Skip to main content
. 2022 Jan 9;16(5):1087–1106. doi: 10.1007/s11571-021-09756-0

Table 7.

Comparison of emotion recognition studies from EEG signals

References (year) Database Method Number of classes Accuracy (%)
Atkinson and Campos (2016) DEAP Statistical features, FD, HP, mRMR, SVM 2 73.41 (valence), 73.06 (arousal)
Yang et al. (2018) DEAP Empirical mode decomposition, Sample entropy, support vector machine 4 93.2
Zheng et al. (2017) DEAP Differential entropy, Graph regularized Extreme Learning Machine 4 69.67
Soroush et al. (2018) DEAP Nonlinear features (CD, FD, …), ICAs, modified Dempster-Shafer theory of evidence 4 90.54
Soroush et al. (2020) DEAP Poincare plane, MSVM, KNN, MLP 4 89.76
Lee and Hsieh (2014) DEAP PSI, Coh, Corr, SVM, MLP, DT 2 73.30 (arousal), 72.50 (valence)
Zhang et al. (2017) DEAP MI, PCC, SVM, RF 2 72.6 (valence), 70.3 (arousal)
Li et al. (2019) DEAP, MAHNOB-HCI PLV, SVM, GELM 4 68 (MAHNOB-HCI), 62 (DEAP)
Wang et al. (2019) DEAP PLV, graph-CNN 2 73.31 (valence), 77.03 (arousal)
Yang et al. (2018) DEAP Recurrence quantification analysis, Parallel Convolutional Recurrent Neural Network 2 90.8 (valence), 91.03 (arousal)
Xiaofen et al. (2019) DEAP Stack AutoEncoder-Long short-term memory 2 81.10 (valence), 74.38 (arousal)
Yang et al. (2019) DEAP Multi column CNN 2 90.01 (valence), 90.65 (arousal)
Shen et al. (2020) DEAP Differential entropy, 4D-Convolutional recurrent neural network 2 94.22 (valence), 94.58 (arousal)
Proposed method DEAP, MAHNOB-HCI dDTF, PDC, ResNet-50, Inception-v3, AlexNet, VGG-19 5 98.16 ± 0.54 (dDTF, DEAP), 99.43 ± 0.58 (dDTF, MAHNOB-HCI)