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Epigenetic control of gene expression is highly cell-type- and context-specific. Yet, despite its 

complexity, gene regulatory logic can be broken down into modular components consisting 

of a transcription factor (TF) activating or repressing the target gene expression through its 

binding to a cis-regulatory region. We propose a nonparametric approach, TRIPOD, to detect 

and characterize three-way relationships between a TF, its target gene, and the accessibility of 

the TF’s binding site, using single-cell RNA and ATAC multiomic data. We apply TRIPOD to 

interrogate cell-type-specific regulatory logic in peripheral blood mononuclear cells and contrast 

our results to detections from enhancer databases, cis-eQTL studies, ChIP-seq experiments, and 

TF knockdown/knockout studies. We then apply TRIPOD to mouse embryonic brain data and 

identified regulatory relationships, validated by ChIP-seq and PLAC-seq. Finally, we demonstrate 

TRIPOD on SHARE-seq data of differentiating mouse hair follicle cells and identify lineage-

specific regulation supported by histone marks and super-enhancer annotations. A record of this 

paper’s Transparent Peer Review process is included in the Supplemental Information.

Graphical Abstract

In brief

Jiang et al. propose TRIPOD, a nonparametric approach to interrogate transcriptional regulation 

using single-cell multiomic RNA and chromatin accessibility data. They demonstrate how to 

harness single-cell multiomic technologies in the study of gene regulation and how the data from 

these technologies corroborate and complement existing omics data.
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INTRODUCTION

Context-specific regulation of gene transcription is central to cell identity and function 

in eukaryotes. Precision of transcriptional control is achieved through multitudes of 

transcription factors (TFs) that bind to the cis-regulatory regions of their target genes, 

dynamically modulating chromatin accessibility and recruiting transcription complexes in 

response to developmental and environmental cues (Gasperini et al., 2020). Dissecting 

this regulatory logic is fundamental to our understanding of biological systems and our 

study of diseases. Over the past decades, molecular studies have elucidated the structure 

of TF complexes and provided mechanistic models into their function(Hobert, 2008). 

Methods based on high-throughput sequencing have enabled the genome-wide profiling of 

gene expression (Mortazavi et al., 2008), TF binding (Johnson et al., 2007), chromatin 

accessibility (Buenrostro et al., 2013), and 3D genome structure (Lieberman-Aiden et 

al., 2009). TF knockdown/knockout studies have also identified, en masse, their species-, 

tissue-, and context-specific target genes (Feng et al., 2020). Concurrently, statistical 

approaches have allowed for more precise identification and modeling of TF binding sites 

(Tompa et al., 2005), and expression quantitative trait loci (eQTLs) databases now include 

associations that are tissue-specific (Consortium, 2017) and will soon be cell-type specific 

(Kim-Hellmuth et al., 2020). Yet, despite this tremendous progress, our understanding of 

gene regulatory logic is still rudimentary. When a TF activates or represses the expression of 

a gene through binding to a regulatory element in cis to the gene, we call such a relationship 

a regulatory trio. Despite its complexity, gene regulatory logic can be broken down into 

modular components consisting of such peak-TF-gene trios. In this paper, we focus on 

the identification of regulatory trios using multiomic experiments that jointly profile gene 

expression and chromatin accessibility at single-cell resolution.

Single-cell RNA sequencing (scRNA-seq) and single-cell assay of transposase-accessible 

chromatin sequencing (scATAC-seq), performed separately, have already generated detailed 

cell-type-specific profiles of gene expression and chromatin accessibility. When the two 

modalities are not measured in the same cells, the cells can be aligned by computational 

methods (Stuart et al., 2019), followed by association analyses of gene expression and peak 

accessibility. While these methods have been shown to align well-differentiated cell types 

correctly, they often fail for cell populations consisting of transient and closely similar cell 

states. Additionally, the alignment of cells between scRNA-seq and scATAC-seq necessarily 

assumes a peak-gene relationship which is usually learned from other datasets. Then, 

the post-alignment association analysis is plagued by logical circularity, as it is difficult 

to disentangle downstream findings from prior assumptions that underlie the initial cell 

alignment.

Single-cell multiomic experiments that sequence the RNA and ATAC from the same cells 

directly enable joint modeling of a cell’s RNA expression and chromatin state, yet methods 
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for the analysis of such data are still in their infancy. Almost all existing methods for 

detecting and characterizing regulatory relationships between TF, regulatory region, and 

target gene rely only on marginal relationships, i.e., associations between two of the three 

entities without conditioning on the third. For example, Signac (Stuart et al., 2021) and 

Ma et al. (2020) use marginal associations between peaks and genes to identify putative 

enhancer regions, while Signac (Stuart et al., 2021) and Seurat V4 (Hao et al., 2021) 

link differentially expressed TFs to differentially accessible motifs across cell types. Such 

pairwise marginal associations are sometimes examined manually using low-dimensional 

embedding. One exception is PECA (Duren et al., 2017), which uses a parametric model 

to characterize the joint four-way relationship between TF expression, regulatory site 

accessibility, chromatin remodeler expression, and target gene expression. PECA was 

designed for matched bulk transcriptomic and epigenomic data and does not work for single 

cell multiome data. In this paper, we propose a scalable nonparametric approach for joint 

modeling of single cell multiome RNA and ATAC sequencing data.

As we will show through examples, context-specific gene regulation, such as cell-type-

specific regulation, may be masked in marginal associations. For example, associations 

between a TF and its target gene may be apparent only conditional on the accessibility of 

its binding site. Or, associations between the accessibility of an enhancer and its target gene 

may be apparent only after accounting for the expression of certain transcription factors 

involved in, but not sufficient for, the remodeling of the enhancer region. The identification 

and characterization of such context-specific relationships are relevant, for example, in the 

interpretation of GWAS results, where marginal pairwise associations between ATAC peaks 

and gene expression have had limited success in linking disease-associated SNPs to genes 

(Li and Ritchie, 2021).

We explore in this paper the use of higher-order models that interrogate conditional 

and three-way interaction relationships for the identification of regulatory trios. First, 

as proof of principle, we show that a simple model that integrates TF expression with 

cis-peak accessibility significantly improves gene expression prediction, as compared 

to a comparable model that utilizes peak accessibility alone. We present TRIPOD, a 

computational framework for transcription regulation interrogation through nonparametric 

partial association analysis of single-cell multiomic sequencing data. TRIPOD detects two 

types of trio relationships, which we call conditional level 1 and conditional level 2, through 

robust nonparametric tests that are easy to diagnose. TRIPOD’s nonparametric approach for 

the identification of conditional associations avoids assumptions of linearity of relationships 

and normality of errors, allowing for better adjustment for confounding. Thus, given a 

multiome experiment that measures RNA expression and chromatin accessibility for the 

same cells at single-cell resolution, TRIPOD outputs, for a list of transcription factors, 

their putative regulatory gene targets and the cis regions where they putatively bind to 

regulate each gene. This allows the prioritization of regulatory relationships for downstream 

analyses. We also develop an influence measure that allows the detection and visualization 

of cell states driving these regulatory relationships, applicable to data consisting of discrete 

cell types as well as continuous cell trajectories.
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We first apply TRIPOD to single-cell multiomic data of human peripheral blood 

mononuclear cells (PBMCs) and compare the regulatory trios detected to relationships 

detected through marginal associations. We show that the detections are coherent with 

the vast amounts of existing knowledge from enhancer databases, bulk cell-type-specific 

chromatin immunoprecipitation followed by sequencing (ChIP-seq) experiments, tissue-

specific TF knockdown/knockout studies, and cis-eQTL studies, but that conditional 

and marginal models identify different sets of relationships. We next apply TRIPOD 

to the interrogation of lineage-specific regulation in the developing mouse brain, where 

relationships detected by TRIPOD are compared against those derived from existing ChIP-

seq and proximity ligation-assisted ChIP-seq (PLAC-seq) data. Here, TRIPOD identifies 

known trio relationships, as well as putative regulatory crosstalks between neuronal TFs 

and glial-lineage genes. We also apply TRIPOD to SHARE-seq data on mouse hair follicle 

cell differentiation to illustrate trio detection and influence analysis in data collected from 

different protocols. Through these analyses, we demonstrate how to harness single-cell 

multiomic technologies in the study of gene regulation and how the data from these 

technologies corroborate and complement existing data.

RESULTS

A simple interaction model between TF expression and peak accessibility improves RNA 
prediction.

To motivate our methods, we start with a simple prediction-based analysis, comparable to 

that done by existing methods (Stuart et al., 2019). We benchmarked against: (i) Signac 

(Stuart et al., 2021) and Cicero (Pliner et al., 2018), which predict gene expression by 

the gene activity matrix derived from the sum of the ATAC reads in gene bodies and 

promoter regions; (ii) MAESTRO (Wang et al., 2020), which predicts gene expression 

using a regulatory potential model that sums ATAC reads weighted based on existing 

gene annotations; and (iii) sci-CAR (Cao et al., 2018), which predicts gene expression 

by a regularized regression on coverage of individual peaks nearby. We compared the 

predictions derived from these methods to that of a regularized regression model, where for 

predictors, peak accessibilities are replaced by products between peak accessibilities and TF 

expressions. Only peaks within a certain range of the gene’s transcription start site (TSS) 

and only interactions between TFs and peaks containing high-scoring binding motifs for the 

TFs are considered. We refer to this model as the peak-TF LASSO model. Since this model 

is prediction-based, we do not expect the peak-TF pairs selected by LASSO to necessarily 

have a causal regulatory relationship to the gene. Comparing this model to (i)-(iii) allows 

us to assess whether the peak-TF interaction terms are informative for gene expression. To 

avoid overfitting, we performed out-of-fold prediction and adopted independent training and 

testing sets. See Methods for details.

We analyzed single-cell multiomic datasets from different human and mouse tissues 

generated by different platforms – PBMC by 10x Genomics, embryonic mouse brain by 

10x Genomics, mouse skin by SHARE-seq (Ma et al., 2020), and adult mouse brain 

by SNARE-seq (Chen et al., 2019). Data summaries are included in Table S1; reduced 

dimensions via uniform manifold approximation and projection (UMAP) (Becht et al., 2018) 
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are shown in Fig. 1a and Fig. S1, S2a. To mitigate the undesirable consequences of sparsity 

and stochasticity in the single-cell data, we clustered cells to form cell aggregates using the 

weighted nearest neighbor (WNN) method (Hao et al., 2021) by default and pooled gene 

expression and chromatin accessibility measurements within each cell aggregate. Refer to 

the Methods section on how cell aggregates are constructed.

Our results show that, across window sizes, the peak-TF LASSO model significantly 

improves prediction accuracy across the transcriptome (Fig. 1b), with examples of specific 

genes shown in Fig. 1c. This improvement in prediction accuracy holds true when an 

independent dataset is used for validation (Fig. S3). For the SNARE-seq data (Chen et al., 

2019), sequencing depth is substantially shallower (Fig. S4), thus the improvement of the 

peak-TF LASSO model is diminished but still evident (Fig. S2b). This demonstrates that 

the product of TF expression and peak accessibility significantly improves RNA prediction 

accuracy beyond simply using peak accessibility, offering strong empirical evidence of 

three-way interaction relationships between TF expression, peak accessibility, and target 

gene expression that can be extracted from such multiomic experiments. However, we will 

not rely on coefficients from the LASSO model to screen for such trios, as their significance 

is difficult to compute due to the hazards of post-selection inference (Taylor and Tibshirani, 

2015). Additionally, accessibility of peaks and expression of TF affecting the same gene 

are often highly correlated, in which case LASSO tends to select the few with the highest 

associations and ignore the rest. In such cases, we believe it is more desirable to report all 

trios.

TRIPOD for the detection of peak-TF-gene trio regulatory relationships by single-cell 
multiomic data.

We propose TRIPOD, a nonparametric method that screens single-cell RNA and ATAC 

multiomic data for conditional associations and three-way interactions between the 

expression of a TF t, the accessibility of a peak region p containing the TF’s motif, and 

the expression of a putative target gene g within a pre-fixed distance of peak p (Fig. 2a). 

Existing methods (Hao et al., 2021; Ma et al., 2020; Stuart et al., 2021) screen for marginal 

associations either between the TF and the peak or between the peak and the target gene. 

However, three-way relationships may be complex: When a TF binds to a cis-regulatory 

region to affect the expression of a gene, it can do so in multiple ways, leading to different 

patterns in the data. The TF could be directly responsible for opening the chromatin of the 

enhancer region, facilitating the binding of other TFs that recruit the RNA polymerase. In 

such cases, expression of the TF is likely to be marginally correlated with the accessibility 

of the enhancer region, but its correlation with the expression of the target gene may be 

masked due to confounding of other involved TFs. Alternatively, the TF may not be directly 

responsible for chromatin remodeling but may bind to already accessible chromatin in 

recruiting other TFs or the RNA polymerase. In such cases, availability of the TF may not 

be highly correlated with the accessibility of the enhancer region, but conditioned on the 

accessibility of the enhancer region, it should be associated with the expression of the target 

gene. When marginal associations are masked, evidence for binding of the TF at the peak in 

the regulation of a gene can be inferred from partial associations: (i) with the peak open at 

a fixed accessibility, whether cells with higher TF expression have higher gene expression; 
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and (ii) with the TF expression fixed at a value above a threshold, whether cells with higher 

peak accessibility have higher gene expression. To identify such conditional associations 

without making linearity assumptions on the marginal relationships, TRIPOD matches cell 

aggregates by either their TF expressions or peak accessibilities (Fig. 2b): for each matched 

cell-aggregate pair, the variable being matched is controlled for, and differences between 

the pair in the other two variables are computed. Then, across pairs, the nonparametric 

Spearman’s test is used to assess the association between the difference in target gene 

expression ΔYg and difference in the unmatched variable (i.e., ΔYt if the cells were matched 

by Xp, or ΔXp if the cells were matched by Yt). We call this the “conditional level 1 test.”

For illustration, consider the cell aggregate denoted by the black point in Fig. 2b: If we were 

to match by peak accessibility, this cell aggregate would be matched to the cell aggregate 

colored in red. We would then compute ΔYt, the difference between TF t expressions of the 

matched pair. If we were to match by TF expression, the black dot would be matched to the 

cell aggregate in green, and we would compute ΔXp, the difference in peak p accessibility 

for this pair. In either case, we would compute ΔYg, the difference in gene g expressions 

between the pair. We would then mask those cell-aggregate pairs whose values, for the 

variable being matched, are too low (i.e., those pairs where the TF is off or the peak is 

closed). Then, ΔXp or ΔYt, together with ΔYg, would be submitted for level 1 test. We call 

such a triplet of TF, peak, and target gene a “regulatory trio.”

Even stronger evidence for a regulatory trio could be claimed if the degree of association 

between the pairwise differences depends on the matched variable. For example, we would 

tend to believe that TF t binds to peak p to regulate gene g if, in cells with high expression of 

TF t, an increase in peak p accessibility yields a much larger increase in gene g expression, 

as compared to in cells with low expression of TF t. One could screen for such interactions 

by matching by either TF t or peak p accessibility. TRIPOD screens for such interaction 

effects through a “conditional level 2 test”, which assesses the association between ΔYg 

and the product of the matched variable with the difference in the unmatched variable, 

after taking partial residuals on the difference in the unmatched variable. In summary, 

TRIPOD categorizes each identified trio relationship as supported by marginal association, 

association between peak and gene conditioned on TF expression, and/or association 

between TF and gene conditioned on peak accessibility. The conditional relationships are 

further categorized to level 1 or level 2, with level 2 indicative of a stronger relationship 

exhibiting multiplicative interaction effects between TF expression and peak accessibility.

For significant trios, TRIPOD further carries out a sampling-based influence analysis, where 

phenotypically contiguous sets of cell aggregates are held out to measure their influence on 

the estimated coefficients. This influence analysis assumes a linear model for computational 

speed and scalability. The corresponding cell types/states that lead to significant deviations 

from the null upon their removal have high influence scores, which can be used to identify 

cell types/states that drive a regulatory relationship.

To highlight the differences between TRIPOD and existing methods based on marginal 

associations, we show two canonical examples where the two approaches disagree. Fig. 2c 

outlines a significant trio detected by TRIPOD’s level 2 testing, yet the marginal peak-gene 
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and TF-gene associations were insignificant. It turns out that a subset of cells with high peak 

accessibility {Xp} have close-to-zero TF expressions {Yt}, and, meanwhile, another subset 

of cells with high TF expressions {Yt} have close-to-zero peak accessibilities {Xp}. In these 

cells, either the peak is closed, or the TF is not expressed, and this leads to the target gene 

not being expressed, which masks the marginal associations. The high peak accessibility 

and TF expression in these cells, which act through other regulatory trios, cancel out when 

we consider the interaction {Xp × Yt}, leading to a significant interaction term detected 

by TRIPOD. Conversely, Fig. 2d outlines another trio, whose marginal associations were 

significant, yet TRIPOD did not detect significant conditional associations from either level 

1 or level 2 testing. In this case, with almost constant TF expression, the large difference 

in peak accessibility leads to a small difference in target gene expression. Meanwhile, the 

cells that drive the significantly positive correlation between {Yg} and {Yt} have almost 

zero values for {Xp}. Both observations suggest that this peak has little to do with the 

regulation of the target gene FGL2 by this specific TF MAFK. Notably, we do not claim 

that the significantly linked peaks and TFs through marginal association are false positives, 

but rather valid gene-peak and gene-TF marginal relationships do not necessarily lead to 

a valid gene-peak-TF trio relationship (i.e., the peak and TF may act through other TF 

and peak, respectively). In summary, TRIPOD puts peak-TF-gene trios into one unified 

model, complementing existing methods based on marginal associations and allowing 

for simultaneous identification of all three factors and prioritization of a different set of 

regulatory relationships.

TRIPOD identifies three-way regulatory relationships in PBMCs with orthogonal 
validations.

We first applied TRIPOD to identify regulatory trios in the 10k PBMC dataset. Cell-type 

labels for this dataset were transferred from a recently released CITE-seq reference of 

162,000 PBMC cells measured with 228 antibodies (Hao et al., 2021). After quality control, 

we kept 7790 cells from 14 cell types pooled into 80 cell aggregates, 103,755 peaks, 14,508 

genes, and 342 TFs; the UMAP reduced dimensions are shown in Fig. S1a. Distribution of 

the number of peaks 100kb/200kb upstream and downstream of the TSS per gene, as well as 

distribution of the number of motifs per peak, are shown in Fig. S5.

As a proof of concept, we first illustrate two trios where the frameworks agree, identified 

by level 1 conditional testing (regulation of CCR7 by LEF1; Fig. 3a) and level 2 interaction 

testing (regulation of GNLY by TBX21; Fig. 3b). From the influence analyses, TRIPOD 

identified B and T cells as the cell types where LEF1 regulates CCR7, and natural killer 

(NK) cells as the cell types where TBX21 regulates GNLY. These cell type-specific 

regulatory relationships are corroborated by motif’s deviation scores using chromVAR 

(Schep et al., 2017) (Fig. 3) and the enrichment of Tn5 integration events in the flanking 

regions using DNA footprinting analyses (Stuart et al., 2021) (Fig. S6). Unlike chromVar 

and DNA footprinting analyses, which only give genome-wide average enrichments, 

TRIPOD significantly enhances the resolution by identifying the specific cis-regulatory 

regions that the TFs bind for the regulation of target genes.
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Results from TRIPOD and marginal association tests overlap but, as expected, exhibit 

substantial differences (Fig. S7). The previous section showed example trios where the two 

frameworks disagree. Additionally, results from TRIPOD’s matching scheme and those from 

random matching also overlap but exhibit substantial differences, both on the global scale 

(Fig. S8) and for each gene (Fig. S9). Notably, for the two counterexamples discussed in the 

previous section, random matching could not identify the masked positive trio in Fig. 2c, yet 

it retained significance for the negative trio shown in Fig. 2d, in a similar fashion to marginal 

testing (Fig. S10). Genome-wide p-value distributions from TRIPOD’s two levels of testing 

under the null with permuted peak accessibility and TF expression are shown in Fig. S11, 

indicating that TRIPOD’s framework has good type I error control. A master output of 

significant associations with Bonferroni correction is shown in Data S1, with scatterplots 

and pairwise correlations of genome-wide p-values from different testing schemes shown in 

Fig. S12.

To our best knowledge, no experimental technique can directly validate three-way regulatory 

relationships at high resolution with high throughput. Therefore, we performed validation 

and benchmarking by harnessing existing databases and orthogonal sequencing experiments 

that interrogate each pairwise relationship among the three factors (Table 1). The rationale is 

that true regulatory relationships should show enrichment in all three marginal relationships. 

Fig. 4a illustrates the extensive validation strategies that were undertaken.

First, to validate the cis-linkage between peak region and target gene, we used the enhancer 

databases of blood and non-cancerous cells from FANTOM5 (Andersson et al., 2014), 

4DGenome (Teng et al., 2016), and EnhancerAtlas 2.0 (Gao and Qian, 2020), as well 

as cis-eQTLs in the whole blood reported by the GTEx consortium (Consortium, 2017). 

We collapsed TRIPOD’s trio calls into peak-gene relationships and benchmarked against 

Signac’s LinkPeaks (Stuart et al., 2021) on single cells and marginal association testing on 

cell aggregates; for each target gene, we performed a hypergeometric test for enrichment 

of the peak-gene linkages in the regulatory databases and annotations (see Methods 

for details). For all four databases, TRIPOD’s p-values for enrichment are substantially 

significant (Fig. 4b). When stratified by the different levels of testing, TRIPOD’s level 1 

and level 2 conditional testing returns more significant enrichment compared to linkPeaks 

and marginal associations; the most significant enrichment is from level 1 testing matching 

by TF expression, which is expected since the “gold-standard” peak-gene relationship is 

directly captured by the level 1 testing without TF interaction (Fig. S13a). Additionally, 

the unique sets of trio regulatory relationships identified by TRIPOD but not by random 

matching (which results in only marginally associated linkages) have significant enrichment, 

demonstrating the effectiveness of TRIPOD in identifying true trio relationships that 

complement existing methods based on marginal association testing (Fig. S13b).

Second, to validate the TF-gene edge in the TRIPOD-identified trios, we referred to 

knockTF (Feng et al., 2020), a TF knockdown/knockout gene expression database, and 

hTFtarget (Zhang et al., 2020), a database of known TF regulatory targets. Specifically, in 

knockTF, we found seven TF knockdown/knockout RNA-seq experiments in the peripheral 

blood category. For these TFs, we identified significantly linked genes by marginal 

association and by TRIPOD and found TRIPOD’s results to have significantly higher 
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precision and recall (Fig. 4c); the improvement is robust to varying FDR thresholds (Table 

S2). For hTFtarget, we obtained, for each highly variable gene, its blood-specific TFs, and 

calculated the gene-specific precision-recall rates – TRIPOD is more sensitive compared 

to marginal association testing, although both suffered from inflated “false positives,” 

which can also be due to the low sensitivity in the in silico calls by hTFtarget (Fig. 4d). 

Precision and recall rates with varying significance levels further confirm that TRIPOD has 

better agreement with existing TF knockdown/knockout data, in comparison to marginal 

association testing (Fig. S14).

Third, to validate the TF-peak edge representing TF binding to peak regions, in addition to 

the DNA footprinting analysis shown in Fig. S6, we downloaded from the Cistrome portal 

(Mei et al., 2017) non-cancerous ChIP-seq peaks (Zhang et al., 2008) from sorted human 

blood cells (B lymphocyte, T lymphocyte, and monocyte (Table S3). The peaks identified by 

TRIPOD had a substantially higher percentage of overlap with the ChIP-seq peaks compared 

to the genome-wide baseline; TRIPOD’s performance is better than or on par with that from 

testing of marginal associations (Fig. 4e). Since ChIP-seq peaks reflect only TF binding, 

without consideration for the gene target of regulation, it is expected that it agrees well with 

marginal association test results, which are capturing such a universal relationship.

In summary, existing databases and public data of different types from a wide range of 

studies extensively support each of the three pairwise links in the trios reported by TRIPOD, 

demonstrating its effectiveness in uncovering true regulatory relationships.

TRIPOD identifies putative regulatory relationships during mouse embryonic brain 
development.

We next applied TRIPOD to single-cell multiomic data of 5k mouse embryonic brain cells 

at day 18 by 10x Genomics. The cell type labels were transferred from an independent 

scRNA-seq reference (La Manno et al., 2021) using SAVERCAT (Huang et al., 2020). We 

kept 3,962 cells that had consistent transferred labels from seven major cell types: radial 

glia, neuroblast, GABAergic neuron, glutamatergic neuron, glioblast, oligodendrocyte, and 

Cajal–Retzius neuron (Fig. S1b). We applied TRIPOD to 633 TFs, 1000 highly variable 

genes, and ATAC peaks 200kb up/downstream of the genes’ TSSs.

On the genome-wide scale, the union of TRIPOD’s level 1 and 2 tests gave a larger 

number of unique peak-gene pairs and TF-gene pairs than LinkPeaks (Stuart et al., 2021) 

and marginal association testing, respectively (Fig. S15a). To evaluate these results, we 

first examined whether the peak-gene links were enriched in previously reported enhancer-

promoter chromatin contacts using PLAC-seq data of mouse fetal brain (Zhu et al., 2019) 

(Table 1, Fig. S15b). We observed that the regulatory links detected by both marginal 

association and TRIPOD showed significant enrichment in PLAC-seq contacts (Fig. S15b). 

Meanwhile, TRIPOD detected sets of peak-gene pairs from trio relationships that were 

overlapping but distinct from the sets obtained by marginal association, and a substantial 

fraction of the links identified by TRIPOD but not by the marginal method were validated 

by PLAC-seq (Fig. 5a; Fig. S15c). This suggests that TRIPOD identifies real regulatory 

relationships that complement those detected by existing methods.
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We also note that the type of evidence that supports a regulatory relationship matters 

when compared to other types of experimental data. For example, PLAC-seq measures, 

for a fixed TF, the degree of promoter contacts in the TF-binding domains. Conceptually, 

the closest analog to this measurement in our model is level 1 association, conditioned 

on TF expression, between the motif-containing peak region and target gene expression. 

Therefore, this level 1 test matching by TF gives the most significant enrichment (Fig. S15b, 

S16a, S17a). However, detection by TRIPOD is pre-conditioned on the expression of the 

target gene at a high enough level, which is irrelevant to the PLAC-seq data. Thus, not all 

detections made by PLAC-seq are expected to be found by TRIPOD.

To validate the links between TFs and peaks, we used publicly available ChIP-seq data 

for Olig2 (Yu et al., 2013), Neurog2 (Sessa et al., 2017), Eomes (Sessa et al., 2017), and 

Tbr1 (Notwell et al., 2016), TFs that play key roles in embryonic brain development (Table 

1). The Olig2 ChIP-seq data were generated in three types of rat cells, oligodendrocyte 

precursor cells (OPC), immature oligodendrocytes (iOL), and mature oligodendrocytes 

(mOL), while the Neurog2, Eomes, and Tbr1 ChIP-seq data were generated in mouse 

embryonic cerebral cortices (see Methods for details). When TF expression was matched, 

TF binding peaks identified by TRIPOD level 1 tests were significantly enriched in the 

TF ChIP-seq peaks across all datasets except for the Olig2 ChIP-seq data of mature 

oligodendrocytes (mOL), which served as a negative control and had a substantially lower 

degree of enrichment (Fig. S16, S17). TRIPOD detected a substantial number of peak-TF 

pairs that were not detected through marginal associations but validated by ChIP-seq (Fig. 

5b). In particular, TRIPOD detected crosstalk between the neurogenesis and gliogenesis 

regulatory cascades: Neurog2 regulates Sox9 and Nfia, and Eomes and Tbr1 regulates Nfia. 

The partial residual plots (Fig. 5d) show the strong partial associations in TRIPOD level 1 

tests. These regulatory relationships are supported by ChIP-seq peaks for Neurog2 around 

Sox9 and Nfia, and for Eomes and Tbr1 around Nfia.

The validations and global benchmarking demonstrate TRIPOD’s effectiveness in finding 

real regulatory relationships. Next, we focused on a set of TFs known to play essential 

roles during mouse embryonic brain development. Specifically, we chose Pax6, Neurog2, 

Eomes, Neurod1, and Tbr1, major TFs mediating glutamatergic neurogenesis (Mira and 

Morante, 2020), and Olig2, Sox10, Nkx2-2, Sox9, Nfia, and Ascl1, which initiate and 

mediate gliogenesis (Emery and Lu, 2015); the known regulatory cascades are shown in 

Fig. 5c. Here, the up and downstream TFs in a link are used as the TF and the target 

gene in TRIPOD’s analysis, respectively, and we established a link if at least one of the 

TRIPOD tests returned a positive coefficient estimate with FDR-adjusted p-values less than 

0.01 for at least one trio involving the pair of the TF and the target gene. TRIPOD’s level 1 

and level 2 testing successfully captured five out of the seven known regulatory links (Fig. 

5c, d, Fig. S18); interestingly, TRIPOD’s results also suggest substantial crosstalk between 

the two cascades, where neurogenesis-specific TFs activate gliogenesis-specific TFs (Fig. 

5c, d). ChIP-seq data of Neurog2, Eomes, and Tbr1 supported four of the crosstalk links: 

regulation of Sox9 by Neurog2 and regulation of Nfia by Neurog2, Eomes, and Tbr1, 

respectively (Fig. S19). These crosstalk links that were validated by ChIP-seq were also 

captured by conditional associations; two of them were captured by marginal associations 

(Fig. S18). Thus, we think it is highly plausible that neurogenesis TFs activate gliogenesis 
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genes at day 18 of embryonic mouse brain development, which is exactly when the switch 

is being made from neurogenesis to gliogenesis. To our best knowledge, these possible 

links between neurogenesis and gliogenesis pathways have not been systematically explored 

and thus warrant future investigation. Finally, for each of the neurogenesis and gliogenesis 

TFs, we performed a gene ontology (GO) analysis of their significantly linked target 

genes using DAVID (Huang da et al., 2009); the enriched terms were largely consistent 

with the regulatory functions of the TFs during neurogenesis and gliogenesis (Fig. 5e). 

Specifically, the mouse embryonic brain cells are collected during the transition phase 

between neurogenesis and gliogenesis, and the enriched terms contain oligodendrocyte 

differentiation and regulation of neuron differentiation, confirming TRIPOD’s calling 

results. Other terms, such as regulation of transcription and cell cycle, are enriched due 

to the transcriptional regulatory role of the TFs.

So far, we have taken advantage of the cross-cell-type variation to identify the trio regulatory 

relationships. To dissect cell-type-specific regulation, we next applied the influence analysis 

framework (see Methods for details) to the significant trios involving neurogenesis and 

gliogenesis TFs. For a given TF, the number of trios, for which a given cell type was 

influential (FDR < 0.01), is summarized in Fig. 5f, with details for specific example trios 

given in Fig. S20. The analyses underpinned the cell types in which the transcriptional 

regulation was active, and, reassuringly, the neurogenesis and gliogenesis TFs have the most 

regulatory influence in neuroblasts and glioblasts, respectively. Additionally, Ascl1 is active 

in GABAergic neurons in addition to neuroblasts and glioblasts, consistent with its role as a 

GABAergic fate determinant (Achim et al., 2014). Notably, the highly influential cell types 

that lead to the significant trios involving several neurogenesis-specific TFs include not only 

neuroblast but also glioblast, supporting our previous findings on the crosstalk between the 

two cascades. Notably, these results are unlikely due to the given TFs being overexpressed 

in the corresponding highly influential cell types, since the influential cell types were not 

the same as the cell types where the TFs were highly expressed (Fig. 5f, Fig. S20). Overall, 

TRIPOD allows fine characterization of cell-type- and cell-state-specific functions of the 

TFs during neurogenesis and gliogenesis.

Using this dataset, we further examined how varying window sizes and different resolutions/

constructions of cell aggregates affect the model fitting results; this led to the following 

observations. First, incorporating peaks 100kb/200kb up/downstream of genes’ TSSs leads 

to consistent and significant enrichment of validated gene-peak pairs by PLAC-seq and 

peak-TF pairs by ChIP-seq, while narrowing the window size down to 50kb decreased 

the degree of enrichment (Fig. S16). Second, the validation results were robust to changes 

in resolutions of the cell aggregates (Fig. S17), since TRIPOD does not require the cell 

aggregates to truly represent distinct and non-overlapping segments of the transcriptome 

space.

TRIPOD infers lineage-specific regulatory relationships in differentiating mouse hair 
follicle cells.

As a last example, we applied TRIPOD to SHARE-seq (Ma et al., 2020) data (Fig. S1c) of 

mouse hair follicle cells, consisting of four broadly defined cell types – transit-amplifying 
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cells (TAC), inner root sheath (IRS), hair shaft, and medulla cells – along a differentiation 

trajectory. The cell-type labels were curated based on marker genes, TF motifs, and ATAC 

peaks from the original publication (Ma et al., 2020); pseudotime was inferred using Palantir 

(Setty et al., 2019) and overlaid on the cisTopic (Bravo Gonzalez-Blas et al., 2019) reduced 

dimensions of the ATAC domain. Cells were partitioned using both the pseudotime and the 

UMAP coordinates to construct cell aggregates (Fig. 6a). Due to the low RNA coverage 

(Fig. S4), we focused on 222 highly-expressed TFs, 794 highly expressed genes reported 

to have more than ten linked cis-regulatory peaks (Ma et al., 2020), and peaks 100kb up/

downstream of the genes’ TSSs.

For validation, we used H3K4me1 and H3K27ac ChIP-seq data from an isolated mouse 

TAC population (Adam et al., 2015) (Table 1). H3K4me1 and H3K27ac are markers for 

poised and active enhancers, respectively, and were used to benchmark TRIPOD’s linked 

peaks against previously reported domains of regulatory chromatin (DORCs) (Ma et al., 

2020), as well as randomly sampled peaks. The linked peaks by TRIPOD had higher 

scores for both H3K4me1 and H3K27ac than DORCs, the latter identified through marginal 

associations (Fig. 6b). To further validate the regulatory effects of the linked peaks, we 

obtained previously characterized super-enhancers (SEs) in mouse TACs (Adam et al., 

2015). Target genes of the 381 SEs were assigned based on the gene’s proximity to the SE, 

as well as the correlation between loss of the SE and loss of the gene transcription (Adam 

et al., 2015). TRIPOD was able to successfully recapitulate the SE regions for the genes 

considered, with four examples shown in Fig. 6c, where significantly linked peaks mostly 

resided in the SEs.

To demonstrate, Fig. 6d shows regulatory trios that are specific to the IRS lineage, the 

hair shaft lineage, and the medulla lineage. These trios also showed significant pairwise 

marginal associations (Fig. 6e), lending confidence that they are real. The cell types 

where the regulation happens were identified by influence analysis, for which the p-values 

were smoothed along the differentiation trajectory and overlaid on the UMAP embedding 

(Fig. 6f). DNA footprinting analyses surveyed the enrichment of Tn5 integration events 

surrounding the corresponding motif sites and showed cell-type-specific enrichment (Fig. 

6g), corroborating TRIPOD’s results.

DISCUSSION

We have considered the detection of regulatory trios, consisting of a TF binding to a 

regulatory region to activate or repress the transcription of a nearby gene, using single-

cell RNA and ATAC multiomic sequencing data. The presented method, TRIPOD, is 

a nonparametric approach that goes beyond marginal relationships to detect conditional 

associations and interactions on peak-TF-gene trios. We applied TRIPOD to three single-cell 

multiomic datasets from different species and protocols with extensive validations and 

benchmarks. We started our analyses with predicting gene expression from both peak 

accessibility and TF expression. Supervised frameworks have been proposed to predict 

gene expression from DNA accessibility (Natarajan et al., 2012), and vice versa (Zhou 

et al., 2017), using matched bulk transcriptomic and epigenomic sequencing data. Blatti 

et al. (2015) showed that joint analysis of DNA accessibility, gene expression, and TF 
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motif binding specificity allows reasonably good prediction of TF binding as measured by 

ChIP-seq. However, none of these methods incorporate TF expression. By selecting peaks 

near the genes’ TSSs and TFs with high motif scores in the selected peaks, we constructed 

biologically meaningful peak-TF pairs as predictors and showed that such a mechanistic 

model significantly boosts the prediction accuracy of gene expression.

We next considered the detection and significance assessment for individual peak-TF-gene 

trios, comprehensively comparing our detections with those made by tissue- and cell-type-

matched PLAC-seq and ChIP-seq experiments, by cis-eQTL and TF knockdown/knockout 

studies, and by those recorded in the main enhancer databases. The comparisons show that 

TRIPOD detections are substantially enriched for overlap with all of these experiments, 

and in most cases, improve upon the overlap achieved by existing methods. Note that 

the recall rates in the comparisons to these experiments should only be interpreted as 

relative metrics and not as absolute measures of sensitivity. That is because each experiment 

measures a biological relationship that is associated but different from what we aim to 

recover from TRIPOD. For example, ChIP-seq aims to capture all locations where the TF 

binds, regardless of which gene it is affecting, while TRIPOD aims to recover specific TF, 

enhancer, target gene trios. KnockTF and hTFtarget, on the other hand, aims to identify all 

genes whose expressions change when a TF is knocked out/down, which may not be genes 

that the TF directly regulates through binding. An experiment that perhaps comes closest 

to measuring what TRIPOD detects is PLAC-seq, which quantifies chromatin contacts 

anchored at genomic regions bound by specific proteins. In addition to ChIP-seq, we used 

PLAC-seq data to corroborate TRIPOD detections for the embryonic mouse brain data in 

Fig. 5a, Fig. S15b, S16a, S17a. Here, the overlap is also far from 100%, as TRIPOD can 

only detect a PLAC-seq relationship if the expression of the target gene is high enough. 

Also, PLAC-seq cannot detect TRIPOD relationships unless the cis-region in question 

comes into direct contact with the promoter, which is not the only mechanism of gene 

regulation. For example, TF binding may change the local chromatin conformation as an 

insulator or may help recruit the binding of other TFs. Thus, it is expected that TRIPOD 

only recovers a small fraction of the signals identified by these experiments. For this reason, 

we choose to use the word “recall” rather than “sensitivity,” as we are using it as a metric of 

enrichment rather than as a measure of true positive rate.

Our current study is limited in several ways. A study in Drosophila (Kazemian et al., 2013) 

modeled motif binding specificities and chromatin accessibilities in bulk RNA and ATAC 

sequencing data to predict the cooperative binding of pairs of TFs, using in vitro protein-

protein binding experiments for validation. The detection of synergies between multiple 

TFs and peaks on the genome-wide scale and in a cell-type-specific manner needs further 

investigation. Additionally, while we have not differentiated between positive and negative 

regulation, TRIPOD reports both types of relationships and categorizes them by sign. While 

we describe the trios with a positive sign to be enhancers, it is not clear how to interpret the 

trios with negative signs, the latter having lower overlap with other benchmarking datasets. 

Transcription activation and repression have been active research areas in biology, with a lot 

yet unknown (Panigrahi and O’Malley, 2021). TRIPOD’s results provide potential targets for 

experimental follow-up and detailed characterization.
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TRIPOD uses cell matching as a nonparametric method of computing conditional 

associations. One could, conceptually, match on more cell-level attributes in addition to 

transcription factor expression or peak level accessibility. For example, to recover true causal 

relationships, it seems tempting to match on more potential confounders, such as cell type. 

However, one should be careful in matching by additional covariates such as inferred cell 

type labels, as this could also reduce the signal. For example, condition-specific regulation 

signals that are shared across multiple (but not all) cell types would be much reduced if we 

were to match on cell type. For specificity, TRIPOD relies on the careful curation of inputs 

to the regression (using only peaks that contain the TF motif and are close to the target 

gene), rather than matching on all possible confounders.

Our analysis focused on three datasets where the RNA and ATAC modalities have sufficient 

depths of coverage. For the SHARE-seq data, the sequencing depth for RNA is very 

low, and thus we focused only on highly expressed genes and TFs (Fig. 6). For SNARE-

seq data, whose coverage in both modalities is even lower, we focused on prediction 

models and not trio detection, where we saw only marginal improvement beyond existing 

methods (Chen et al., 2019) (Fig. S2b). For data where the coverage is even lower, e.g., 

PAIRED-seq, cross-modality cell aggregates could not be stably formed, making such 

analyses impossible (Table S1, Fig. S4). With rapidly increasing sequencing capacity and 

technological advancement, TRIPOD, applied to more cells sequenced at higher depth, can 

uncover putative regulatory relationships at a finer resolution. With increased data resolution 

and cell numbers, it would then be meaningful to explore beyond the three-way relationships 

characterized by TRIPOD to include higher-order models that can more realistically capture 

the complex regulatory relationships between enhancers, modules consisting of multiple 

transcription factors, and the transcription of the target gene.

STAR METHODS

RESOURCE AVAILABILITY

Lead Contact: Further information and requests for resources should be directed to and 

will be fulfilled by the Lead Contact, Yuchao Jiang (yuchaoj@email.unc.edu).

Materials Availability: This study did not generate new materials.

Data and Code Availability: This paper analyzes existing, publicly available data. 

These accession numbers for the datasets are listed in the key resources table. TRIPOD is 

compiled as an open-source R package available at https://github.com/yuchaojiang/TRIPOD. 

All original code has been deposited at Zenodo (https://dx.doi.org/10.5281/zenodo.6852586) 

and is publicly available as of the date of publication. Any additional information required to 

reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Data input and construction of cell aggregates.—Denote Xip as the peak 

accessibility for peak p (1 ≤ p ≤ P) in cell i (1 ≤ i ≤ N), Yig as the gene expression for gene 

g (1 ≤ g ≤ G), and Yit as the TF expression for TF t (1 ≤ t ≤ T). The TF expression matrix 
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is a subset of the gene expression matrix, and we implicitly use the TF RNA expression as 

a surrogate for its protein expression, which is shown to be accurate using cross-tissue RNA 

and protein measurements from the human protein atlas (Uhlen et al., 2015) (Fig. S21). For 

single-cell multiomic data, the cell entries are matched.

For single-cell data normalization, we use sctransform (Hafemeister and Satija, 2019) and 

TF-IDF (Stuart et al., 2021) for scRNA-seq and scATAC-seq, respectively, followed by 

dimension reduction and visualization. To mitigate the effect of ATAC sparsity (Urrutia et 

al., 2019) and RNA expression stochasticity (Jiang et al., 2017), as a first step, TRIPOD 

performs cell-wise smoothing by pooling similar cells into “cell aggregates.” This, by 

default, is performed using the WNN method by Seurat V4 (Hao et al., 2021) to jointly 

reduce dimension and identify cell clusters/states across different modalities. In practice, the 

cell aggregates can also be inferred using one modality – for example, RNA may better 

separate the different cell types (La Manno et al., 2021), and in other cases, chromatin 

accessibility may prime cells for differentiation (Ma et al., 2020) – and existing methods 

such as Seurat (Hafemeister and Satija, 2019) and Signac (Stuart et al., 2021) can be used 

for domain-specific clustering. To account for peaks overlapping with other genes (Fig. 

S5b), TRIPOD has the option to either remove the overlapped peaks or to adjust the peak 

accessibilities by the expressions of the overlapped genes, in a similar fashion to MAESTRO 

(Wang et al., 2020). To reconstruct the RNA and ATAC features for the cell aggregates, we 

take the sum of the integer-valued ATAC and RNA read counts across cells belonging to the 

cell aggregates; library size is adjusted for both the RNA and ATAC domain by dividing all 

counts by a cell-aggregate-specific size factor (total read counts divided by 106).

For the analyses presented in the manuscript, position frequency matrices (PFM) were by 

default obtained from the JASPAR database (Fornes et al., 2020), and we used 633 and 

107 pairs of TFs and motifs annotated in human and mouse, respectively. TRIPOD provides 

an option to use a more comprehensive set of motif annotations from the HOCOMOCO 

(Kulakovskiy et al., 2018) database. TRIPOD also allows for a binding motif to be shared 

across multiple TFs, as well as user-defined and/or de novo motifs. We additionally 

examined the effects of combining the accessibilities of ATAC peaks containing the TF 

binding sites within the window centered at the gene’s TSS and using the combined 

accessibility as input; we did not observe an improvement in model performance (Fig. S22).

RNA prediction by TF expression and peak accessibility.—To predict RNA from 

ATAC, Signac (Stuart et al., 2021) and Cicero (Pliner et al., 2018) take the sum of peak 

accessibilities in gene bodies and promoter regions to construct a pseudo-gene activity 

matrix: Y ig = ∑p ∈ EgXip, where Eg is the set of peaks within gene bodies and upstream 

regions of TSSs. Instead of directly taking the sum, MAESTRO (Wang et al., 2020) adopts 

a “regulatory potential” model by taking the weighted sum of accessibilities across all 

nearby peaks: Y ig = ∑p ∈ EgwpgXip, with weights wpg  pre-calculated based on existing gene 

annotations. Specifically, the method weighs peaks by exponential decay from TSS, sums 

all peaks on the given gene exons as if they are on the TSS, normalizes the sum by total 

exon lengths, and excludes the peaks from promoters and exons of nearby genes. The 

strategy to take the unweighted/weighted sum of accessibility as a proxy for expression has 
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been adopted to align the RNA and ATAC modalities when scRNA-seq and scATAC-seq 

are sequenced in parallel from the same cell population but not the same cells (Stuart et 

al., 2019). For single-cell multiomic data, sci-CAR (Cao et al., 2018) performs feature 

selection to identify cis-linked peaks via a LASSO regression: Y ig ∑p ∈ Egβp
gXip, where an 

L1 regularization is imposed on βp
g. Compared to MAESTRO, which pre-fixes the weights 

wpg , βp
g  are estimated from the data by regressing RNA against matched ATAC data. 

What we propose is a feature selection model involving both peak accessibility and TF 

expression: Y ig ∑p ∈ Eg ∑t ∈ fpβpt
g XipY it, where fp contains the set of TFs with high-scoring 

binding motifs in peak p inferred from the JASPAR database (Fornes et al., 2020).

We performed out-of-fold prediction (i.e., K-fold cross validation with prediction made on 

the holdout data). Specifically, we iteratively hold out 1/K of the data, use the remaining data 

to train the LASSO models, and make predictions on the holdout portion using the estimated 

coefficients. To further avoid overfitting, we trained the supervised prediction models using 

the 10k PBMC dataset, adopted an independent single-cell multiomic dataset of 3k PBMCs 

as a testing dataset (Fig. S3).

TRIPOD model and trio regulatory relationship.—For a given target gene g, a peak p 
within a window centered at the gene’s TSS, and a TF t whose binding motif is high-scoring 

in the peak, TRIPOD infers the relationship between a regulatory trio (p, t, g). TRIPOD 

focuses on one trio at a time and goes beyond the marginal associations to characterize 

the function Yg = f (Xp, Yt). In what follows, we first describe TRIPOD’s matching-based 

nonparametric approach and then describe a linear parametric approach, followed by a 

discussion on the connections and contrasts between the two approaches.

For each cell i whose TF expression is above a threshold δ (we only carry out testing in 

cells that express the TF), we carry out a minimum distance pairwise cross-match based 

on {Yit|Yit > δ}. Let {(ij, ij*)} be the optimal matching, after throwing away those pairs 

that have Y ijt − Y ij*t > e. For each pair j, ij and ij* are two cell aggregates with matched 

TF expression, for which we now observe two, possibly different, values Xijp, Xij*p  for 

peak p, as well as two corresponding values Y ijg, Y ij*g  for gene g. We then compute the 

following auxiliary differentials within each pair:

ΔXjp = Xijp − Xij*p,

ΔY jg = Yijg − Yij*g,

as well as

Y jt = Yijt + Yij*t /2.
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For level 1 testing of conditional association, we estimate r p
g = ρ ΔXjp, ΔY jg , where ρ is 

Spearman correlation, and test H1: rpg = 0. For level 2 testing of interaction, we perform a 

regression ΔY jg = αΔXjp + γY jt × ΔXjp, set γ pt to be the least-squares solution for γ, and test 

H2: γpt = 0. For visualization of the model fitting, we take the partial residuals of ΔYjg 

and Y jt × ΔXjp on ΔXjp, respectively. Note that even though TF expression is included in 

this interaction model only as an interaction term (with ΔXjp) and not as a main term, it is 

controlled marginally by its use as the matching variable. Similarly, we can also perform this 

procedure matching by peak accessibility. As a summary, for level 1 testing of conditional 

association, we have:

Match by Y t, α = ρ ΔYg, ΔXp ,

Match by Xp, β = ρ ΔYg, ΔYt .

For level 2 testing of (TF expression)×(peak accessibility) interaction effects, we have:

Match by Y t, ΔYg = α*ΔXp + γ1 Y t × ΔXp ,

Match by Xp, ΔYg = β*ΔYt + γ2 Xp × ΔYt .

To test for the conditional associations and interactions, we can also apply a parametric 

method, such as multiple linear regression:

Yg = μ + αLXp + βLYt,

Yg = μ + αL* Xp + βL* Yt + γLXpYt .

See Fig. S23 for linear testing results for trios shown in Fig. 3 and Fig. 6. The estimated 

coefficients from the nonparametric and parametric methods are correlated on the global 

scale (Fig. S12, S24), and their interpretations are similar: α and αL estimate the change in 

gene expression per change in peak accessibility, fixing TF expression; β and βL estimate 

the change in gene expression per change in TF expression, fixing peak accessibility; γ1 

and γL measure how the change in gene expression per change in peak accessibility at each 

fixed TF expression relies on the TF expression; γ2 and γL measure how the change in 

gene expression per change in TF expression at each fixed peak accessibility relies on the 

peak accessibility. However, the underlying models and assumptions are different. Matching 

controls for not just the linear variation in the matched variable, but also any nonlinear 

variation. This contrasts with adding the variable as a covariate in the linear regression, 

where we simply remove linear dependence. The main motivation for using the matching 
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model above is to avoid making linearity assumptions on the relationship between any of 

the variables. Additionally, we use the rank-based Spearman correlation, which will not be 

driven by outliers – a “bulk” association between ranks is needed for significance. Thus, the 

nonparametric model of TRIPOD is more stringent (Fig. S25) and more robust to outliers.

Identifying regulatory cell type(s) and cell state(s).—For the significant trios 

detected by TRIPOD, we next seek to identify the underlying regulatory cell type(s). 

Specifically, we carry out a cell-type-specific influence analysis to identify cell types that 

are highly influential in driving the significance of the trio. Traditional approaches (e.g., 

the Cook’s distance and the DFFITs) delete observations one at a time, refit the model 

on remaining observations, and measure the difference in the predicted value from the full 

model and that from when the point is left out. While they can be readily applied to detect 

“influential” cell aggregates one at a time (Fig. S6a,b), these methods do not adjust for 

the degree of freedom properly when deleting different numbers of cell aggregates from 

different cell types. That is, they do not account for the different numbers of observations 

that are simultaneously deleted. Additionally, both methods adopt a thresholding approach to 

determine significance, without returning p-values that are necessary for multiple testing 

correction. We, therefore, develop a sampling-based approach to directly test for the 

influence of multiple cell aggregates and to return p-values (Fig. S6c).

Here, we focus on the linear model for its ease of computation: Y g = μ + αXp + βY t + γXpY t. 

Given a set of observations I = {i: ith cell aggregate belongs to a cell type}, 

we remove these cell aggregates, fit the regression model, and make predictions: 

Y g
(I) = μ(I) + α(I)Xp + β (I)Y t + γ (I)XpY t. The test statistics are the difference in the fitted 

gene expressions Y g − Y g
(I) . We generate the null distribution via sampling. Specifically, 

within each sampling iteration, we sample without replacement the same number of cell 

aggregates, denoted as a set of I*, delete these observations, and refit the regression model 

on the remaining observations: Y g
I* = μ I* + α I* Xp + β I* Y t + γ I* XpY t. The p-value 

is computed across K sampling iterations as pYg = ∑I*1 ∑ Y g − Y g
(I) ≥ ∑ Y g − Y g

I* /K, 

where 1() is the indicator function. In addition to testing each cell type separately, the 

framework can be extended to test for the influence of cell-type groups. For example, in Fig. 

3, we reconstruct the cell-type hierarchy using expression levels of highly variable genes 

from the RNA domain and carry out the aforementioned testing scheme at each split for its 

descendent cell types in the hierarchical structure.

For transient cell states, TRIPOD first identifies the neighbors of each cell aggregate 

along the trajectory and then carries out cell-aggregate-specific testing by simultaneously 

removing each cell aggregate and its neighbors using the framework described above. The 

resulting p-values are, therefore, smoothed and can be visualized in the UMAP plot (Fig. 

6f and Fig. S20) to identify the underlying branches/segments that are key in defining the 

significant regulatory trio. This approach can be directly applied to cells with branching 

dynamics without the need to isolate cell subsets or to identify cell types.
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Validation resources and strategies.—Resources for validating the trio regulatory 

relationships are summarized in Table 1. To validate the peak-gene relationships, we referred 

to existing enhancer databases: FANTOM5 (Andersson et al., 2014) links enhancers and 

genes based on enhancer RNA expression; 4DGenome (Teng et al., 2016) links enhancers 

and genes based on physical interactions using chromatin-looping data including 3C, 4C, 

5C, ChIA-PET, and Hi-C; EnhancerAtlas 2.0 (Gao and Qian, 2020) reports enhancers using 

12 high-throughput experimental methods including H3K4me1/H3K27ac ChIP-seq, Dnase-

seq, ATAC-seq, and GRO-seq. We only focused on blood and non-cancerous cells from 

these databases (Fig. 4b). A list of cis-eQTLs within the whole blood mapped in European-

American subjects was downloaded from the GTEx consortium (Consortium, 2017) (Fig. 

4b). For the mouse embryonic brain dataset, we additionally adopted H3K4me3-mediated 

PLAC-seq data (Zhu et al., 2019), which reported enhancer-promoter chromatin contacts 

mapped in mouse fetal forebrain (Fig. 5a, Fig. S15b, S16a, S17a). For the mouse skin 

dataset, we adopted TAC-specific ChIP-seq data of H3K4me1 and H3K27ac (Adam et al., 

2015), markers for poised and active enhancers, respectively (Fig. 6b); we also obtained 

previously reported super-enhancers in mouse TACs from in vivo studies (Adam et al., 2015) 

(Fig. 6c). Genomic coordinates were lifted over from mm9 to mm10 when necessary.

To validate the TF-gene relationships in the PBMC data, we utilized the knockTF (Feng 

et al., 2020) and the hTFtarget (Zhang et al., 2020) databases. knockTF interrogates 

the changes in gene expression profiles in TF knockdown/knockout experiments to link 

the TFs to their target genes in a tissue- or cell-type-specific manner. We downloaded 

12 experiments, corresponding to 12 TFs (BCL11A, ELK1, GATA3, JUN, MAF, MYB, 

NFATC3, NFKB1, STAT3, STAT6, TAL1, and ZNF148) in the peripheral blood category, 

and focused on seven TFs that have at least one linked gene by any model benchmarked 

(Fig. 4c; Table S2). hTFtarget computationally predicts TF-gene relationships using ChIP-

seq data, and we manually downloaded the TFs associated with each of the top 100 highly 

variable genes in the blood tissue (Fig. 4d; Fig. S14).

For peak enrichment analysis compared to the existing enhancers, cis-eQTLs, and enhancer-

promoter contacts, we carried out a hypergeometric test as follows. Let k be the number 

of significantly linked peaks, q be the number of significantly linked peaks that overlap 

with annotations (e.g., annotated enhancers), m be the number of peaks that overlap with 

the annotations, and n be the number of peaks that do not overlap with annotations. The 

p-value of enrichment is derived from the hypergeometric distribution using the cumulative 

distribution function, coded as phyper(q, m, n, k, lower.tail=F) in R. We used this hypothesis 

testing framework to validate and benchmark the reported peak-gene links, with results 

shown in Fig. 4b.

To validate the peak-TF relationships, we downloaded non-cancerous cell-type-specific 

ChIP-seq data of human blood (B lymphocyte, T lymphocyte, and monocyte) from the 

Cistrome (Mei et al., 2017) portal for the PBMC data (Fig. 4e, Table S3), and ChIP-seq data 

of Olig2 (Yu et al., 2013), Neurog2 (Sessa et al., 2017), Eomes (Sessa et al., 2017), and 

Tbr1 (Notwell et al., 2016) for the mouse embryonic brain data. The Olig2 ChIP-seq data 

were generated in three types of rat cells: data from oligodendrocyte precursor cells (OPC) 

and immature oligodendrocytes (iOL) were used for validation, while data from mature 
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oligodendrocytes (mOL) serve as a negative control (Yu et al., 2013). Genomic coordinates 

were converted from rn4 to mm10. The Neurog2 and Eomes ChIP-seq data were generated 

in mouse embryonic cerebral cortices at day 14.5 (Sessa et al., 2017); the Tbr1 ChIP-seq 

data was generated in the whole cortex dissected from embryos at day 15.5 (Notwell et al., 

2016). In addition, DNA footprinting signatures were corrected for Tn5 sequence insertion 

bias and stratified by cell types using the Signac package (Stuart et al., 2021) and can be 

used to validate the identified TFs/motifs in a cell-type-specific manner (Fig. 6g, Fig. S6e). 

Hypergeometric tests for peak enrichment in TF binding sites by ChIP-seq were carried 

out (Fig. S16b–d, S17b–d). The results presented in Fig. 4e were obtained in several steps: 

(i) we obtained sets of trios, for which B cells, T cells, and monocytes were significantly 

influential; (ii) we applied TRIPOD and took the union set of the significant trios; and (iii) 

we took the intersection between the trios obtained by the two types of analyses, collapsed 

the trios to TF-peak relationships, and computed the fraction of peaks overlapping ChIP-seq 

peaks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• TRIPOD interrogates gene regulation by single-cell RNA and ATAC 

multiomic data.

• TRIPOD is a nonparametric approach to identify and characterize TF-gene-

peak trios.

• TRIPOD identifies cell-type- and cell-state-specific transcription regulation.

• Trios identified by TRIPOD corroborate and complement existing data.
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Fig. 1. Interaction between TF expression and peak accessibility improves RNA prediction 
accuracy.
a, UMAP embedding of 10x Genomics PBMC (left; from the 10x Genomics website), 

10x Genomics embryonic mouse brain (center; from the 10x Genomics website), and 

SHARE-seq mouse skin (right; from GSE140203) cells from single-cell RNA and ATAC 

multiomic sequencing. Cell-type labels were transferred from existing single-cell references 

or curated based on marker genes, motifs, and peaks; cell aggregates were constructed to 

mitigate sparsity and stochasticity. b, Genome-wide distributions of Pearson correlations 

between observed and leave-one-out predicted RNA expression levels, with varying window 

sizes. Predictions are from gene activity, regulatory potential, peak LASSO regression, and 

peak-TF LASSO regression. c, Predicted and observed RNA expression levels for highly 

variable genes, CCR7, Adamts6, and Ano7, from the three datasets, respectively.
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Fig. 2. TRIPOD infers peak-TF-gene trio regulatory relationships using single-cell multiomic 
data.
a, Data input and schematic on a peak-TF-gene trio. b, Overview of TRIPOD for inferring 

regulatory relationships. TRIPOD complements existing methods based on marginal 

associations by identifying conditional associations through matching by TF expression 

or peak accessibility. c, An example trio identified by TRIPOD, but not by the marginal 

associations due to the heterogeneity of cell-type-specific regulations. d, An example 

trio identified by the marginal associations, but not by TRIPOD. The peak and TF are 

significantly linked to the gene, yet they act through other TF and peak, and thus the 

regulatory trio is insignificant. The points represent cell aggregates (left two panels) and 

pairs of matched cell aggregates (right two panels). Genomic coordinates for the peaks are 

from hg38.
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Fig. 3. Examples of trio regulatory relationships in PBMC single-cell multiomic dataset.
a-b, Example trios identified by TRIPOD. Violin plots show cell-type-specific distributions 

of gene expression, peak accessibility, and TF expression. Scatterplots show TRIPOD’s 

level 1 and level 2 testing, respectively. Inner and outer circles around the points are 

color-coded based on the cell types of the matched cell aggregates. Hierarchical clustering 

is performed on RNA expression levels of highly variable genes. Red/gray circles indicate 

whether removal of the corresponding branches of cell aggregates significantly changes the 

model fitting; crosses indicate that removal of the groups of cell aggregates resulted in 

inestimable coefficients. Genomic coordinates for the peaks are from hg38.
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Fig. 4. TRIPOD identified trio regulatory relationships in PBMC single-cell multiomic dataset 
supported by extensive validations.
a, A schematic of validation strategies. Shown are external datasets and databases used 

to validate the links between peak accessibility and target gene expression (peak-gene 

validation), those between peak accessibility and TF expression (peak-TF validation), and 

those between TF expression and target gene expression (TF-gene validation). b, Peak-gene 

validation based on enhancer databases (FANTOM5, 4DGenome, and EnhancerAtlas) and 

tissue-specific cis-eQTL data from the GTEx Consortium. Box plots show distributions of 

p-values from gene-specific hypergeometric tests. c, TF-gene validation based on lists of 

TF-gene pairs from the knockTF database. d, Precision and recall rates for TF-gene pairs 

using ground truths from the hTFtarget database. e, Peak-TF validation based on eight 

cell-type-specific TF ChIP-seq datasets (B lymphocytes, monocytes, and T lymphocytes). 

Fractions of significantly linked peaks and all peaks that overlap with the ChIP-seq peaks 

are shown.
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Fig. 5. TRIPOD identified regulatory relationships during mouse embryonic brain development.
a, Venn diagram of the number of peak-gene pairs captured by PLAC-seq, the marginal 

model, and the union set of TRIPOD’s level 1 and level 2 testing matching TF expression 

and peak accessibility. b, The same as a but for Peak-TF validation by ChIP-seq data 

for Olig2, Neurog2, Eomes, and Tbr1. c, A schematic of well-characterized TF regulatory 

cascades during neurogenesis and gliogenesis. d, Trio examples from known regulatory 

relationships, as well as from crosstalks supported by ChIP-seq data, captured by TRIPOD. 

e, GO analysis of putative target genes of the neurogenesis and gliogenesis TFs. The number 

of TRIPOD-identified target genes in the GO categories is shown. The background heatmap 
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shows negative log p-values (FDR < 0.05) from hypergeometric tests examining enrichment 

of GO terms. f, Bar plots showing the number of putative cell-type-specific trios mediated 

by the neurogenesis- and gliogenesis-specific TFs.

Jiang et al. Page 31

Cell Syst. Author manuscript; available in PMC 2023 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. TRIPOD identified regulatory relationships in mouse hair follicles with transient cell 
states.
a, UMAP embedding of hair follicle cells from the mouse skin data. Cells are colored by 

cell types (TAC, IRS, hair shaft, and medulla) and pseudotime. b, H3K4me1 and H3K27ac 

ChIP-seq scores for linked peaks identified by TRIPOD, DORCs (regulatory domains 

identified by gene-peak correlations), and randomly sampled peaks. c, TRIPOD’s linked 

peaks for four representative genes were significantly enriched in previously annotated 

super-enhancers in the mouse TAC population. d, Trios detected by TRIPOD that were 

active in IRS (top), medulla (middle), and hair shaft (bottom), respectively. e, Dot plots 

of gene expressions, peak accessibilities, and TF expressions across different cell types. 
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f, Influence analyses identified segments along the differentiation trajectory where the 

regulation took effect. The colors in the UMAP embedding correspond to the smoothed 

p-values from a sampling-based approach. g, DNA footprinting assays showed cell-type-

specific enrichments of Tn5 integration events. The findings were consistent with those from 

the influence analyses.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Single-cell multiomic datasets of PBMC (10k and 3k) and 
mouse embryonic brain

10x Genomics website https://support.10xgenomics.com/single-cell-
multiome-atac-gex/datasets

SNARE-seq data of adult mouse brain Gene Expression Omnibus GSE126074

SHARE-seq data of mouse skin Gene Expression Omnibus GSE140203

Software and algorithms

Original source code This paper https://dx.doi.org/10.5281/zenodo.6852586
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