels per

subject in five standard frequency bands delta, theta, alpha,

beta and gamma from 5- and 6-s windows for MAHNOB-

HCI and DEAP databases, respectively. Results of effec-

tive connectivity methods (dDTF and PDC measures)

which are 32 9 32 values (32 channels) are considered as

images with size of 32 9 32 and fed as input of pre-trained

CNN models. The size of images constructed by dDTF and

PDC are 32 9 32, which are not match with the input size

of the pre-trained CNN models. So, each pixel in dDTF and

PDC images are expanded to achieve the required size of

input image of the pre-trained CNN models. For example,

the input size of AlexNet is 227 9 227 and each pixel of

dDTF and PDC were expanded approximately 7 times. So,

a process to convert 1-dimensional EEG signals to image is

done by effective connectivity measures. The number of

dDTF and PDC images separately for each frequency band

for MAHNOB-HCI and DEAP were 12,480 (26 (win-

dow) 9 24 (subject) 9 20 (video clips)) and 70,400 (55

(window) 9 32 (subject) 9 40 (music video clips)),

respectively. Figure 5 shows dDTF images of one subject

for the five emotional states (a) HVHA, (b) LVHA,

Input Image (227×227×3) Input Image (224×224×3)
Conv1 96, 11×11×3, stride 4, padding 0 Conv1_1 64, 3×3×3, stride 1, padding 1
Norm1 Conv1_2 64, 3×3×64, stride 1, padding 1
Pool1 3×3, stride 2, padding 0 Pool1 2×2, stride 2, padding 0

Conv2 128, 5×5×48, stride 1, padding 2 Conv2_1 128, 3×3×64, stride 1, padding 1128, 5×5×48, stride 1, padding 2
Norm2 Conv2_2 64, 3×3×128, stride 1, padding 1
Pool2 3×3, stride 2, padding 0 Pool2 2×2, stride 2, padding 0
Conv3 384, 3×3×256, stride 1, padding 1 Conv3_1 256, 3×3×128, stride 1, padding 1

Conv4 192, 3×3×192, stride 1, padding 1 Conv2_2 256, 3×3×256, stride 1, padding 1192, 3×3×192, stride 1, padding 1

Conv5 128, 3×3×192, stride 1, padding 1 Cov3_3 256, 3×3×256, stride 1, padding 1128, 3×3×192, stride 1, padding 1
Pool5 3×3, stride 2, padding 0 Conv3_4 256, 3×3×256, stride 1, padding 1

Fully connected1 4096 Pool3 2×2, stride 2, padding 0
Drop1 50% dropout …. …

Fully connected2 4096 Conv5_4 512, 3×3×512, stride 1, padding 1
Drop2 50% dropout Pool5 2×2, stride 2, padding 0

Fully connected3 1000 Fully connected1 4096
Softmax 1000 Drop1 50% dropout
Output Cross entropy Fully connected2 4096

Drop2 50% dropout
Fully connected3 1000

Softmax 1000
Output Cross entropy

(a) (b)

Fig. 2 Block representation of a AlexNet and b VGG-19 in compact form
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(c) LVLA, (d) HVLA and (e) neutral states in different

frequency bands for MAHNOB-HCI databases, respec-

tively. According to these figures, there are obvious dif-

ferences among five emotional states in the point of

effective connectivity measured by dDTF at each fre-

quency band.

Then, constructed dDTF and PDC images from EEG

signals were separately fed as input to four versions of pre-

trained CNN models, AlexNet, ResNet-50, Inception-v3

and VGG-19 and the parameters of these models are fine-

tuned, independently. Fine-tune step was performed on

ninefold of data and then onefold to evaluate the perfor-

mance of the classifier using various metrics (accuracy,

precision, recall and F1-score) for five emotional states.

This procedure repeated 10-times and the mean and stan-

dard deviation of these measures were reported. Cross

Entropy was chosen as the loss function and in optimiza-

tion phase, the adaptive moment estimation optimizer

Input Image (299×299×3)
Conv2d_1 32, 3×3×3, stride 2, padding 0
Conv2d_2 32, 3×3×32, stride 1, padding 0
Conv2d_3 64, 3×3×23, stride 1, padding 0
Pool1 3×3 max pool, stride 2, padding 0
Conv2d_4 80, 1×1×64, stride 1, padding 0 .
Conv2d_5 192, 3×3×80, stride 1, padding 0 .
Pool2 3×3 max pool, stride 2, padding 0 .
Inception_0:
-Conv2d_9
-bn_9
-Conv2d_10
-bn_10
-conv2d_11
-bn_11

-Conv2d_6
-bn_6

-Conv2d_7
-bn_7
-Conv2d_8
-bn_8

-Conv2d_12
-bn_12

[64,1 × 1 × 192], stride 1, padding 0 
64 channels
[96, 3 × 3 × 64], stride 1, padding 0 
96 channels
[96, 3 × 3 × 96], stride 1, padding 0 
96 channels

Inception_10:
-Conv2d_90
-bn_90
-conv2d_91
-bn_91
-Conv2d_92
-bn_92
-Conv2d_93
-bn_93
-Conv2d_86
-bn_86

-Conv2d_87
-bn_87
-Conv2d_88
-bn_88
-Conv2d_89
-bn_89

-Conv2d_94
-bn_94

[448, 1 × 1 × 448], stride 1, padding 0 
448 channels
[384, 3 × 3 × 448], stride 1, padding 0 
384 channels
[384, 1 × 3 × 384], stride 1, padding 0 
384 channels
[384, 3 × 1 × 384], stride 1, padding 0 
384 channels

[64, 1 × 1 × 192], stride 1, padding 0
64 channels

[320, 1 × 1 × 2084], stride 1, padding 0
320 channels

[48, 1 × 1 × 192], stride 1, padding 0
48 channels
[64, 5 × 5 × 48], stride 1, padding 0 
64 channels 

[384, 1 × 1 × 2084], stride 1, padding 0
384 channels 
[384, 1 × 3 × 384], stride 1, padding 0 
384 channels
[384, 3 × 1 × 384], stride 1, padding 0 
384 channels

[32, 1 × 1 × 192], stride 1, padding 0
32 channels

[192, 1 × 1 × 2084], stride 1, padding 0
192 channels

Inception_1:
-Conv2d_16
-bn_16
-Conv2d_17
-bn_17
-Conv2d_18
-bn_18
-Conv2d_13
-bn_13

-Conv2d_14
-bn_14
-Conv2d_15
-bn_15

-Conv2d_19
-bn_19

[64, 1 × 1 × 256], stride 1, padding 0 
64 channels 
[96, 3 × 3 × 64], stride 1, padding 0 
96 channels
[96, 3 × 3 × 96], stride 1, padding 0 
96 channels

Pool 8×8 Average pool, stride 8, padding 0

[64, 1 × 1 × 256], stride 1, padding 0
64 channels

Softmax 1000

[48, 1 × 1 × 256], stride 1, padding 0
48 channels
[64, 5 × 5 × 48], stride 1, padding 0 
64 channels

Output Cross entropy 

[64, 1 × 1 × 256], stride 1, padding 0
64 channels

Fig. 3 Block representation of the Inception-v3

Cognitive Neurodynamics (2022) 16:1087–1106 1093

123



(ADAM) algorithm was used. The initial learning rate,

squared gradient decay factor, max epochs and mini batch

size were 0.0004 (0.0001 for AlexNet), 0.99, 40 and 32,

respectively. If the accuracy value (or loss function) did not

change from 100% (negligible) in five consecutive epochs

the early stop was occurred manually. Figure 6 shows

block diagram of the proposed method for dDTF images.

Results of MAHNOB-HCI database

Table 1 shows the classification results for the fine-tuned of

four pre-trained CNNs in all frequency bands of PDC

images while using the tenfold Cross-Validation method.

As it can be observed, the alpha frequency band had the

highest accuracy using each model on PDC images. The

highest accuracy, precision, recall and F1-score were

obtained 96.25%, 96.23%, 96.28% and 96.23% in the alpha

frequency band using the ResNet-50, respectively. Incep-

tion-v3 was the runner up of recognizing the five emotional

states on the same images and frequency band with the

difference of 1% that achieved the average accuracy, pre-

cision, recall and F1-score of 95.85%, 95.83%, 95.87% and

95.83%, respectively.

Figure 7 shows training curves for AlexNet, VGG-19,

ResNet-50 and Inception-v3 at alpha frequency band of

dDTF images from MAHNOB-HCI database. According to

this figure, the two networks, ResNet-50 and Inception-v3

are trained sooner than AlexNet and VGG-19. Table 2

shows the classification results for the fine-tuned of four

pre-trained CNNs in all frequency bands of dDTF images

while using tenfold Cross-Validation method. Alpha fre-

quency band had the highest accuracy using each model

and ResNet-50 achieved the highest accuracy, followed by

Inception-v3 in recognition of five emotional states on

dDTF images. Maximum accuracy, precision, recall and

F1-score were obtained 99.43% ± 0.58, 99.42% ± 0.62,

99.44% ± 0.61 and 99.42% ± 0.56 in alpha frequency

band using the ResNet-50, respectively, followed by

Inception-v3 with 98.55% ± 0.59, 98.55 ± 0.63,

98.55 ± 0.64 and 98.55 ± 0.59. Table 3 shows confusion

Input Image (224×224×3)
Conv_1 64, 7×7×3, stride 2, padding 3
Pool1 3×3 max pool, stride 2, padding 0

Res1

-64, 1×1×64, stride 1, padding 0
-Batch normalization

-64, 3×3×64, stride 1, padding 1 
-Batch normalization

-256, 1×1×64, stride 1, padding 0 
-256, 1×1×64, stride 1, padding 0 

-Batch normalization 
-Batch normalization

Res2

-64, 1×1×256, stride 1, padding 0
-Batch normalization

-64, 3×3×64, stride 1, padding 1 
-Batch normalization

-256, 1×1×64, stride 1, padding 0 
-Batch normalization

-256, 1×1×64, stride 1, padding 0 
-Batch normalization

.

. 

.

Res16

-512, 1×1×2048, stride 1, padding 0
-Batch normalization

-512, 3×3×512, stride 1, padding 1 
-Batch normalization

-2048, 1×1×512, stride 1, padding 0 
-Batch normalization

Average pool 7×7, stride 7, padding 0
Fully connected 1000

Softmax 1000
Output Cross entropy

Fig. 4 Block representation of

the ResNet-50 in compact form
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Fig. 5 dDTF images for a HVHA, b LVHA, c LVLA, d HVLA and

e neutral states in delta, theta, alpha, beta and gamma frequency bands

on 5-s time window for MAHNOB-HCI EEG signals. The size of

dDTF matrix was 32 9 32 and denotes in horizontal and vertical axis.

Each element represents the dDTF value between two channels, in

which the values of diagonal elements are zero
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Fig. 5 continued
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Fig. 5 continued

Table 1 Classification results for proposed method using different pre-trained CNNs and PDC images on MAHNOB-HCI database in all

frequency bands while using tenfold Cross-Validation method

Net Bands Accuracy (%) Precision (%) Recall (%) F1- score (%)

AlexNet Delta 75.76 ± 0.49 75.74 ± 0.56 75.78 ± 0.51 76.72 ± 0.55

Theta 76.28 ± 0.52 76.25 ± 0.55 76.24 ± 0.63 76.24 ± 0.50

Alpha 78.32 ± 0.63 78.30 ± 0.53 78.35 ± 0.50 78.26 ± 0.67

Beta 77.35 ± 0.65 77.34 ± 0.56 77.36 ± 0.55 77.32 ± 0.56

Gamma 77.15 ± 0.55 77.12 ± 0.50 77.16 ± 0.56 77.13 ± 0.50

VGG-19 Delta 85.25 ± 0.54 85.22 ± 0.50 85.26 ± 0.50 85.20 ± 0.52

Theta 85.45 ± 0.58 85.75 ± 0.55 85.78 ± 0.54 85.42 ± 0.55

Alpha 87.38 ± 0.46 87.33 ± 0.50 87.42 ± 0.52 87.32 ± 0.52

Beta 86.05 ± 0.52 86.03 ± 0.53 86.10 ± 0.52 86.02 ± 0.53

Gamma 85.75 ± 0.50 85.72 ± 0.40 85.78 ± 0.65 85.72 ± 0.50

ResNet-50 Delta 93.24 ± 0.53 93.23 ± 0.54 93.25 ± 0.50 93.22 ± 0.52

Theta 93.64 ± 0.54 93.63 ± 0.55 93.66 ± 0.54 93.61 ± 0.58

Alpha 96.26 ± 0.53 96.23 ± 0.56 96.28 ± 0.55 96.23 ± 0.54

Beta 94.53 ± 0.52 94.52 ± 0.57 94.55 ± 0.52 94.50 ± 0.55

Gamma 94.22 ± 0.51 94.16 ± 0.53 94.24 ± 0.55 94.20 ± 0.50

Inception-v3 Delta 92.10 ± 0.54 92.08 ± 0.53 92.14 ± 0.55 92.07 ± 0.52

Theta 92.39 ± 0.58 92.37 ± 0.50 92.42 ± 0.50 92.35 ± 0.50

Alpha 95.85 ± 0.56 95.83 ± 0.54 95.87 ± 0.52 95.83 ± 0.60

Beta 93.29 ± 0.50 93.25 ± 0.59 93.34 ± 0.56 93.26 ± 0.57

Gamma 93.07 ± 0.53 93.05 ± 0.56 93.12 ± 0.55 93.05 ± 0.55

Highest results are showed bold
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matrixes for the different pre-trained CNNs in alpha fre-

quency band.

Results of DEAP database

Table 4 shows the classification results for the fine-tuned of

four pre-trained CNNs in all frequency bands of PDC

images while using the tenfold Cross-Validation method.

Alpha frequency band had the highest accuracy using each

model on PDC images. The highest accuracy, precision,

recall and F1-score were obtained 95.73%, 95.70%,

95.77% and 95.69% in the alpha frequency band using the

ResNet-50, respectively. Similar to results on PDC images

of the MAHNOB-HCI database, Inception-v3 was the

runner-up and achieved average accuracy, precision, recall

and F1-score 94.12%, 94.10%, 94.14% and 94.07%,

respectively.

Figure 8 shows training curves for AlexNet, VGG-19,

ResNet-50 and Inception-v3 at alpha frequency band of

dDTF images DEAP database. Similar to MAHNOB-HCI

database, the two networks, ResNet-50 and Inception-v3

are trained sooner than AlexNet and VGG-19 on dDTF

HVLALVLA

Fine-tune      
pre-trained 
CNNs and 
evaluation

Emotional EEG 
signals from 
DEAP And

MAHNOB-HCI 
databases

Pre-processing 
- electrode re-referencing 

- low pass and high pass FIR 
filtering - notch filtering

-remove eye blinks manually 
in EEGLAB 

Neutral

HVHALVHA
AlexNet, 

VGG-19,

ResNet-50,
Inception-v3

Extract effective connectivity using 
dDTF and PDC measures

Fig. 6 The block diagram of proposed emotion recognition system
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images. Table 5 shows the classification results for the

different pre-trained CNNs in all frequency bands while

using tenfold Cross-Validation method on dDTF images.

Again, alpha frequency band had the highest accuracy

using each model and ResNet-50 achieved the highest

accuracy, followed by Inception-v3, VGG-19 and AlexNet

in recognition of five emotional states on dDTF images.

Maximum accuracy, precision, recall and F1-score were

obtained 98.16% ± 0.54, 98.16 ± 0.64, 98.16 ± 0.63 and

98.16 ± 0.55 in alpha frequency band using the ResNet-

50, respectively. Table 6 shows confusion matrixes for the

different pre-trained CNNs in alpha frequency band.

Table 2 Classification results

for proposed method using

different pre-trained CNNs and

dDTF images on MAHNOB-

HCI database in all frequency

bands while using tenfold

Cross-Validation method

Net Bands Accuracy (%) Precision (%) Recall (%) F1-score (%)

AlexNet Delta 79.20 ± 0.75 79.38 ± 0.73 79.41 ± 0.70 79.25 ± 0.71

Theta 79.45 ± 0.74 79.63 ± 0.72 79.72 ± 0.71 79.53 ± 0.72

Alpha 79.40 ± 0.73 79.44 ± 0.72 79.38 ± 0.69 79.40 ± 0.70

Beta 79.56 ± 0.73 79.74 ± 0.73 79.83 ± 0.67 79.40 ± 0.71

Gamma 79.50 ± 0.74 79.71 ± 0.73 79.80 ± 0.66 79.62 ± 0.68

VGG-19 Delta 86.12 ± 0.75 86.10 ± 0.74 86.35 ± 0.70 86.16 ± 0.67

Theta 86.45 ± 0.74 86.42 ± 0.73 86.75 ± 0.73 86.39 ± 0.68

Alpha 88.30 ± 0.75 88.29 ± 0.74 88.30 ± 0.72 88.30 ± 0.72

Beta 87.54 ± 0.73 87.75 ± 0.72 87.65 ± 0.73 87.56 ± 0.68

Gamma 87.50 ± 0.74 87.70 ± 0.72 87.61 ± 0.72 87.76 ± 0.65

ResNet-50 Delta 97.30 ± 0.62 97.35 ± 0.66 97.20 ± 0.67 97.31 ± 0.69

Theta 98.25 ± 0.63 98.50 ± 0.63 98.25 ± 0.65 98.47 ± 0.62

Alpha 99.43 – 0.58 99.42 – 0.61 99.44 – 0.62 99.42 – 0.56

Beta 98.44 ± 0.59 98.67 ± 0.62 98.42 ± 0.63 98.54 ± 0.58

Gamma 98.35 ± 0.57 98.55 ± 0.65 98.37 ± 0.63 98.29 ± 0.60

Inception-v3 Delta 97.30 ± 0.62 97.26 ± 0.65 97.36 ± 0.65 97.33 ± 0.59

Theta 97.30 ± 0.63 97.27 ± 0.64 97.36 ± 0.63 97.35 ± 0.61

Alpha 98.55 ± 0.59 98.55 ± 0.63 98.55 ± 0.64 98.55 ± 0.59

Beta 97.32 ± 0.60 97.26 ± 0.63 97.39 ± 0.65 97.30 ± 0.60

Gamma 97.25 ± 0.59 97.29 ± 0.61 97.31 ± 0.60 97.26 ± 0.62

Highest results are showed bold

Table 3 Confusion matrixes of proposed method using different pre-trained CNNs ((a) AlexNet, (b) VGG-19, (c) ResNet-50 and (d) Inception-

v3) and dDTF images on MAHNOB-HCI database in alpha frequency bands

Neutral HVHA LVHA LVLA HVLA
Neutral 190 10 17 12 10
HVHA 12 216 12 11 10
LVHA 10 14 193 12 13
LVLA 13 17 15 195 10
HVLA 13 18 12 16 197
Accuracy 79.40%

(a)

Neutral HVHA LVHA LVLA HVLA
Neutral 212 6 8 5 8
HVHA 9 230 8 6 8
LVHA 4 7 218 7 6
LVLA 9 8 6 220 7
HVLA 8 8 10 8 222
Accuracy 88.30%

(b)
Neutral HVHA LVHA LVLA HVLA

Neutral 239 0 0 0 0
HVHA 1 260 0 0 0
LVHA 1 0 241 0 0
LVLA 1 0 0 248 1
HVLA 2 0 0 1 253
Accuracy 99.43%

(c)

Neutral HVHA LVHA LVLA HVLA
Neutral 238 0 1 0 0
HVHA 1 258 0 1 1
LVHA 2 1 237 1 1
LVLA 1 1 1 245 2
HVLA 2 0 0 2 252
Accuracy 98.55%

(d)
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Discussion

In this research, we have used deep learning and effective

connectivity methods for automated detection of emotional

states with very success. The highest accuracy values of

99.43% and 98.16% are achieved for applying the archi-

tecture of ResNet-50 in images of dDTF method at alpha

frequency band on 32 channels of EEG signals from the

MAHNOB-HCI and the DEAP databases, respectively.

One of the main novelties of this work is a way to build

2-dimensional image from 1-dimensional EEG signals of

32 channels using brain effective connectivity measures to

be fed to pre-trained CNN architecture. There are other

techniques to make 2-D image from 1-dimensional signal

based on classical time–frequency information (Short Term

Fourier Transform (STFT) (Chaudhary et al. 2019) and

Continuous Wavelet transform (CWT) (Chaudhary et al.

2019)). However, we have used the effective connectivity

measure, i.e., the dDTF and PDC which describes infor-

mation flow of brain regions between different EEG

channels at a specific frequency component. Also, we have

exploited different deep learning schemes named AlexNet,

ResNet-50, VGG-19 and Inception-v3.

According to Tables 1 and 2, alpha frequency band had

highest accuracies to recognize the five mentioned emo-

tional states in MAHNOB-HCI database using most of the

fine-tuned CNNs followed by beta, gamma, theta and delta

frequency bands. Also, according to Tables 4 and 5, alpha

frequency band had highest accuracies using all fine-tuned

CNNs for DEAP database followed by gamma, beta, theta

and delta frequency bands. Therefore, alpha frequency

band is more discriminative than other bands to recognize

the five mentioned emotional states in the two analyzed

databases. The previous works have shown the superiority

and efficiency of alpha band power in emotion classifica-

tion (Nie et al. 2011; Zheng and Lu 2015; Zheng et al.

2017; Akar et al. 2015). These studies declared that alpha,

beta and gamma band power are the most correlated bands

to emotion. We found it informative and also interesting

that in terms of information flow (effective connectivity)

between brain regions, also alpha band shows better dis-

criminative behavior than other bands. Our findings about

alpha effective connectivity by dDTF and PDC are con-

sistent with others studies with other connectivity features.

Shahabi and Moghimi (2016) proved that DTF effective

connectivity at alpha, beta and gamma frequency bands are

increased at frontal and parietal regions than other fre-

quency bands while listening to music. This is consistent

with Fig. 5, there are greater information flow at multiple

frontal and parietal channels at these frequency bands

comparing delta and theta frequency bands. Moreover, Wu

et al. (2019) found that the coherence connectivity is sig-

nificantly higher at frontal site in the alpha, beta and

gamma bands for the happy emotion (HVHA emotional

Table 4 Classification results

for proposed method using

different pre-trained CNNs and

PDC images on DEAP database

in all frequency bands while

using tenfold Cross-Validation

method

Net Bands Accuracy (%) Precision (%) Recall (%) F1- score (%)

AlexNet Delta 75.23 ± 0.46 75.24 ± 0.53 75.05 ± 0.54 75.20 ± 0.52

Theta 75.55 ± 0.58 75.56 ± 0.59 75.64 ± 0.56 75.52 ± 0.56

Alpha 77.12 ± 0.53 77.13 ± 0.55 77.15 ± 0.55 77.08 ± 0.45

Beta 76.48 ± 0.62 76.15 ± 0.47 76.06 ± 0.43 76.44 ± 0.52

Gamma 76.14 ± 0.48 76.18 ± 0.53 76.76 ± 0.48 76.12 ± 0.55

VGG-19 Delta 83.39 ± 0.52 83.35 ± 0.54 83.41 ± 0.55 83.35 ± 0.53

Theta 83.76 ± 0.47 83.75 ± 0.49 83.78 ± 0.62 83.70 ± 0.52

Alpha 85.42 ± 0.65 85.41 ± 0.56 85.45 ± 0.55 85.38 ± 0.56

Beta 84.44 ± 0.48 84.42 ± 0.45 84.45 ± 0.57 84.42 ± 0.48

Gamma 84.15 ± 0.53 84.14 ± 0.48 84.16 ± 0.43 84.12 ± 0.55

ResNet-50 Delta 91.20 ± 0.51 91.22 ± 0.43 91.26 ± 0.46 91.16 ± 0.51

Theta 91.52 ± 0.60 91.55 ± 0.52 91.54 ± 0.56 91.50 ± 0.56

Alpha 95.73 – 0.56 95.70 – 0.54 95.77 – 0.52 95.69 – 0.55

Beta 93.36 ± 0.56 93.33 ± 0.54 93.42 ± 0.47 93.29 ± 0.62

Gamma 93.24 ± 0.53 93.22 ± 0.45 93.28 ± 0.56 93.21 ± 0.54

Inception-v3 Delta 91.25 ± 0.58 91.24 ± 0.75 91.27 ± 0.48 91.21 ± 0.63

Theta 91.44 ± 0.49 91.41 ± 0.56 91.47 ± 0.57 91.42 ± 0.56

Alpha 94.12 ± 0.52 94.10 ± 0.47 94.14 ± 0.48 94.07 ± 0.65

Beta 92.56 ± 0.56 92.52 ± 0.54 92.59 ± 0.53 92.54 ± 0.46

Gamma 92.21 ± 0.54 92.18 ± 0.55 92.23 ± 0.55 92.20 ± 0.48

Highest results are showed bold
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state). So, our findings about alpha, beta and gamma dDTF

and PDC are consistent with others studies with different

features and also several psychological studies (Jaušovec

et al. 2011; Klimesch 2012; Başar 2012; Allen et al 2018).

Comparing Tables 1,2 4 and 5, we found that dDTF

images are more effective and appropriate to investigate

and recognize emotional states than PDC images in terms

of accuracy values (99.43% vs. 96.26% for MAHNOB-

HCI database and 98.16% vs. 95.73% for DEAP database).

According to Tables 1, 2, 3, 4, 5 and 6, ResNet-50 and

Inception-v3 had the best recognition results for five

emotional states in two databases. ResNet-50 and

Table 5 Classification results

for proposed method using

different pre-trained CNNs and

dDTF images on DEAP

database in all frequency bands

while using tenfold Cross-

Validation method

Net Bands Accuracy (%) Precision (%) Recall (%) F1- score (%)

AlexNet Delta 80.10 ± 0.75 80.21 ± 0.72 80.79 ± 0.73 80.45 ± 0.72

Theta 80.32 ± 0.73 80.36 ± 0.71 80.21 ± 0.74 80.35 ± 0.70

Alpha 82.40 ± 0.70 82.39 ± 0.69 82.39 ± 0.75 82.39 ± 0.69

Beta 81.12 ± 0.77 81.15 ± 0.70 80.87 ± 0.74 81.03 ± 0.71

Gamma 81.34 ± 0.75 81.30 ± 0.74 81.05 ± 0.75 81.15 ± 0.69

VGG-19 Delta 87.62 ± 0.75 87.55 ± 0.75 87.05 ± 0.68 87.34 ± 0.71

Theta 88.50 ± 0.73 88.47 ± 0.75 88.10 ± 0.69 88.25 ± 0.68

Alpha 89.95 ± 0.70 89.95 ± 0.69 89.95 ± 0.70 89.95 ± 0.69

Beta 89.50 ± 0.70 89.47 ± 0.70 89.08 ± 0.69 89.34 ± 0.67

Gamma 88.25 ± 0.71 88.20 ± 0.70 87.86 ± 0.68 88.10 ± 0.65

ResNet-50 Delta 97.10 ± 0.53 97.12 ± 0.65 96.85 ± 0.67 97.05 ± 0.63

Theta 97.05 ± 0.60 97.10 ± 0.65 96.83 ± 0.65 96.92 ± 0.60

Alpha 98.16 – 0.54 98.16 – 0.64 98.16 – 0.63 98.16 – 0.55

Beta 97.13 ± 0.56 97.16 ± 0.63 96.95 ± 0.65 97.04 ± 0.58

Gamma 97.15 ± 0.50 97.20 ± 0.63 96.91 ± 0.64 97.01 ± 0.59

Inception-v3 Delta 97.20 ± 0.52 97.35 ± 0.65 96.50 ± 0.66 97.14 ± 0.59

Theta 97.35 ± 0.54 97.42 ± 0.64 97.05 ± 0.65 97.35 ± 0.58

Alpha 97.54 ± 0.55 97.53 ± 0.65 97.53 ± 0.62 97.53 ± 0.57

Beta 97.25 ± 0.50 97.30 ± 0.65 96.86 ± 0.64 97.17 ± 0.57

Gamma 97.50 ± 0.48 97.57 ± 0.62 96.73 ± 0.63 97.28 ± 0.59

Highest results are showed bold

Table 6 Confusion matrixes of proposed method using different pre-trained CNNs ((a) AlexNet, (b) VGG-19, (c) ResNet-50 and (d) Inception-

v3) and dDTF images on DEAP database in alpha frequency bands

neutral HVHA LVHA LVLA HVLA
Neutral 1162 57 56 65 62
HVHA 64 1165 64 62 60
LVHA 65 68 1158 57 60
LVLA 63 59 64 1152 69
HVLA 69 53 55 67 1164
Accuracy 82.40%

(a)

Neutral HVHA LVHA LVLA HVLA
Neutral 1266 35 34 35 32
HVHA 34 1273 36 35 37
LVHA 35 38 1264 36 35
LVLA 38 34 35 1264 36
HVLA 36 36 36 34 1266
Accuracy 89.95%

(b)
neutral HVHA LVHA LVLA HVLA

Neutral 1373 6 8 7 8
HVHA 8 1388 6 8 5
LVHA 5 6 1385 5 7
LVLA 6 3 6 1385 7
HVLA 7 7 8 6 1380
Accuracy 98.16%

(c)

Neutral HVHA LVHA LVLA HVLA
Neutral 1368 7 8 8 11
HVHA 10 1380 10 9 6
LVHA 6 11 1374 7 10
LVLA 10 6 7 1375 9
HVLA 8 10 8 12 1370
Accuracy 97.54%

(d)
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Inception-v3 use residual and Inception modules, respec-

tively, that have specific non-straightforward arrangement

of convolutional layers. A residual module has shortcuts

from input to output and Inception module has parallel

convolutional layers. Also, these networks use the batch

normalization technique to prevent overfitting and speed up

convergence (Guo et al. 2016). As showed in Figs. 7 and 8

these networks are trained sooner than AlexNet and VGG-

19. So, these specific arrangements cause to learn the

desired task more accurately and results of these networks

are higher than VGG-19 and AlexNet.

In Table 7, results of this study are compared with new

best related studies to classify emotional states from EEG

signals on same databases. All of these studies considered

emotional states based on the valence-arousal model. The

majority of these studies such as Lee and Hsieh (2014),

Zhang et al. (2017) and Yang et al. (2019) classified

emotional states as binary classes based on the valence and

arousal concepts, i.e., positive valence against negative

valence and low arousal against high arousal. But we

considered emotional states in more detail (5 classes, as

mentioned in the Emotional states section) to be closer to

real life, i.e., positive valence and high arousal is consid-

ered one class, positive valence and low arousal another

class, negative valence and low arousal or high arousal the

other two classes and finally near zero valence and arousal

as the neutral class.

As it is observed, accuracy achieved in this study is

higher than those studies with the traditional machine

learning methods and other deep learning method and

proves the preference of the proposed method. So, com-

pared to other similar studies, this work has the advantage

of combination of the dDTF effective connectivity image

converted from EEG signals and powerful fine-tuned deep

learning CNNs comparing the other methods that caused

higher accuracy. Consequently, according to the Table 7,

this study acquired the best results so far in automated

recognition of emotional states in two databases. Our aim

in the future is to employ the developed methodology on

other types of EEG data.

Conclusion

A comprehensive study using the concept of information

flow from multichannel EEG signals via two effective

connectivity measures, dDTF and PDC, and a number of

well-known pre-trained deep learning algorithms was

exploited for recognition of five emotional states during

watching emotional video clips and music video clips

(MAHNOB-HCI and DEAP databases). The highest

accuracy values of 99.43% and 98.16% are achieved for

applying the architecture of ResNet-50 in images of dDTF

method at alpha frequency band in classifying five emo-

tional states from the MAHNOB-HCI and the DEAP

databases, respectively. Relying on the results, newly

proposed model is capable of effectively analyzing the

brain function and produces the best results compared to all

studies in recent years.

Appendix

Tables 8 and 9 shows the classification results for the fine-

tuned of four pre-trained CNNs in all frequency bands of

dDTF images from MAHNOB-HCI (Table 8) and DEAP

Fig. 8 The train curve obtained for AlexNet, VGG-19, ResNet-50 and

Inception-v3 on dDTF images at alpha frequency band of DEAP

database

Fig. 7 The train curve obtained for AlexNet, VGG-19, ResNet-50 and

Inception-v3 at alpha frequency band of dDTF images from

MAHNOB-HCI database
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(Table 9) database using Leave-One-Subject-Out (LOSO)

Cross-Validation method. Alpha frequency band had the

highest accuracy using each model and ResNet-50

achieved the highest accuracy in recognition of five emo-

tional states on dDTF images. In Table 8, maximum

accuracy, precision, recall and F1-score were obtained

97.78% ± 3.32, 97.72% ± 3.33, 97.71% ± 3.45 and

97.73% ± 3.24 in alpha frequency band using the ResNet-

50, respectively. In Table 9, maximum accuracy, precision,

recall and F1-score were obtained 96.12% ± 3.25,

96.15% ± 3.24, 96.25% ± 3.30 and 96.16% ± 3.25 in

alpha frequency band using the ResNet-50, respectively.

Table 7 Comparison of emotion recognition studies from EEG signals

References (year) Database Method Number

of classes

Accuracy (%)

Atkinson and

Campos (2016)

DEAP Statistical features, FD, HP, mRMR, SVM 2 73.41 (valence), 73.06 (arousal)

Yang et al.

(2018)

DEAP Empirical mode decomposition, Sample entropy,

support vector machine

4 93.2

Zheng et al.

(2017)

DEAP Differential entropy, Graph regularized Extreme

Learning Machine

4 69.67

Soroush et al.

(2018)

DEAP Nonlinear features (CD, FD, …), ICAs, modified

Dempster-Shafer theory of evidence

4 90.54

Soroush et al.

(2020)

DEAP Poincare plane, MSVM, KNN, MLP 4 89.76

Lee and Hsieh

(2014)

DEAP PSI, Coh, Corr, SVM, MLP, DT 2 73.30 (arousal), 72.50 (valence)

Zhang et al.

(2017)

DEAP MI, PCC, SVM, RF 2 72.6 (valence), 70.3 (arousal)

Li et al. (2019) DEAP,

MAHNOB-

HCI

PLV, SVM, GELM 4 68 (MAHNOB-HCI), 62 (DEAP)

Wang et al.

(2019)

DEAP PLV, graph-CNN 2 73.31 (valence), 77.03 (arousal)

Yang et al.

(2018)

DEAP Recurrence quantification analysis, Parallel

Convolutional Recurrent Neural Network

2 90.8 (valence), 91.03 (arousal)

Xiaofen et al.

(2019)

DEAP Stack AutoEncoder-Long short-term memory 2 81.10 (valence), 74.38 (arousal)

Yang et al.

(2019)

DEAP Multi column CNN 2 90.01 (valence), 90.65 (arousal)

Shen et al. (2020) DEAP Differential entropy, 4D-Convolutional recurrent

neural network

2 94.22 (valence), 94.58 (arousal)

Proposed method DEAP,

MAHNOB-

HCI

dDTF, PDC, ResNet-50, Inception-v3, AlexNet,

VGG-19

5 98.16 ± 0.54 (dDTF, DEAP),

99.43 ± 0.58 (dDTF, MAHNOB-

HCI)
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Table 8 Classification results

for proposed method using

different pre-trained CNNs and

dDTF images on MAHNOB-

HCI database in all frequency

bands using the LOSO Cross-

Validation method

Net Bands Accuracy (%) Precision (%) Recall (%) F1-score (%)

AlexNet Delta 76.55 ± 0.75 76.59 ± 3.43 76.50 ± 3.24 76.42 ± 3.22

Theta 77.07 ± 0.74 77.12 ± 3.22 77.15 ± 3.52 77.10 ± 3.44

Alpha 77.73 ± 0.73 77.77 ± 3.40 77.75 ± 3.53 77.64 ± 3.42

Beta 77.28 ± 0.73 77.35 ± 3.43 77.26 ± 3.35 77.21 ± 3.41

Gamma 77.40 ± 0.74 77.43 ± 3.32 77.32 ± 3.40 77.32 ± 3.45

VGG-19 Delta 84.36 ± 3.45 84.57 ± 3.32 84.32 ± 3.39 84.15 ± 3.34

Theta 84.69 ± 3.49 84.83 ± 3.45 84.57 ± 3.35 84.52 ± 3.28

Alpha 86.42 ± 3.25 86.66 ± 3.40 86.35 ± 3.36 86.34 ± 3.37

Beta 85.30 ± 3.34 85.52 ± 3.42 85.24 ± 3.34 85.22 ± 3.34

Gamma 85.42 ± 3.50 85.67 ± 3.38 85.36 ± 3.40 85.34 ± 3.32

ResNet-50 Delta 95.23 ± 3.27 95.73 ± 3.35 95.32 ± 3.37 95.13 ± 3.24

Theta 96.65 ± 3.25 96.75 ± 3.34 96.65 ± 3.32 96.48 ± 3.25

Alpha 97.78 – 3.32 97.72 – 3.33 97.71 – 3.45 97.73 – 3.24

Beta 96.91 ± 3.24 96.93 ± 3.25 96.84 ± 3.24 96.75 ± 3.35

Gamma 96.86 ± 3.21 96.90 ± 3.21 96.82 ± 3.40 96.73 ± 3.42

Inception-v3 Delta 94.26 ± 3.55 94.24 ± 3.52 94.33 ± 3.43 94.15 ± 3.22

Theta 94.54 ± 3.52 94.60 ± 3.43 94.54 ± 3.25 94.37 ± 3.31

Alpha 96.86 ± 3.54 96.83 ± 3.22 96.78 ± 3.44 96.70 ± 3.30

Beta 95.25 ± 3.26 95.30 ± 3.45 95.32 ± 3.30 95.20 ± 3.32

Gamma 95.20 ± 3.23 95.32 ± 3.35 95.24 ± 3.23 95.15 ± 3.34

Highest results are showed bold

Table 9 Classification results

for proposed method using

different pre-trained CNNs and

dDTF images on DEAP

database in all frequency bands

using LOSO Cross-Validation

method

Net Bands Accuracy (%) Precision (%) Recall (%) F1- score (%)

AlexNet Delta 79.49 ± 3.42 79.35 ± 3.35 79.55 ± 3.72 79.32 ± 3.35

Theta 79.36 ± 3.36 79.13 ± 3.41 79.42 ± 3.29 79.25 ± 3.26

Alpha 80.62 ± 3.34 80.48 ± 3.30 80.72 ± 3.35 80.49 ± 3.32

Beta 80.21 ± 3.35 80.10 ± 3.34 80.34 ± 3.42 80.15 ± 3.42

Gamma 80.36 ± 3.30 80.24 ± 3.35 80.39 ± 3.45 80.30 ± 3.29

VGG-19 Delta 80.12 ± 3.34 80.11 ± 3.32 80.25 ± 3.35 80.08 ± 3.29

Theta 80.46 ± 3.40 80.38 ± 3.35 80.54 ± 3.32 80.30 ± 3.35

Alpha 81.72 ± 3.35 81.57 ± 3.26 81.76 ± 3.25 81.65 ± 3.36

Beta 81.38 ± 3.22 81.32 ± 3.35 81.42 ± 3.27 81.32 ± 3.45

Gamma 81.45 ± 3.36 81.34 ± 3.42 81.51 ± 3.38 81.40 ± 3.36

ResNet-50 Delta 94.02 ± 3.25 94.15 ± 3.34 94.26 ± 3.32 94.10 ± 3.35

Theta 94.35 ± 3.27 94.25 ± 3.30 94.44 ± 3.35 94.32 ± 3.40

Alpha 96.12 – 3.25 96.15 – 3.24 96.25 – 3.30 96.15 – 3.25

Beta 95.42 ± 3.50 95.40 ± 3.36 95.57 ± 3.24 95.32 ± 3.22

Gamma 95.56 ± 3.20 95.74 ± 3.29 95.53 ± 3.30 95.67 ± 3.29

Inception-v3 Delta 92.36 ± 3.55 92.23 ± 3.60 92.25 ± 3.64 92.20 ± 3.52

Theta 92.49 ± 3.54 92.35 ± 3.62 92.35 ± 3.62 92.31 ± 3.56

Alpha 93.80 ± 3.56 93.62 ± 3.65 93.72 ± 3.60 93.72 ± 3.52

Beta 93.30 ± 3.52 93.13 ± 3.62 93.35 ± 3.62 93.25 ± 3.53

Gamma 93.45 ± 3.54 93.30 ± 3.56 93.50 ± 3.62 93.35 ± 3.55

Highest results are showed bold
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