Table 7.
Comparison of emotion recognition studies from EEG signals
| References (year) | Database | Method | Number of classes | Accuracy (%) |
|---|---|---|---|---|
| Atkinson and Campos (2016) | DEAP | Statistical features, FD, HP, mRMR, SVM | 2 | 73.41 (valence), 73.06 (arousal) |
| Yang et al. (2018) | DEAP | Empirical mode decomposition, Sample entropy, support vector machine | 4 | 93.2 |
| Zheng et al. (2017) | DEAP | Differential entropy, Graph regularized Extreme Learning Machine | 4 | 69.67 |
| Soroush et al. (2018) | DEAP | Nonlinear features (CD, FD, …), ICAs, modified Dempster-Shafer theory of evidence | 4 | 90.54 |
| Soroush et al. (2020) | DEAP | Poincare plane, MSVM, KNN, MLP | 4 | 89.76 |
| Lee and Hsieh (2014) | DEAP | PSI, Coh, Corr, SVM, MLP, DT | 2 | 73.30 (arousal), 72.50 (valence) |
| Zhang et al. (2017) | DEAP | MI, PCC, SVM, RF | 2 | 72.6 (valence), 70.3 (arousal) |
| Li et al. (2019) | DEAP, MAHNOB-HCI | PLV, SVM, GELM | 4 | 68 (MAHNOB-HCI), 62 (DEAP) |
| Wang et al. (2019) | DEAP | PLV, graph-CNN | 2 | 73.31 (valence), 77.03 (arousal) |
| Yang et al. (2018) | DEAP | Recurrence quantification analysis, Parallel Convolutional Recurrent Neural Network | 2 | 90.8 (valence), 91.03 (arousal) |
| Xiaofen et al. (2019) | DEAP | Stack AutoEncoder-Long short-term memory | 2 | 81.10 (valence), 74.38 (arousal) |
| Yang et al. (2019) | DEAP | Multi column CNN | 2 | 90.01 (valence), 90.65 (arousal) |
| Shen et al. (2020) | DEAP | Differential entropy, 4D-Convolutional recurrent neural network | 2 | 94.22 (valence), 94.58 (arousal) |
| Proposed method | DEAP, MAHNOB-HCI | dDTF, PDC, ResNet-50, Inception-v3, AlexNet, VGG-19 | 5 | 98.16 ± 0.54 (dDTF, DEAP), 99.43 ± 0.58 (dDTF, MAHNOB-HCI) |