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Abstract

Preterm birth contributes significantly to neonatal mortality and morbidity. Despite its global 

significance, there has only been limited progress in preventing preterm birth. Spontaneous 

preterm birth (sPTB) results from a wide variety of pathological processes. Although many non-

genetic risk factors influence the timing of gestation and labor, compelling evidence supports the 

role of substantial genetic and epigenetic influences and their interactions with the environment 

contributing to sPTB. To investigate a common and complex disease such as sPTB, various 

approaches such as genome-wide association studies, whole-exome sequencing, transcriptomics, 

and integrative approaches combining these with other ‘omics studies have been used. However, 

many of these studies were typically small or focused on a single ethnicity or geographic region 

with limited data, particularly in populations at high risk for sPTB, or lacked a robust replication. 

These studies found many genes involved in the inflammation and immunity-related pathways 

that may affect sPTB. Recent studies also suggest the role of epigenetic modifications of gene 

expression by the environmental signals as a potential contributor to the risk of sPTB. Future 

genetic studies of sPTB should continue to consider the contributions of both maternal and fetal 

genomes as well as their interaction with the environment.
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Introduction:

The consequences of being born prematurely remain one of the most significant health 

burdens to society despite increased clinical and research attention. Preterm birth is defined 

as being born <37 weeks of completed gestation based on the first day of a woman’s 

last menstrual period. In 2002, 34.3 % of all infant deaths in the US were attributed 

to preterm birth, and 95% of those deaths occurred among those born at <32 weeks of 

gestation or with birth weight < 1500g.1 Though infant mortality attributed to preterm birth 

progressively reduced to <17% in the US,2 still an estimated 15 million neonates are born 

prematurely worldwide every year, and approximately 1 million of those children die due 

to complications of preterm birth.3 This results in preterm birth being the leading cause of 

under-five mortality worldwide.4

Preterm birth is relatively common, ranging from ~5% in European countries to ~18 % 

in low and middle-income African and South Asian countries, and preterm birth rates 

continue to rise globally.5 In the US, the rate of preterm birth increased steadily from 

9.63% in 2015 to 10.1% in 2020.6 Preterm birth is associated with a significant burden 

on the healthcare system with an average lifetime incremental cost of $65,000 per preterm 

birth in the US.7,8 In addition, families of preterm infants often experience considerable 

psychological and financial hardship.9 Though survival of preterm infants has continued to 

improve, preterm neonates who survive have many short and long-term morbidities which 

can be life-long.10,11 They also suffer from various disabilities which become apparent later 

in childhood and young adulthood, such as school difficulties and behavioral problems.12 In 

addition, these infants are at increased risk of various adult-onset metabolic diseases such 

as obesity, diabetes, and hypertension.13–15 The ideal way to improve the overall health of 

these preterm infants would be to prevent preterm birth. Despite its global significance, there 

has been limited progress in preventing prematurity, likely due to failure in understanding 

the normal control mechanisms for pregnancy, initiation of labor, and the pathways through 

which these mechanisms are disrupted, leading to preterm birth.

Delivery of a healthy newborn at term gestation depends on numerous mechanisms, many 

of which involve inflammatory pathways.16 It has been suggested that although term labor 

is a physiological activation of these pathways, preterm labor results from pathological 

activation of the same pathways at an earlier time.17 To support this concept, a significant 

degree of overlapping transcriptomic regulation in the immunological pathways was noted in 

maternal blood from women with labor at term and before delivery in women that ultimately 

delivered preterm.18 Preterm births can be classified as spontaneous (due to preterm labor 

with intact membrane or preterm premature rupture of membranes) or iatrogenic/medically-

induced (e.g., cesarean section or labor induction due to maternal or fetal conditions 

that compromise the health of the mother or infant).19 Spontaneous preterm birth (sPTB) 
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accounts for ~65–70% of all cases of preterm birth, and about 50% of these occur in 

apparently low-risk pregnancies.19

Although the pathogenesis of preterm birth is not well understood, multiple risk factors 

have been associated with an increased incidence of preterm birth (Fig 1).19 In the US, 

disparities in preterm birth are evidenced by the higher rate of preterm birth in non-Hispanic 

Black women at 14.39% vs. 9.26% in non-Hispanic white women, even after adjusting 

for maternal socioeconomic status and education.6 Increased preterm birth rates are also 

associated with non-Hispanic Black paternal race.20 Increasingly recognized as contributing 

factors in the minority, particularly Black, pregnancies, are the pervasive consequences 

of social determinants including racism.21 Ideally, identifying variously modifiable and 

non-modifiable risk factors associated with preterm birth prior to conception or early in 

pregnancy provides an opportunity to initiate interventions that can prevent complications 

related to preterm birth. Various interventions such as nutritional supplementation, adequate 

pregnancy weight gain, tocolytics, bed rest to delay labor, home uterine monitoring for fetal 

distress, cervical cerclage for short cervix, treatment of bacterial vaginosis, and antibiotic 

treatment for chorioamnionitis have been implemented to prevent or treat preterm labor. 

However, they have proven to be of little or no benefit.22 Progesterone supplementation 

in high-risk pregnant women with a history of preterm delivery or a short cervix at mid-

gestation has been found to reduce preterm birth risk, but the mechanism by which this 

occurs remains unclear and has not been replicated in many populations.23–25 The older 

trials, which showed benefits had unusually high preterm birth rates in the control group, 

and recent trials which did not show a benefit had a much lower rate of preterm birth 

rates in controls. In a meta-analysis of individual participant data from randomized trials 

evaluating progesterone for preventing preterm birth in singleton pregnancies with either a 

previous spontaneous preterm birth or cervical shortening in the current pregnancy (31 trials, 

n = 11,644), vaginal progesterone [RR 0·78, 95% CI (0·68–0·90)] and oral progesterone 

[RR: 0·60, (0·40–0·90)] significantly reduced preterm birth (<34weeks), but results were not 

significant for hydroxyprogesterone caproate [RR 0·83, (0·68–1·01)]. No benefit was found 

for multi-fetal pregnancies.26

Many sociodemographic, nutritional, biologic, genetic, and environmental factors are 

associated with an increased risk of sPTB.19,27 The complex interactions of these 

contributors with both the mother and fetus have made disentangling causation 

challenging.28 Although the timing of labor is influenced by many non-genetic risk factors; 

there is strong evidence for a substantial genetic and epigenetic component. This review 

will focus on various genetic and epigenetic determinants of preterm birth to gain new 

insights into pathways that mediate not only primary genetic etiologies but also those that 

are dysregulated by environmental exposures.

Family-based and Epidemiological Evidence for Preterm Birth

Twin and Family Studies

Substantial evidence, although indirect, suggested that genetics plays an important role in 

determining gestational duration and risk of preterm birth.29 A history of sPTB in a mother 

is a significant risk factor for subsequent preterm birth, and recurrences often occur at the 
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same or earlier gestational age.30,31 There is a 5-fold increase in delivering preterm in 

subsequent pregnancies if one of the mother’s previous infants was born preterm, which 

increases up to 18-fold if the previous delivery was at less than 29 weeks of gestation.32 

Epidemiological studies of large population-based cohorts reveal that mothers who are born 

preterm, have sisters who were also born preterm or delivered preterm and have an increased 

risk of themselves delivering preterm.30,32,33 Twin studies and segregation analysis of traits 

of families demonstrate significant genetic contribution to preterm birth with the heritability 

estimates of maternal genetic contribution ranging from 15 to 40%.34–37 (Table 1). These 

estimates may be affected by confounding effects of the fetal genome or similar lifestyle 

factors of mother and daughter, though attempts have been made to control for these 

lifestyle confounders by utilizing sisters-in-law as controls. Some studies have suggested 

that the fetal genome contributes ~5 to 11% genetic variation to gestational age at delivery. 
38,39 However, the fetal contribution was negligible in sPTB compared to 14% in medically-

induced deliveries.38 There is also inconsistency in how preterm birth is defined in these 

studies (Table 1). Some studies used preterm birth (<37 weeks) as a categorical variable,38 

or did not differentiate between medically-induced or spontaneous preterm birth.40–43 

Since genetics and environment homogenously affect across the range of gestational age 

during pregnancy, considering gestational duration as a continuous variable could be more 

useful than using a dichotomized outcome in genetic studies.39 Similarly, there is no 

convincing evidence that parental imprinting influences sPTB or gestational duration. There 

is also negligible to relatively small (~6%) contribution from the paternal genome.40,44,45 

Overall, these studies along with single nucleotide polymorphisms (SNP) based heritability 

estimation in mother/child pairs overwhelmingly suggest a well-substantiated and important 

contribution by the maternal genome and a much smaller contribution from the fetal genome 

for the gestational duration or preterm birth.46,47

Genome-wide approaches to preterm birth

Genome-wide linkage studies—Family-based linkage studies allowed the identification 

of a locus of interest based upon the linkage with a trait. Genome-wide linkage studies 

(GWL) involve either single large pedigrees or a large number of nuclear families to 

identify location of disease genes with large effects. In a study of Finnish families with 

multiple sPTB, linkage of sPTB with gene encoding insulin-like growth factor 1 (IGF1) 

receptor and androgen receptor (AR) in the fetal genome was found. These results were 

replicated in case-control studies of nuclear families from Finland.48,49 IGF1 expression in 

placental and fetal tissues has been reported. IGF1 plays an essential role in fetal growth 

and regulates multiple downstream signaling pathways involved in inflammation and critical 

cellular processes such as mitochondrial biogenesis.50 Low IGF1 levels have been associated 

with various preterm neonatal morbidities as well as dysregulated lipid metabolism, 

cardiovascular disease, and diabetes, common in preterm infants in adulthood.51,52 IGF1 has 

anti-inflammatory and antioxidant effects, and downregulation of IGF1 receptor expression 

increases cellular stress and cytokine (IL-6 and CCL2) production.53 All these taken 

together support a causal role of IGF1 in preterm birth pathogenesis. Decreased AR 

signaling leads to apoptosis via activation of Caspase-3.54 This decreased AR signaling 

might lead to sPTB via apoptosis of the fetal membrane in the placenta.55 In addition, 

interactions of IGF1 and AR genes may affect the onset of spontaneous preterm labor.48 
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Furthermore, a fetal chemokine receptor CXCR3 variant was associated with sPTB.56 

CXCR3 receptor plays a critical role in cell-mediated immunity and is expressed in the 

placenta and fetal membranes. In CXCR3-deficient preterm birth mice, sPTB-associating 

cytokines were not increased in amniotic fluid,57, and prevented fetal wastage after Listeria 

infection and depletion of maternal Tregs.58 In another GWL study involving Mexican 

Americans, PAI-2, a member of the plasminogen activator system was linked to sPTB. 

This gene was previously found to be significantly associated with sPTB in a case-control 

study of the Australian population.59 This plasminogen activator system is associated with 

various reproductive processes such as placental development and functioning, hemostasis, 

and labor-associated rupture of fetal membranes.60 It should also be noted that for common 

and complex disorders, such as sPTB, the results of GWL studies are hard to reproduce.61

Genome-wide association studies—The genome-wide association study (GWAS) has 

been the most common genomic approach to investigating complex diseases. GWAS focuses 

on associations between single-nucleotide polymorphisms (SNPs) and human traits and 

diseases. Genomic studies have recently expanded to include whole-exome sequence (WES) 

and whole-genome sequence (WGS) analyses. The GWAS approach is “hypothesis-free”, 

and it systematically screens the whole genome without prior preference for specific regions 

or genes. These approaches offer the advantage to overcome difficulties imposed by the 

incomplete understanding of the disease pathophysiology such as in sPTB. GWAS is an 

alternative to family-based linkage studies and is better at detecting weak genetic effects. 

Since the effect sizes of most risk variants associated with a complex disease are small and 

the statistical significance thresholds are stringent in GWAS, large samples of cases and 

controls, or cohort studies, are needed for a robust analysis. Independent replications are 

also required to confirm the results and avoid false-positive associations.62 Thus, though 

candidate gene studies have associated approximately 119 candidate genes with sPTB, most 

of these studies suffered from a lack of replication, even within the same population.63

Maternal GWAS: The first GWAS study used maternal genome derived from the Danish 

National Birth Cohort (n =2000) and found no evidence of genetic association with sPTB 

in this European population.64 The first GWAS study from the US (n=2040) of the maternal 

genome and early sPTB (<34 weeks) comprising mixed racial distribution identified 

multiple SNPs associated with sPTB. However, these results could not be replicated in a 

validation cohort.65,66 In a separate Norwegian cohort of mothers with sPTB (n=1921), 

no genome-wide significant associations with gestational age were found. However, genes 

involved in the inflammation/infection pathway (TLR4, NFKB1, ABCA1, MMP9) that 

contribute to gestational age were found using a gene-set enrichment analysis of GWAS 

results.67 The negative results of these studies were not surprising given the small sample 

size.

In a large GWAS of 43,568 women of European descent with self-reported sPTB, variants 

at six loci in the maternal genome (EBF1, EEFSEC, AGTR2, WNT4, ADCY5, and RAP2C) 

were found to be associated with gestational duration, and three loci (EBF1, EEFSEC, and 

AGTR2) with preterm birth as a dichotomous trait (<37 weeks).68 These findings were 

replicated in a separate Northern European cohort with spontaneous preterm birth (n=8643). 
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Analysis of mother-infant dyads showed that these findings likely resulted from the action 

of the maternal genome. EBF1 is essential for B cell development and control of blood 

pressure.69,70 Recent studies have identified the critical role of B cells in birth timing 

and preterm birth in animals and humans.71–73 In mice, the expression level of EBF1 at 

the mRNA level is downregulated in splenic B cells during normal pregnancies.74 Low 

EBF1 mRNA has been associated with an increased risk of sPTB in humans due to altered 

maternal-fetal immune and cell cycle/apoptosis pathways.75 The EEFSEC gene, which 

encodes the selenocysteine tRNA (tRNASeleno)-specific eukaryotic elongation factor plays 

a critical role in incorporating selenium in the form of selenocysteine into selenoproteins. 

Selenoproteins serve critical cellular homeostatic functions in maintaining redox status and 

antioxidant defenses and modulating inflammatory responses and have been implicated in 

various reproductive and obstetric health disorders.76 AGTR2 plays a role in modulating 

uteroplacental circulation, and it has been suggested it may harbor variants that contribute 

to the risk of preeclampsia.77 Women with preeclampsia as an indication for their delivery 

were excluded from this GWAS dataset, suggesting that this association indicates the risk 

of sPTB rather than preeclampsia.68 Functional analysis showed that an implicated variant 

in WNT4 alters the binding of the estrogen receptor. Estrogen is known to play a key 

role in vascularization during the formation of the decidua. Higher expression of negative 

regulators of WNT signaling SFRP1/SFRP3 is found in preterm human placenta compared 

to term controls.78 Thus, WNT4 is likely involved in uterine & placental development and 

vascular control. However, further studies are needed to implicate these genes in the causal 

pathogenesis of preterm birth.

In another GWAS, Tiensuu et al. analyzed 247 mothers with sPTB and compared it with 

419 term controls. They found that the fetal SLIT2 variant and both SLIT2 and ROBO1 

expression in placenta and trophoblast cells are associated with sPTB. The minor allele 

of SLIT2, SNP rs116461311, was overrepresented in very preterm infants (< 32 weeks). 

SLIT2-ROBO1 signaling is linked with the regulation of genes involved in inflammation, 

decidualization, and fetal growth.79

Offspring GWAS: One of the first studies of the fetal genome using a Scandinavian cohort 

(n=3022) did not find any significant SNPs associated with sPTB.80 In another preliminary 

GWAS study using fetal genome in those with sPTB <34 weeks (n=1851), Zhang et al. 

identified two significant variants.65,66 However, the study included highly heterogeneous 

groups and failed to replicate them in independent samples. A larger GWAS (n=1,349 cases 

and 12,595 ancestry-matched controls) with five ancestral groups investigating the fetal 

genome in sPTB between 25–30 weeks of gestation found two significant intergenic loci 

associated with sPTB.81 However, each association was only observed in one of the five 

ancesteral groups and could not be replicated in any external samples.

A well-powered GWAS of infants of European descent (n = 84,689) with 4775 of 

whom were born by sPTB (<37 weeks) identified a fetal locus on chromosome 2q13 

associated with gestational duration.82 Genes at this locus include several Interleukin-1 

(IL-1) family members. Recently, IL-1 and IL-1 receptor-associated kinase 1 (IRAK1) have 

been identified as critical mediators of preterm birth.16,83 This association was replicated in 

9,291 additional infants. No association was seen at the 2q13 locus in analyses of 1139 early 
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preterm birth infants (<34 weeks). Further analysis showed that genetic variation at the locus 

was most strongly associated with the timing of labor in the later stages of pregnancy. This 

finding suggests that the 2q13 locus may be downstream of a primary activating signal and 

serves to accelerate labor once initiated.

The association of preterm birth with neonatal morbidity and mortality makes sPTB likely 

subjected to negative selection. Thus, the effect size is expected to be weak for common 

alleles that influence liability to a phenotype.84 In addition, GWAS studies on preterm birth 

have so far been underpowered. However, the finding of preterm birth-associated alleles in 

these GWAS studies suggests that further increasing the sample size in GWAS will reveal 

new loci and define the genetic pathways for birth timing and sPTB.

Whole exome and whole genome analyses

As demonstrated in most GWAS findings, in common complex phenotypes, like sPTB, 

disease associating genetic mutations are often outside the coding regions of genes. Often, 

the responsible gene is not clear and the mechanism for altered regulation is difficult to 

determine. Thus, Whole Exome Sequencing (WES) or Whole Genome Sequencing (WGS) 

analyses evaluating families with a high prevalence of sPTB have the potential to identify 

causal, highly penetrant variants more clearly.

In the first study of WES and sPTB of 10 Finnish mothers with multiple sPTB of which 

two were mother-daughter pairs, novel variants in complement and coagulation cascade 

pathways were identified. These findings were further tested in a large sample (n = 565) and 

found significant associations in three complement receptor 1 (CR1) SNPs.85 CR1 encodes 

complement C3b/C4b Receptor 1 which is located on the surface of the erythrocytes. This 

CR1 SNP is associated with decreased erythrocyte sedimentation rate, which indicates a 

higher risk of systemic inflammation due to non-clearance of immune complexes.85 Another 

WES study compared variants identified by targeted sequencing of 32 Finnish women with 

2–3 generations of preterm birth (< 34 weeks) with 16 term controls. IGF1, ATM, and 

IQGAP2 were most frequently identified. These genes are involved in growth, metabolic, 

and inflammation pathways.86

A recent WES analysis of 17 Finnish mothers with sPTB found damaging variants in 

genes involving the steroid receptor-signaling pathways. The results were confirmed in 

a replication cohort of 93 Danish sister pairs with a history of sPTB. A gene in this 

pathway, heat shock protein family A (Hsp70) member 1 like (HSPA1L) which contained 

two likely damaging missense alleles was identified in four different Finnish families. 

Heat shock proteins are involved in stress response, including activation of the immune 

response. HSPA1L variants were further validated using imputed GWAS of European 

ancestry (n=40,000).87 A meta-analysis using pathway analysis indicated an association 

of HSPA1L with sPTB.88 In vitro functional experiments showed a link between HSPA1L 

activity and decidualization of the endometrium.87

In the US, WES analysis on the fetal genome of 49 African American mothers with preterm 

premature rupture of membranes (pPROM) and 20 controls identified damaging/potentially 

damaging rare variants in fibrillar collagen genes, which are known to contribute to fetal 
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membrane strength and integrity.89 The following WES analysis in 76 African American 

mothers with pPROM and 43 term controls identified damaging mutations in innate 

immunity and host defense genes,90 and in genes that encode anti-microbial proteins.91

In a study using an automated pipeline developed for detecting mutations in the 

mitochondrial genome (mtDNA) and using low-coverage whole-genome sequencing data 

from an sPTB cohort (n=929) from diverse ethnic backgrounds (average gestational age = 27 

weeks), variants that may contribute to sPTB were identified. These included haplogroups 

and a large number of mtDNA variants, including 8 samples carrying known pathogenic 

variants and 47 samples carrying rare mtDNA variants.92

Transcriptomic analysis of preterm birth

The transcriptome is an array of all RNA (particularly mRNA) transcripts derived genes and 

produced in a particular cell or tissue. Studies of the transcriptomes in sPTB have proven 

to be challenging. Potent technology for transcriptome analysis such as RNA sequencing 

(RNA-Seq) can help identify the molecular landscape of preterm birth and improve 

understanding of the physiology and pathology of term and preterm labor. In an RNA seq 

study (n=24) of placental membranes from severe sPTB (<33 weeks), multiple inflammatory 

and immunological pathways were noted to be upregulated.93 Transcriptomic analyses of 

preterm infants (n =32) born due to infection or sPTB revealed a unique expression signature 

which included the upregulation of genes in IGF signaling and inflammation pathways. A 

recent RNA-seq study in male and female placentas from women with sPTB (<36 weeks) 

showed alterations with fetal sex disparities in the genes and canonical pathways critical 

for regulating inflammation, oxidative stress, detoxification, mitochondrial function, energy 

metabolism, and extracellular matrix.94 In a network analysis of the placenta transcriptome, 

the SOD1 gene was shown to be down-regulated in the preterm birth placenta.95 Antenatal 

steroids given to mothers with impending preterm delivery transiently up-regulates SOD1 

gene expression which helps to counteract increased production of reactive oxygen species, 

emphasizing its importance in improving preterm neonatal outcomes.96 Further studies are 

needed to understand the transcriptomic changes and molecular etiology of sPTB.

Integrative Genomic approach

Common maternal SNPs explain approximately 23% of the phenotypic variance in preterm 

birth.68 Thus, other sources that could explain preterm birth phenotypic variation need 

to be explored. Given the complexity of various pathways involved in human pregnancy, 

integrative approaches that utilizes diverse data types and analyses can help identify the 

genetic and environmental interactions influencing sPTB.97

Combining genetic and proteomic analysis, Haapalainen et al. analyzed SNPs in 10 fetal 

genes encoding for placental proteins associated with the duration of pregnancy (n = 77). Of 

these, only one SNP within CPPED1 was associated with induction of term labor. CPPED1 

affects gene expression related to inflammation and blood vessel development.98 To identify 

preterm birth-associated genes and pathways, another study integrated WGS, RNA-seq, 

and DNA methylation data from 270 cases with preterm birth and 521 controls of family 

trios (mother, father, and neonate). They identified 72 candidate biomarker genes for very 
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early preterm birth (<28 weeks, n = 44). All three data types (WGS, RNA-seq, and DNA 

methylation) identified preterm birth-associated genes RAB31 and RBPJ. These genes are 

involved in EGFR (epidermal growth factor receptor) and prolactin signaling pathways, 

inflammation- and immunity-related pathways, chemokine signaling, IFN-γ signaling, and 

Notch1 signaling, all of which are linked to preterm birth.99 This study replicated and 

identified four of the six genes described by Zhang et al. mentioned above,68 albeit in 

different SNPs (loci) associated with these genes and at a less stringent statistical threshold 

(FDR < 10%) given their lower and diverse sample size. Associations of heat shock protein 

(HSPA1L, SEC63, SACS) and nuclear receptor genes (AR) with sPTB have been found 

using multiple sPTB datasets based on GWASs, WES, and placental transcriptomics of 

maternal, fetal, and placental samples (Table 2).100

Dissecting maternal and fetal genetic effects on pregnancy outcomes

Multiple epidemiological studies have shown that various maternal physical and 

physiological traits are associated with birth outcomes. These studies have shown maternal 

height to be positively associated with gestational duration, birth weight, and birth 

length,101,102 elevated maternal blood pressure with reduced birth weight,103 and higher 

maternal blood glucose with higher birth weight,104 To explain these associations various 

mechanisms have been proposed (see Zhang et al.28 for detailed review).

To further understand these mechanisms and distinguish the effect of the maternal 

intrauterine environment from direct fetal genetic effects, investigators examined the 

relationship between maternal height with fetal growth measures and gestational age using 

a haplotype-based Mendelian randomization analysis of mother-infant pairs.105 They found 

that higher maternal height causally increases with gestational duration. In a recent study, 

they further expanded the analysis and examined the causal effects of additional maternal 

phenotypes on birth outcomes. 106 They continue to find maternal height to be positively 

associated with longer gestational duration as well as larger birth size. Through maternal 

effect, alleles that caused higher blood pressure were associated with shorter gestational 

duration, and higher maternal BMI and glucose levels were positively associated with birth 

weight. Elevated blood pressure alleles were associated with reduced fetal growth through 

fetal effect. In the fetus, alleles associated with higher metabolic risks (type 2 diabetes) were 

associated with decreased birth weight. They also found rapid fetal growth was associated 

with shorter gestational duration and elevated maternal blood pressure.106. These maternal 

and fetal genetic effects explain the observed associations between the maternal phenotypes 

and birth outcomes and the life-long associations between these birth outcomes and adult 

phenotypes.

Environmental exposure and preterm birth:

It has been suggested that temporal changes in the environment may explain the 

intergenerational variation and correlation in gestational age between relatives.37,107 While 

the contribution of genetic heritability of sPTB is significant, multiple studies have shown 

that environmental factors contribute to the largest difference in timing of birth.39,108 

Studies have linked maternal smoking during pregnancy to preterm birth and low birth 
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weight.109–111 Ambient air pollution including particulate matter has shown to be associated 

with preterm birth suggesting that climate change could lead to increased preterm 

birth.112,113 Exposure to heavy metals (cadmium, chromium, arsenic, lead, and nickel), 114 

and endocrine-disrupting chemicals such as phthalates have been linked to preterm birth.115

The potential epigenetic modifications of genes could explain the strong familial aggregation 

and cross-generational risk of preterm birth. However, most genetic studies on sPTB have 

failed to consider the genetic and environmental interactions which could be one of the 

reasons for the lack of replication in genetic studies. Examining only the direct associations 

of traits without accounting for environmental exposures may result in missing relevant 

genes which influence sPTB.116 To overcome this, a genome-wide gene × environment 

interaction analysis to explore the “missing heritability” of preterm birth in 1,733 African-

American women (n = 698 preterm birth & 1,035 of term birth) showed that maternal 

COL24A1 variants have significant genome-wide interaction with maternal pre-pregnancy 

overweight/obesity on preterm birth risk. The interaction effect size and direction were 

comparable across all subtypes of preterm birth, including spontaneous, medically indicated, 

early preterm birth (<32 weeks), late preterm birth (32–37 weeks), and preterm birth with 

chorioamnionitis. This interaction was further replicated in African-American mothers from 

an independent cohort and in a meta-analysis but failed to be replicated in Caucasians, 

suggesting a population-specific role of this variant.117 Altered COL24A1 expression is 

required for the proper functioning of the extracellular matrix and its alteration may 

lead to various pathological disorders leading to sPTB.118 Though further studies should 

account for gene-environment interaction, designing a robust gene × environment interaction 

analysis remains a challenge and multiple biases and confounders have to be accounted 

for.119

Epigenetics

Epigenetics is defined as reversible alterations of the gene function that are not due 

to changes in the DNA sequence but are heritable through cell division. Differences in 

epigenome may account for important phenotypic differences even in the setting of identical 

genetics. The two primary sources of epigenetic modification are DNA methylation and 

histone acetylation/deacetylation.120 Epigenetic modifications occur not only in DNA but 

also in RNA. Since epigenetic changes occur during embryogenesis, any disturbance of 

the normal environment during the critical in-utero period can cause epigenetic alterations 

that last into the offspring’s lifetime. As such, many studies have associated epigenetic and 

methylation differences in various tissue types (cord blood, maternal blood, placenta) with 

gestational age and sPTB, and provided insight that both genetic and epigenetic factors 

contribute to sPTB.121–124

Maternal toxic exposure to heavy metals, air pollution, and pesticides have been correlated 

to a reduction in placental methylation which may lead to genomic instability and 

an increased number of mutational events.125 Epigenome-wide association meta-analysis 

studies (EWAS) have shown that many prenatal exposures associated with sPTB also change 

DNA methylation in cord blood. EWAS has shown reproducible associations between blood 

DNA methylation in newborns and maternal folate levels,126 exposure to smoking during 
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pregnancy, 127 air pollutants,128 and exposure to heavy metals.129 Although these studies 

have investigated the mechanisms of one environmental toxin at a time, many studies have 

failed to account for an individual’s day-to-day complex toxin exposures.

Other studies have found an association of premature uterine contraction with pathogenic 

variants of the sarcomere gene TTN and with transcriptomic variations of sarcomeric 

premature uterine contraction genes. This association was regulated by epigenetic factors, 

including methylation and long non-coding RNAs.130 Maternal age is an independent risk 

factor for preterm birth. The use of chronological age assumes that individuals age at a 

similar rate and it does not capture inter-individual differences that may exist due to genetic 

background and environmental exposures. Studies have estimated biological age using 

genome-wide DNA methylation and found a significant relationship between a mother’s 

biological age and gestational age at delivery.131

Thus, studying epigenetic changes related to preterm birth would improve the understanding 

of various mechanisms leading to sPTB and the long-term health consequences for the 

offspring. Epigenomic markers could also serve as an important diagnostic tool as epigenetic 

reprogramming in the tissue of interest (placental) might be captured by more accessible 

surrogate tissue (maternal blood).124 The exposure-driven methylation differences might 

mediate the effects of exposures on preterm birth, but the causal epigenomic mechanism 

remains unclear.

Genetic studies to guide intervention

One criticism of genetic studies is that few actionable findings across complex phenotypes 

have emerged. One interesting, though unproven implication from Zhang et al. arises from 

the association of variants near eukaryotic elongation factor selenocysteine-tRNA-specific 

(EEFSEC) associated with sPTB and length of pregnancy.68 The identification of the 

selenium/selenoprotein pathway suggests the potential benefit for further evaluating the role 

of maternal selenium micronutrient status on sPTB risk. Selenium protects against acute 

pro-oxidant injury and low maternal Selenium levels have been linked with preterm birth 

and increased risk of neonatal morbidity and mortality.132,133 Though low plasma Se has 

been associated with sPTB risk, it was not found to be sufficiently predictive at individual 

patient level.134 In a worldwide study of 9946 singleton live births from 17 geographically 

diverse locations, statistically significant associations between maternal Se concentration 

and sPTB at some sites were observed. 135 However, this finding was not generalizable 

across the whole cohort and might lower the enthusiasm for the broad use of Se supplements 

as a general strategy to prevent sPTB. However, these results suggest there could be a 

potential benefit for certain high-risk, low-income geographic regions.

Future Directions

Early detection of the risk of preterm birth would be helpful to reduce the global health 

burden of adverse neonatal outcomes. Many issues in conducting genetic studies of preterm 

birth remain to be resolved as genetic variation alone is likely not sufficient to explain 

the risks of sPTB due to the interaction with various environmental factors. Epigenomic 

signatures are also to be included in preterm birth studies as they dynamically change in 
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response to the environment. As a result, genomic, transcriptomic, and epigenomic markers 

can identify high-risk women even prior to or early in pregnancy compared to biochemical 

markers. Investigators are developing a predictive model for sPTB by using multi-omics 

on maternal blood collected in early pregnancy.136 Recently, there has been an interest 

in polygenic risk scores to improve the prediction of a person’s genetic susceptibility to 

common chronic diseases which can also be applied to sPTB. Polygenic risk scores can 

explain phenotypic variation among geographic populations based solely on risk allele 

frequencies.137 This can be calculated using genome-wide data, family history, and clinical 

variables to predict the onset of disease and the prognosis.138

Conclusion:

sPTB is a multifactorial disease involving multiple environmental and genetic risk factors 

involving the mother and the fetus with many genes involved in the inflammation and 

immunity-related pathways while others, particularly in the maternal genome, are not. 

Thus, genetic studies of sPTB should consider the contributions of both maternal and 

fetal genomes as well as the genetic and environmental interactions to modify the risk. 

These studies should use gestational duration as a continuous variable in addition to a 

binary <37-week outcome as genetics and environment affect across the range of gestational 

ages during pregnancy. The function of various genes identified from genomic studies of 

sPTB are from animal studies or from bioinformatics evidence generated from a curated 

knowledge base that is primarily biased based on cancer literature. Thus, the functional 

role of many genes implicated in sPTB remains elusive. Many reported studies also failed 

replication. This could be due to small sample size, heterogeneity in classifying sPTB, or 

unaccounted environmental influences within the same population.

Most genetic studies have been conducted on samples from European ancestries. Since 

preterm birth affects the worldwide population, further genetic studies should focus on other 

ancestries and ethnic groups, especially those representing the high-risk populations with 

attention to environmental influences including climate, toxins, nutrition, and infectious 

exposures. Large population-based genomic studies and meta-analyses of the aggregated 

datasets from various studies can help address the issues of low sample size, increase 

the power to detect true associations, and can reduce false-positive associations. More 

comprehensively identifying the genomic loci associated with sPTB will provide further 

insight into regulatory pathways, that can be dissected through analysis of human tissues, 

humanized animal models, organoids, and tissue-on-chip approaches that are currently 

emerging related to reproductive tissues. These new opportunities to take associations 

into understanding causal mechanisms will foster new biological insight and offer new 

opportunities for early prediction and intervention of preterm birth.
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Abbreviations:

sPTB spontaneous preterm birth

GWAS genome-wide association study

WES whole-exome sequence

WGS whole-genome sequence

GWL Genome-wide linkage studies

SNP Single nucleotide polymorphisms
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Figure 1: Causes and interaction among various factors leading to preterm birth.
Preterm birth is a result of various factors, many of which overlap, resulting in the common 

outcome of preterm delivery. Several genes associated with inflammation and infection have 

been implicated with preterm birth. Many of the environmental factors likely lead to genetic 

and epigenetic changes resulting in preterm birth.
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Table 1:

Twin studies and segregation analysis of traits of families demonstrating the maternal and fetal genetic 

contributions

Study Type of Study Fetal genes Maternal 
genes

Limitations

Boyd et al.33 Population epidemiology − + No distinction between sPTB and medically-
induced

Clausson et al.42 Twin mothers study NA + No distinction between sPTB and medically-
induced

Kistka et al.41 Twin mothers study − ++ No distinction between sPTB and medically-
induced

Lunde et al.36 Population-based (parent-infant 
pair)

+ + Excluded births <35 weeks, used gestational age 
as quantitative trait

Plunkett et al.37 Segregation analysis (mother-infant 
pair)

+ ++ Potential confounding between maternal & fetal 
estimates

Svensson et al.39 Population epidemiology (Children 
of siblings)

− ++ Categorically defined preterm birth (<37 weeks)

Treloar et al44 Twin mothers study NA ++ No distinction between sPTB and medically-
induced

Wilcox et al.46 Population epidemiology (mother-
infant pair)

− ++ Categorically defined preterm birth (<37 weeks)

Wu et al.38 Population epidemiology (mother-
infant pair)

− ++ Not able to control for environmental risk factors

York et al.40 Twin mothers study + + Excluded births <30 weeks

−,
No evidence of genetic contribution

+,
Moderate genetic contribution

++,
Strong genetic contribution

NA, Not available
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Table 2:

List of genes identified through various omics approaches and implicated with preterm birth

Genomic Transcriptomic Epigenomic

RAB31 RAB31 RAB31

RBPJ RBPJ RBPJ

Heat shock protein family Heat shock protein family TTN

Nuclear receptor genes (AR) Nuclear receptor genes (AR)

Immune signaling (IL1, TLR4, NFKB1) Immune signaling (IL1)

IGF signaling IGF signaling

EBF1, EEFSEC, AGTR2 SOD1

CR1

PAI-2

SLIT2-ROBO1

COL24A1 (gene × environment)
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