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Summary

Multicellular synchronization is a ubiquitous phenomenon in living systems. However, how 

noisy and heterogeneous behaviors of individual cells are integrated across a population toward 

multicellular synchronization is unclear. Here we study the process of multicellular calcium 

synchronization of endothelial cell monolayer in response to mechanical stimuli. We applied 

information-theory to quantify the asymmetric information-transfer between pairs of cells and 

defined quantitative measures to how single cells receive or transmit information within a 

multicellular network. Our analysis revealed that multicellular synchronization was established 

by gradual enhancement of information spread from the single cell to the multicellular scale. 

Synchronization was associated with heterogeneity in the cells’ communication properties, 

reinforcement of the cells’ state and information flow. Altogether, we suggest a phenomenological 

model where cells gradually learn their local environment, adjust and reinforce their internal state 

to stabilize the multicellular network architecture to support information flow from local to global 

scales toward multicellular synchronization. A record of this paper’s Transparent Peer Review 

process is included in the Supplemental Information.
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eTOC Blurb

We quantitatively characterized the process of mechanically stimulated multicellular calcium 

synchronization. By applying Granger-causality and network analysis to live movies, we revealed 

that increased connectivity, heterogeneity, and memory, at the cellular scale, facilitated the 

emergence of synchronization across a multicellular network by gradual transition from local 

to global information spread.

Introduction

Synchronized multicellular dynamics is the basis of many critical physiological processes, 

such as the rhythmic beating of cardiomyocytes, planar cell polarity, and brain activities. 

The human endothelium, for instance, consists of a staggering over one trillion endothelial 

cells which constantly monitor environmental cues such as shear stress, in order to 

collectively regulate the vasculature tone (Davies, 2009; Wolinsky, 1980). However, a 

fundamental question remains elusive: how synchronization in the group emerges from the 

interactions of individual cells, each making stochastic decisions based on noisy cues from 

their local environment?

A major challenge toward establishing multicellular synchronization lays at how single 

cells translate environment information to intracellular signaling responses (Perkins and 

Swain, 2009). Signaling in cells often rely on low copy numbers of proteins (Huang et al., 

2007) and diffusion limited intracellular transport (Brangwynne et al., 2009). These effects, 
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often considered as intrinsic noises, lead to variable single cell signaling dynamics even in 

response to identical external stimuli (Elowitz et al., 2002; Swain et al., 2002). Cell-to-cell 

variation, or intercellular heterogeneity, is present even for cells originating from the same 

genetic background, also complicates our understanding of multicellular synchronization 

processes. Such cell-to-cell variation, or non-genetic intercellular heterogeneity, may arise 

from differences in gene expression levels (also terms as extrinsic noise), alternative 

splicing, as well as post translation modifications (Bintu et al., 2016; Elowitz et al., 

2002; Gut et al., 2018; Ng et al., 2018; Raj and van Oudenaarden, 2008). Intercellular 

heterogeneity implies that individual cells take different states, or phenotypes, which may be 

related with intrinsic noises such as by varying the copy number of receptors to modulate 

the probability of activation (Young et al., 2008). Intercellular heterogeneity also modulates 

the propensity of cells to interact with their peers, as the communication between cells 

depend on specialized molecular channels such as gap junctions (Calderón and Retamal, 

2016; Nicholson and Bruzzone, 1997). However, it is not known whether non-genetic 

intercellular heterogeneity can play a constructive role in information transfer between cells 

in multicellular systems. As such, we ask whether some cells within a group function as 

leaders or followers, promoting the spread of information through the group, while others 

act individually, and whether such heterogeneity is important for the synchronization of 

multicellular dynamics.

Previously, we demonstrated that cell-cell communication through gap junctions (Fujii et 

al., 2017) modulated ATP-induced calcium signaling in monolayers of fibroblast cells (Sun 

et al., 2012). Tuning the levels of intercellular communications, by varying cell densities, 

inserting weakly-communicating cells, and by pharmacologically inhibiting gap junctions, 

controlled the temporal coordination of calcium signaling in neighboring cells (Potter et al., 

2016; Sun et al., 2012). Others have also highlighted the role of local gap-junction mediated 

cell-cell communication in functional multicellular connectivity of neural progenitor cells at 

the vascular interface (Lacar et al., 2011), in neural stem cell reactivation in the blood-brain 

barrier (Spéder and Brand, 2014), in neural progenitors cell proliferation during embryonic 

development (Malmersjö et al., 2013) and in coordinated fate decisions (Ho et al., 2021).

To elucidate how information transfer between single cells is integrated to synchronize 

population-level cellular responses, we study the physiological process where monolayers of 

endothelial cells collectively sense and respond to external shear stress. Endothelial cells line 

the interior surface of blood vessels and form a monolayer that experiences varying levels 

of shear stress from blood flow (Hill et al., 2010; Yin et al., 2007). Upon changing the flow 

rate (e.g., during acute wound), endothelial cells detect the change in shear stress, inform 

other cells such as smooth muscle cells, and adjust their internal signaling accordingly. 

Central to the cascade of events, shear stress leads to downstream ATP activation which 

modulates calcium signaling at the subcellular scale (Faehling et al., 2002; Kohn et al., 

1995; Rubanyi and Vanhoutte, 1988). As a group, the endothelial cells must coordinate their 

signaling dynamics to achieve a coherent and collective response. Specifically, intercellular 

calcium levels are synchronized via gap junction-mediated cell-cell communication (Kumar 

and Gilula, 1996; Sun et al., 2012). Such synchronized calcium signaling is instrumental in 

modulating reepithelialization, angiogenesis, and extracellular matrix remodeling, which are 

Zamir et al. Page 3

Cell Syst. Author manuscript; available in PMC 2023 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



essential processes in wound repair (Aihara et al., 2013; Eming et al., 2014; Handly and 

Wollman, 2017; Lee et al., 2019; Shannon et al., 2017).

In this study we developed an integrated experimental-computational approach to 

quantitatively evaluate the roles that single cells take during the emergence of multicellular 

synchronization. Using this platform, we identified three key functions whereby single 

cells contribute to collective information processing that ultimately leads to multicellular 

synchronization. Division of labor, where single cells take differentiated functional roles in 

collective information processing; Cell memory, where single cells maintain and reinforce 

their specified functional roles in cell-cell communication in response to repeated external 

stimuli; And information flow, where the information gradually propagates spatially from 

the scale of single cells to eventually synchronize the collective.

Results

Endothelial cells in a monolayer adapt their calcium dynamics in response to external 
shear stress

We employed a microfluidics system that can precisely control the temporal profile of 

the shear stress that the cells experience (Fig. 1A top). We grew confluent monolayers 

of HUVEC (Human Umbilical Vascular Endothelial Cell) cells on the bottom surface of 

the flow channels (Fig. 1A bottom). A computer interfaced flow switch regulated input 

pressure to induce smooth flow profiles in the microfluidic channel as verified by particle 

image velocimetry (Fig. 1B). The shear stress -induced calcium signal of the HUVEC cells 

was imaged with the fluorescent calcium indicator Calbryte-520 at single cell resolution 

(Fig. 1A inset, Video S1). We manually marked each cell center (Fig. 1A inset), recorded 

the intracellular calcium signal as a time-series of fluorescent intensity for every cell and 

verified that the magnitude of the cell’s calcium signal correlated with the magnitude of 

the applied flow shear stress (Fig. 1C, Methods). This setting enabled us to investigate the 

collective mechanosensing of HUVEC cells to fluid shear stresses, a scenario that mimics 

the physiological function of the endothelium.

Upon exposing the cells to a step-like increase in shear stress to 0.2 Pa, which is similar to 

those that an endothelial cell experiences during acute bleeding (Albuquerque et al., 2000), 

the variability in the cells’ temporal derivative of their calcium signal (termed calcium 
dynamics, annotated Rl t  (Methods)) increased and then gradually reduced until the cells 

adapted to the external stress and converged to a steady state (Fig. 1D). We defined the 

adaptation rate as 1 −
tmax
tmax + 400

σRl t t
40 ∗ σRl tmax

, where σRl t t  is the population-level standard 

deviation of single cell calcium dynamics Rl t  at time t, and tmax = argmax
t

σRl t t  is the 

time of the peak variability in calcium dynamics (Methods, Fig. 1E). The adaptation rate 

is a non-parametric measurement for the speed that the multicellular system adapts to 

the external stress. When a system rapidly synchronizes, adaptation rate approaches one. 

Conversely, if a system maintains a large deviation between the dynamics of individual cells, 

adaptation rate is close to zero. In general, higher adaptation rate implies faster multicellular 
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adaptation to the external stress (Fig. 1E black curve adapts faster than blue curve). The 

endothelial monolayer adapted to increasing levels of shear stress ranging from 0.1 to 

1.6 Pa (Fig. 1F, Fig. S1 - parametric exponential model) demonstrating the robustness of 

the multicellular system in adaptation to varying physiological-relevant levels of external 

mechanical stimuli (Charbonier et al., 2019). Altogether, these results suggested that the 

cells gradually adapted despite the vast variability in single cell calcium response at the 

onset of shear stress.

The interplay between information flow, heterogeneity and multicellular adaptation

We hypothesized that integrating and propagating information from the local scale, between 

single cells, to the global scale, drove the adaptation of an inherently heterogeneous 

multicellular system to external mechanical stimuli. To investigate this hypothesis, we 

defined quantitative measures for cell-cell communication. If two cells communicate, we 

expect the past calcium dynamics of one cell to contain information regarding the future 

calcium dynamics of the other cell. Defined in this way, cell-cell communications can 

be bidirectional and asymmetric – cell A can influence its neighbor B differently from 

how cell B influences A (Fig. 2A). To quantify asymmetric cell-cell communication, we 

used Granger Causality (Granger, 1969) (GC), a classic statistical method from the field 

of information theory, to infer cause-effect relationships between cell pairs from their 

fluctuating calcium dynamics. Granger Causality uses linear regression to quantify the 

extent to which the prediction of values in one time series can be improved by including 

information from another time series. This provides us with an established framework to 

extract feedback and feedforward relations from pairwise variables’ fluctuating time-series.

To avoid spurious cause-effect relations, Granger Causality requires the time-series being 

analyzed to be stationary, i.e., fluctuating signals with a consistent mean and variability. 

Therefore, we excluded experiments where less than 85% of the cells passed two stationary 

tests (Kwiatkowski–Phillips–Schmidt–Shin (Kwiatkowski et al., 1992) and Augmented 

Dickey–Fuller (Cheung and Lai, 1995), Fig. S2A, Methods) and in the remaining 

experiments we analyzed only the cells that passed both stationary tests. When one cell’s 

calcium dynamics significantly contributed to the accurate prediction of another cell’s 

signal, we defined a directed GC edge from the first cell to the other (Methods). For 

every cell in the monolayer, we calculated the degree rank as a measurement for the 

cell’s involvement in influencing or being influenced-by cells in its local vicinity -- cells 

with topological distance up to two (nearest neighbor cells and next-to-nearest neighbor 

cells, Methods, Fig. S2B–C). Cells took different roles in the multicellular communication 

network as indicated by the spatial heterogeneity in their degree ranks (Fig. 2B), which 

was higher than a null model that considered random shuffling of GC edges (Fig. 2C, Fig. 

S3A–B, Methods), and was only associated very weakly with the number of cell neighbors 

(Fig. S2D).

To quantitatively explore the role of heterogeneity in the cells’ degree rank, we 

correlated four metrics that characterized adaptation, information flow, collective and 

local heterogeneity respectively. (1) The adaptation rate measures the dynamics of the 

multicellular adaptation to external mechanical stimuli (Fig. 1E). (2) The GC edge 
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probability, or P(GC edge), is the probability of a GC edge from all potential edges, a 

proxy for the overall information flow within the multicellular network. (3) The collective 
heterogeneity is a measurement for the variability of the cells’ degree ranks (Jacob et 

al., 2017). The collective heterogeneity is calculated directly from the network’s degree 

distribution and provides a normalized measure that is independent of the network’s 

topology and size (Fig. S3B, see Methods for full details). For example, a network in 

which all the nodes having the same degree is considered as completely homogeneous while 

a more complex network such as scale-free that has a degree distribution approximates as 

a power-law (Amaral et al., 2000) is considered a more heterogeneous network (Fig. 2D 

– top). (4) The local heterogeneity, or the Estrada index, measures the degrees differences 

between all pairs of communicating cells capturing the heterogeneity in the local network’s 

structure (Estrada, 2010) (see Methods for full details). The Estrada index is equal to zero 

for regular networks, where all neighboring cells have the same degree, and equal to one 

for star graphs (Fig. 2D - bottom). The observed local heterogeneity of all experiments 

spatially shuffled the cells’ neighbors while preserving the same degree rank (Methods) 

implying higher local homogeneity (Fig. S3C). Thus, in response to step-like increase in 

shear stress the multicellular network was characterized by collective heterogeneity and 

local homogeneity.

We pooled together the 23 experiments across the shear stress range of 0.1–1.6 Pa and 

correlated the four measurements (Table S1). Collective heterogeneity was correlated with 

the GC edge probability while the local heterogeneity was negatively associated with the 

adaptation rate as well as with the GC edge probability. The pairwise correlations are 

depicted in Fig. 2E and detailed in Fig. S4. Cumulatively, our results suggest a transition 

from local to global scales in the multicellular network organization. Rapid adaptation 

is associated with local homogeneity, but has a marginal correlation with the collective 

heterogeneity. Active information flow is associated with both collective heterogeneity and 

local homogeneity in communication. The scale-dependent dynamics suggest propagation 

and integration of information from nearby cells into a decentralized network architecture, a 

mechanism we further investigate.

Gap-junction mediated multicellular synchronization to periodic mechanical stimuli

After characterizing the communication networks exhibited by endothelial cell monolayers 

to shear stress, we asked if the network could be trained to adapt to time-dependent external 

stimuli. To this end, we extended our assay to multiple rounds of repeated mechanical 

stimuli (Video S2). By treating each round as an independent cycle, and comparing single 

cell responses across cycles, we could focus on the evolution of synchronization in the 

multicellular system (Fig. 3A, Methods). We found that the HUVEC monolayer reinforced 

synchronization as observed by the gradual decrease in the standard deviation of the cells’ 

calcium dynamics σRl t t  (Fig. 3B). To confirm the role of intercellular communication in 

multicellular synchronization, we inhibited gap junctions or reduced cell density (Methods). 

In both cases the multicellular network failed to effectively synchronize (Fig. 3C–D, S5A–

B).
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Synchronization coincided with a gradual increase of the information flow, i.e., the cell’s 

mean GC edge probability (Fig. 3E), and with the collective heterogeneity (Fig. 3F) 

in intercellular communication. These relations were not measured upon gap-junction 

inhibition and sparser cell seeding (Fig. 3E–F, Fig. S5C–D, Fig. S6). We did not observe 

a clear pattern in the local homogeneity measure (Fig. S7). These results, summarized in 

Table S2, indicate the multicellular network gradually synchronizes to cycles of external 

mechanical stimuli in a local mechanism that is consistent with jap-junction mediated 

communication.

Functional cell memory: cells maintain their states in the communication network and 
reinforce them over time

To characterize the asymmetric communication roles that single cells take during the 

multicellular synchronization we calculated for each cell the transmission score and the 

receiver score as measures for being influential or influenced-by cells in its local vicinity 

(up to topological distance of two). We defined the transmission score as the probability 

of outgoing GC edges, and the receiver score as the probability of ingoing GC edges (Fig. 

4A) (Methods). The observed trend of improved synchronization coincided with a gradual 

increase of the (population) mean receiver and transmission scores over time (Fig. 4B, Video 

S3, Video S4).

We next asked to what extent the communication properties of cells were intrinsic cellular 

properties. To this end we correlated single cells’ transmission and receiver scores across the 

repeated mechanical stimulus cycles while testing the null hypothesis that these scores were 

assigned randomly between consecutive cycles. We found that single cells’ transmission 

and receiver scores were strongly correlated between consecutive stimulus cycles, that this 

correlation gradually increased as cells underwent additional stimulus cycles (Fig. 4C, 

Fig. S8A), and could not be explained by the autonomous cells’ response to the external 

mechanical stimuli (Fig. S9). Measuring single cell correlation between larger temporal 

gaps of 2–4 cycles did not show a dramatic diminishing pattern suggesting that the cellular 

memory is stable for time scales of at least 4–8 minutes, which is beyond the timescale 

required for the multicellular system to recover (Fig. S8B). These results suggest that 

cells maintain and gradually reinforce memory regarding their role in the multicellular 

communication network at the timescales relevant for collective synchronization.

Stability in single cell communication state and increased information flow lead 
to enrichment of highly communicating cells coinciding with the establishment of 
synchronization

We next aimed to characterize how single cell communication properties and memory 

contribute to multicellular synchronization. First, we normalized the transmission and 

receiver scores across the population and cycles by calculating the respective z-score - the 

number of standard deviations away from the mean (Fig. 5A, Methods). The normalized 

scores allowed comparison of cell communication properties across different cycles in 

the same experiment as well as between different experiments. Next, we partitioned the 

normalized transmission-receiver space into five regions and empirically assigned the cells 

to states according to the region they occupied. Individual cells, whose calcium dynamics 
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were independent of cells in their local vicinity, have normalized transmission and receiver 

scores both below −0.5. Common cells, with average communication properties. Leader 
cells, with high transmission scores (transmission score > 0.5 and receiver score < 0.5), 

follower cells, with high receiver score (receiver score > 0.5 and transmission score < 0.5), 

and communication hub cells, characterized by both transmission and receiver normalized 

scores above 0.5 (Fig. 5A, Methods). This data-driven partitioning defined five distinct 

states that cells take in terms of information transfer in the multicellular communication 

network and enabled us to follow their evolution throughout the synchronization process 

(Fig. 5B–C, Video S5, Video S6). The combined effect of the increasing information flow 

and cell memory led to a gradual increase in the fraction of cells actively participating in 

communication: followers, leaders and communication hubs, along with decreased fraction 

of cells with reduced level of communication: common and individual (Fig. 5C).

To follow the dynamic trajectory of single cells between communication states we analyzed 

the probability of transitioning from one state to another in consecutive cycles. In particular, 

we computed the enrichment factor - transition probabilities between any two states and 

normalized the quantity by the fully random transition probabilities (Methods, Fig. S10). As 

expected from our earlier observation of functional memory (Fig. 4C), we found that cells 

tended to maintain their states or “similar” states, as reflected by self-transition enrichment 

factors above one (Fig. 5D, Fig. S10). Generally, single cells followed a temporal trajectory 

from the states characterized with less communication capacity to states with increased 

communication (Fig. 5D - showing edges only for enrichment factors > 1). We also found 

symmetric transition folds between the follower-and leader states, and the transition from 

communication hub to the follower/leader state was enriched compared to the opposite 

transition to a communication hub (Fig. 5D, Fig. S10).

We next focused our attention to the fraction of cells taking the “communication hub” role. 

Low fraction of communication hubs at the onset of the experiment rapidly increased to 

become a frequent state in later cycles (Fig. 5C) coinciding with the gradual increase in 

information flow (Fig. 4B). Moreover, the communication hub state was found to be much 

more stable than other states or transitions (2.4 fold dwell probability compared with a fully 

random process), underpinning their rapid spread in the population (Fig. 5C). Altogether, 

increased information flow along with stable functional memory led to enrichment of 

communication hubs that contribute to effective spread of information in the multicellular 

network.

Information gradually propagates from the (local) single cell to the (global) multicellular 
scale

Our data suggests multicellular synchronization is associated with various single cell 

properties such as communication state and memory. This led us to the hypothesis that the 

synchronization process is driven by effectively propagating information from the local scale 

(between single cells), to the global (collective) scale. To test this hypothesis, we measured 

to what extent local cell properties explained the information flow in the multicellular 

network. First, we computed the neighboring pair cross correlation coefficients for direct 

observations and spatially permuted data. We found that the spatial permutation always 
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decreased the cross correlation, therefore cross correlation was maintained as a local cell 

property throughout the experiment even in the presence of common external stimuli (Fig. 

6A, upper-left inset). Spatial permutation decreased the GC edge probability in early cycles 

but increased the edge probabilities in later cycles (Fig. 6A main panel and the lower-right 

inset). These results indicate that once neighboring cells reach sufficient synchronization 

their ability to influence each other is less effective than cell pairs far apart. We validated 

these observations more systematically by correlating the topological distance between pairs 

of cells to their GC edge probability (Methods). This analysis established that at the onset 

of the experiment, the information flow is dominated by local cell-cell interactions and is 

gradually transitioning to the global scale as the multicellular network synchronizes (Fig. 

6B).

Discussion

The emergence of robust multicellular behaviors from heterogeneous single cell dynamics is 

a poorly understood, but fundamentally important phenomenon in living systems (Zinner 

et al., 2020). Here we provide insights in bridging the scales between local cell-cell 

communication and global multicellular synchronization. This was achieved by measuring 

asymmetric information transfer at single cell resolution in multicellular monolayers under 

externally applied mechanical stimuli. By employing Granger Causality to systematically 

quantify the communication of a cell with other cells in their local environment, we 

defined for each cell its capacity to transmit and to receive information in the multicellular 

communication network. Our method relies on local pairwise analysis of cell dynamics, 

and defines single cell communication properties without requiring explicit construction 

of the network or committing to a specific network architecture. This model-free data-

driven approach can be applied to a broad set of biological systems from synchronized 

beating of cardiomyocytes (Nitsan et al., 2016), intercellular communication through the 

microenvironment (Nahum et al., 2022), brain activity (Seth et al., 2015), molecular 

signaling (Goglia et al., 2020) and coordinated cell migration (Malinverno et al., 2017).

We showed the cells were actively communicating with one another locally, and that 

physical cell-cell contacts via gap-junctions were required for multicellular synchronization. 

These conclusions were supported by multiple lines of evidence throughout our study. First, 

we reported that gap-junctions and sufficient cell confluence were required for multicellular 

synchronization (Fig. 3B versus Fig. 3C or Fig. S5 and Table S2). Second, we demonstrated 

that both local and collective heterogeneity depended on the spatial organization of cells 

in their vicinity (Fig. S3). Third, we found that the activation time, a cell’s autonomous 

response to the external stress, was not associated with the transmission or receiver 

score (Fig. S9A), which would also be conflicting with the gradual increase fraction of 

communication hubs (which are both leaders and followers). Forth, cells “remembered” 

and reinforced their roles in the multicellular communication network over time, as a local, 

spatially-dependent property (Fig. 4C, Fig. S8), but did not “remember” their activation 

time in previous cycles (Fig. S9B). Fifth, neighbor pair cross correlation was a local cell 

property throughout the experiment (Fig. 6A). Together, our data established the decoupling 

of the local cell-cell communication from the external stimuli, and established that the 
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emergence of multicellular synchronization required gap-junction mediated local cell-cell 

communication.

Our data reveal that single cells take different roles in cell-cell communication (“division 

of labor”), which we defined as communication states in the context of collective 

mechanosensing. Cells gradually reinforce their state (“functional cell memory”), and 

increase the connectivity (“information flow”) in the multicellular network. These three 

mechanisms work in concert to facilitate the emergence of multicellular synchronization. 

Our results suggest that while cell heterogeneity expands the dynamic range of 

mechanoresponses, functional memory stabilizes the dynamics against intrinsic and extrinsic 

noise and that information flow sustains and reinforces the multicellular dynamics.

We found that heterogeneity in cells’ communication properties were associated with 

improved convergence to synchronization (Fig. 2E, Fig. 3F). We also observed that 

the fractions of cells at each functional state, excluding individuals, became more 

balanced through periodic cycles (Fig. 5C), in agreement with our conclusion that 

heterogeneity constructively contributes to the synchronization of a noisy multicellular 

system. Heterogeneity among cells could arise from stochastic gene expression levels, 

signaling kinetics, physiological states such as cell cycle, and/or microenvironmental cues 

(Cheng et al., 2015; Gut et al., 2018; Gut et al., 2015; Hasenauer et al., 2011; Muldoon 

et al., 2020; Paszek et al., 2010; Tay et al., 2010). Although our data does not exclude a 

particular source of heterogeneity, the alteration of cellular communication state at a short 

time scale (~10 minutes) suggests pathway kinetics, such as the cross-talk between gap 

junction and mechanotransduction, may be important factors to determine both local and 

global heterogeneities.

Previous studies have reported multiple sources of microenvironment-dependent cell 

memory. For instance, cells can remember past mechanical properties of their substrate, 

which influence their differentiation (Yang et al., 2014). Cells can also sense changes in their 

extracellular signal by remembering past extracellular stimulation via a receptor-mediated 

mechanism (Lyashenko et al., 2020), and past growth-promoting stimuli can affect cells’ 

future signaling responses (Spinosa et al., 2019). In the context of collective cell migration, 

a recent study showed that cells remembered their polarized state independently of cell–cell 

junctions (Jain et al., 2020), and another study revealed associative memory of electric field 

and chemoattractant at stimuli in a unicellular organism migration patterns (De la Fuente et 

al., 2019). In our study, single cell memory of communication properties contributes to the 

temporal evolution of the multicellular network to its synchronized state. The dissociation 

between a cell’s activation time and its functional role in information processing underpins 

the dynamic nature of memory, which is also consistent with the unidirectional evolution of 

the multicellular network (Figs. 5–6). While further investigations are required to reveal the 

molecular mechanisms of the cellular memory, we suspect slowed gap junction turnover, as 

well as the continuously perturbed calcium dynamics from fully relaxation, may contributed 

to the reinforced functional role of cells.

Our study reveals a self-organized multicellular network that supports information flow from 

local to global scales. Such information may be carried by two main signaling mechanisms, 
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juxtacrine (contact-dependent) and autocrine (secreted-dependent) (Fancher and Mugler, 

2017). A juxtacrine channel allows a cell to establish conversation with its (physically 

touching) immediate neighbors without interference from extracellular space. For HUVEC 

cells such communication can be realized by gap junctions (Okamoto et al., 2017). On 

the other hand, an autocrine channel allows a cell to broadcast its information through 

diffusive messengers in the extracellular space. For HUVEC cells stress-triggered ATP 

release and ATP-induced calcium dynamics constitute an autocrine pathway (Yamamoto 

et al., 2011). While both mechanisms could contribute to the information flow within 

the multicellular network, we suggest gap-junction and contact-dependent signaling as 

the dominant mechanism (Fig. 3B versus Fig. 3C or Fig. S5). While a recent study 

suggested that positive feedback of a diffusive signaling mechanism can drive accelerated, 

long-range information transmission (Dieterle et al., 2019), the external flow in our 

system is likely to rapidly dilute the diffusive messenger (Gregor et al., 2010). The contact-

dependent information flow hypothesis is also supported by our previous studies where we 

demonstrated that blocking gap junctions, or inserting weakly communicating cells impaired 

the information flow (Potter et al., 2016; Sun et al., 2012).

Altogether, our results suggest the following phenomenological model for multicellular 

synchronization. Cells are gradually “learning” the local network structure around 

them (heterogeneity), adjusting their internal state, reinforcing it (memory), and thus 

stabilizing the network architecture. This stabilized network structure reduces conflicting 

communication interferences and thus promotes enhanced spread of information from the 

local to the global scale to eventually synchronize the group.

STAR★Methods

Resource availability

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Assaf Zaritsky (assafza@bgu.ac.il).

Materials availability—This study did not generate new materials.

Data and code availability

• Raw imaging data from a few representative experiments (step, cyclic, cyclic 

with gap junction inhibition), and all the processed data have been deposited 

at Zenodo and is publicly available. The rest of the raw imaging data will 

be available from the Lead Contact upon request. DOIs are listed in the key 

resources table.

• All original code has been deposited at GitHub and is publicly available. DOIs 

are listed in the key resources table.

• Scripts used to generate the figures presented in this paper are not provided in 

this paper but are available from the Lead Contact upon request.

• Any additional information required to reproduce this work is available from the 

Lead Contact upon request.
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Experimental model and subject details section

Cell culture—Human Umbilical Vascular Endothelial Cells (HUVEC) were purchased 

from Lonza and were cultured following the vendor’s instructions. To prepare samples, cells 

were detached from culture dishes using TrypLE Select (Life Technologies) and suspended 

in growth mediums before being pipetted into the microfluidics devices at cell density of 

approximately 1800–2000 cells/mm2 at 100% confluence (600–800 cells/mm2 at 30%−50% 

confluence in the lower density experiments) allowing the cells to form monolayers. After 

overnight incubation, fluorescent calcium dye (Calbryte 520, AAT Bioquest) was loaded 

for 40 minutes prior to imaging. Palmitoleic acid (Sigma-Aldrich, MO) was used as gap 

junction inhibitor in our experiments. Palmitoleic acid was first dissolved in DMSO and 

then diluted to 10uM in growth medium. Before experiment, cells were treated with 10uM 

palmitoleic acid for 8 to 12 hours while seeding into the PDMS device. Then, 10uM 

palmitoleic acid was added to growth medium used for shear-stree experiments.

Methods details

Microfluidics—The organic elastomer polydimethylsiloxane (PDMS, Sylgard 184, Dow-

Corning) used to create the microfluidic devices was comprised of a two part mixture - a 

base and curing agent - that were mixed in a 10:1 ratio, degassed, and poured over a stainless 

steel mold before curing at 65°C overnight. Once cured, the microfluidic devices were cut 

from the mold, inlet/outlet holes were punched, and the device was affixed to a No. 1.5 

coverslip via corona treatment. The cross section of the flow chambers was rectangular (2 

mm X 1 mm). See Fig. 1A for depiction.

Applying controlled shear stress on the cells—The microfluidics flow rate was 

controlled by a PID-regulated pressure pump and was monitored using an inline flow sensor 

(Elveflow). To verify the stability of the flow profile we mixed 1 micrometer fluorescent 

particles in the solution and used particle image velocimetry to quantify the flow rate (Fig. 

1B). To calculate the shear stress, we approximated the flow profile in the flow chamber as 

low-reynolds number pipe flow. We considered the cells in the field of view to experience 

uniform shear stress calculated at the center of the flow chamber. This was possible because 

the imaging window was narrow (470 μm) compared with the chamber width (1 mm).

In the “step” experiments we exposed the cells to a “step”-like shear stress of 0.1, 0.2, 0.6, 

1 or 1.6 Pa for approximately 20 minutes. In the “cycles” experiments we applied multiple 

rounds of 2 minute long global external periodic mechanical stimuli. We limited the number 

of cycles for analysis to 13 at most, because of gradual accumulation of stage drifting and 

photo-damaging effects. Further experiments were performed to evaluate single cell calcium 

signal at the stimulation onset and its relaxation time after a single pulse (Fig. S11).

Live cell imaging—We imaged the calcium dynamics of HUVEC cells using a 20X 

magnification oil immersion objective lens (for step-stress experiments) and a 10X dry lens 

(for cyclic-stress experiments, to avoid flow-induced focus drift). The fluorescent images 

were captured with a CMOS camera (Hamamatsu Flash 2.8) at 0.5 Hz and 1 sec exposure 

time. The images were stored as tif files of 960 X 720 pixels with physical pixel size of 0.65 

μm X 0.65 μm (20X magnification) or 1.2 μm X 1.2 μm (10X magnification).
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Measuring single cell calcium signaling—We manually annotated every cell center 

(Fig. 1A inset), and recorded the mean fluorescent intensity of approximately 40 μm2 

around the cell’s center as a proxy of the intracellular calcium signal time-series of each 

cell. We normalized the calcium signal according to the approach described in (Sun et al., 

2013) (“response curve normalization”). The response curve of each cell was defined as 

R t = ΔF
F =

F t − F0
F0

, where F(t) was calculated as the mean fluorescent intensity at time t, 

The baseline F0 was calculated as the mean of the first 5 frames (10 seconds) of F(t) before 

the mechanical stimulation was turned on. Temporal long-pass filter smoothed the R(t) time 

series to reduce the effects of outliers. Temporal smoothing was performed using Python’s 

lowess function from statsmodels (statsmodels.nonparametric.smoothers_lowess) with the 

parameter frac=0.01. R(t) provides us with a dimensionless measure for the intracellular 

calcium magnitude relative to the cell’s basal intensity.

To evaluate the change in the calcium signal in response to external mechanical stimulus we 

derived the cells’ calcium signal in time: Rl t =
dRi
dt t −

dRi
dt t , where 

dRi
dt t  is the mean 

value of 
dRi
dt t , and 

dRi
dt t  was calculated by Python’s numpy convolution operator over the 

time series with the parameter values mode=‘same’ and with a five point stencil filter [1, −8, 

0, 8, −1] where the result was divided by constant of 12. A cell’s calcium signal temporal 

derivative Rl t  was termed calcium dynamics.

The differentiation is necessary since both the exchange of IP3 and Ca2+ lead to a change of 

calcium concentration. Hence, the derivative is quantity directly related with communication 

(Sun et al., 2013; Sun et al., 2012). In addition, the derivative has properties such as: 

independent of basal level of signal, independent of slow systematic errors such as photo 

bleaching, and stationarity.

Measuring adaptation rate in “step” experiments—The adaptation rate is a non-

parametric measurement for the speed that the multicellular system adapts to external 

stress. We defined the adaptation rate as 1 −
tmax
tmax + 400

σRl t t
400 ∗ σRl t tmax

, where σRl t t  is the 

population-level standard deviation of single-cell calcium dynamics Rl t  at time t after 

applying Hampel smooth function (Hampel, 1974) to remove outliers with the parameters 

of window size of 10 and threshold of 3σ, and tmax = argmax
t

σRl t t  is the time of the peak 

variability in calcium dynamics (Methods, Fig. 1E). When a system rapidly synchronizes, 

the adaptation rate approaches one. Conversely, if a system maintains a large deviation 

between the dynamics of individual cells, the adaptation rate is close to zero. In general, 

a higher adaptation rate implies faster multicellular adaptation to the external stress (Fig. 

1E black curve adapts faster than blue curve). which measured the ratio between the area 

under the curve of σRl t t  from the peak variability in calcium dynamics over 400 seconds 

(Fig. 1E, the area marked in purple area or yellow + purple area for black and purple curve 
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accordingly) with respect to the theoretical upper bound where the relative variability is zero 

(Fig. 1E, the combined areas marked in yellow, orange, and purple).

We choose a temporal window size of 400 seconds (200 frames) since several experiments 

had late peak times defining an upper bound on the temporal window (i.e., this was the 

maximal time-frame without excluding experiments, Table S1).

Measuring multicellular calcium adaption using a parametric exponential 
model—We devised an exponential parametric model to complement the non-parametric 

adaption rate measurement. We fitted the exponential model A ∗ e−Kt + C, to the standard 

deviation curve of the cell’s calcium dynamic using the non-linear least-squares method 

(Levenberg-Marquardt algorithm (Levenberg, 1944)). The initial coefficients values were set 

to A = 0.05, K = 0.01, C = 0. In experiments where the parameters failed to converge, we 

applied a linear least-squares fit to the logarithm of the signal. The coefficient K of the fitted 

model was used as the parametric measure for the adaptation rate.

Measuring synchronization in “cycle” experiments—We defined the 

asynchronization as a measure to quantify multicellular synchronization that relied on the 

standard deviation of single cell calcium dynamics at different time points Rl t  in “cycle” 

experiments. Formally, we defined R t =
i = 0

n Rl t
n , where n is the number of cells, as 

the mean calcium dynamic of all the cells at time t and σRl t t  function as the standard 

deviation of the cells’ calcium dynamic. The mean of σRl t t  was calculated over the entire 

cycle time. Low values implied improved synchronization across the entire group.

Granger causality—Granger causality (GC) is a statistical method to quantify the 

information flow among multiple variables’ time-series (Granger, 1969). Intuitively, time-

series B is said to be “Granger causal” of time-series A, if the variability of A can be better 

explained by previous values of B and A, compared to using only previous values of A. 

Granger causality is an approximation to “transfer entropy” and under the assumption of 

Gaussian distribution it is exactly equivalent (Barrett et al., 2010).

Formally, given two-time series xi (t) and xj (t), where t ∈ Z. The autoregressive model of xi 

is:

xi t = k = 1
p αkxi t − k + εi t (1)

Where, p is the lag order, the number of previous observations used for prediction, αk is the 

coefficient of xi and εi is the prediction error at time t. The autoregressive model of xi based 

also on the previous observations of xj is:

xi t = k = 1
p αikxi t − k + k = 1

p αjkxj t − k + εij t (2)
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Where, p is the lag order, αjk is the coefficient of xi(t−k), αjk is the coefficient of xj(t−k) and 

εij(t) is the joint error of xi and xj predicting xi.

Stationarity test—To avoid spurious causality connection, xi and xj both must comply 

with a stationary process before applying the granger causality test. Intuitively, stationary 

means that the statistical characteristics such as average and variance of a time series 

are independent of time. For each cell’s Rl t  time series we applied two statistical tests 

for stationarity. First, Kwiatkowski– Phillips–Schmidt–Shin (KPSS) (Kwiatkowski et al., 

1992) tests the null hypothesis of stationarity against the alternative of unit root. Second, 

Augmented Dickey–Fuller (ADF) (Cheung and Lai, 1995) was applied as a complementary 

test for KPSS and tests the null hypothesis for unit root against the alternative of stationary. 

We excluded 24 of the 47 “step” experiments where less than 85% of the cells passed 

both the KPSS and the ADF stationary tests with significance of below 0.05 (Fig. S2A). 

From the remaining experiments we considered only cells with time-series that passed both 

stationarity statistical tests.

Pairwise calibration of the lag order—Granger Causality is based on linear regression 

and thus sensitive to the lag order, i.e., the number of past time frames used to make future 

predictions. In the context of a time-series, the autoregressive (AR) model is the estimator 

of the next time point value based on its own previous values. Higher lag-order reduces 

the bias but increases the variance while lower lag-order reduces the variance but increases 

the bias (Wooldridge, 2016). We selected the lag order, for each cell pair independently, as 

the minimal lag derived from four methods: Akaike information criterion (Akaike, 1973), 

Bayesian information criterion (Schwarz, 1978), Final Prediction Error (Akaike, 1970) and 

Hannan–Quinn information criterion (Hannan and Quinn, 1979). The minimum lag was 

selected to avoid overfitting without losing information backup by using Portmanteau test 

which checks for whiteness (i.e, the error does not contain a pattern) (Lütkepohl, 2005).

Granger causality statistical test—We applied a statistical test to infer granger 

causality between two Rl t  time series xi and xj (denoted, GC xj −> xi) (Granger, 1969). GC 

tests the null hypothesis that xj is not contributing to the explained variance of xi (Equation 

(2)) in relation to the model derived solely from past values of xi (Equation (1)). This null 

hypothesis is rejected when at least one of the coefficients in equation (2) is different from 

zero. The statistic is based on the distribution:

Fvalue = SSRRestricted − SSRUnrestricted
SSRUnrestricted

T − k
p (3)

Where, SSRRestricted is the sum of square residuals of the model which take into account 

only self-previous observation of the random variable (Equation (1)), and SSRUnrestricted is 

the sum of square residuals of the other model which also takes into account the previous 

observation of the second random variable (Equation (2)). T is the sample size (number of 

observations in the time series used for prediction), p is the number of variables which was 

removed from the unrestricted model, in our case, the lag order, and k is the number of 

variables, in our case, twice the lag order. The null hypothesis is rejected when the Fvalue 
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is larger than the F statistic (i.e., F’s critical value) to conclude that GCxj − > xi. We derived 

the p-value from the F-statistic instead of directly using the F statistic to set up a global 

acceptance threshold.

Measuring collective heterogeneity—We measure the collective heterogeneity using 

the degree distribution of the network (Jacob et al., 2017). The measure characterizes the 

variability between the cell’s degrees by measuring the variation of the probability for cells 

with each degree k, denoted P(k). Formally, the collective heterogeneity measure is defined 

as H =
1
N kmin

kmax
1 − P k 2

1 − 3
N

, where N is the overall number of cells, and the numerator is 

considered only for all k’s such that P(k) ≠ 0. The denominator is the approximate upper 

bound for N cells. The collective heterogeneity measure is bounded between 0 and 1 for 

large networks. H= 0, when all cells have the same degree (minimal heterogeneity). H = 1, 

for a specific network structure when the network’s size converges to infinity, see (Jacob 

et al., 2017) for details. H could exceed the value of 1 for extremely small networks (see 

Fig. 2D). This measure is skewed for networks containing many vertices with zero degree 

because P(k = 0) is high and the probability for other degrees (k ≠ 0) is low, maximizing the 

numerator (see gap-junction inhibition experiments in Table S2).

We defined the null model for the collective heterogeneity by random shuffling the 

GC edges (Fig. S3A). Formally, given a graph G and binary assignment of GC edge 

α: vi, vj | ∀vi ∈ V G and vj ∈ Nvi 1 ∪ Nvi 2 α1, …, αS , where Nv (d) are the cells at 

topological distance d for cell v, αi ∈ {0,1} is a binary edge assignment for all cell pairs 

at topological distance ≤ 2 from one another vi, vj | ∀vi ∈ V G and vj ∈ Nvj 1 ∪ Nvj 2 , 

and s is the number of such pairs. A random permutation was performed by shuffling the 

binary assignments. Observed collective heterogeneity was systematically higher than the 

null model (Fig. S3B).

Measuring local heterogeneity—We measure the local heterogeneity using the 

Estrada’s index measure (Estrada, 2010). The measure focuses on the more local structural 

aspect of the network and is based on the Randić index score that is commonly used 

in chemistry for describing the molecule structure (Gutman et al., 2018). In contrast to 

the global collective heterogeneity that measures, Estrada index is based on the degree 

difference between all pairs of neighboring cells, thus capturing the heterogeneity in local 

network structure. Formally, the Estrada index is defines as E = i, j ∈ E
ki

− 1
2 − kj

− 1
2

2

n − 2 n − 1 , where 

n is the number of cells and ki is the degree rank of cell i. The Estrada index is bounded 

between 0 and 1. E = 0, when all cells have the same degree, and E = 1, for star topological 

structure, where one node has a degree of n-1 and the other cells have a degree 1.

We defined the null model for the local heterogeneity by spatially shuffling the cells’ 

neighbors while preserving the same degree rank. We shuffle the cells’ edges by rewiring 
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two edges while preserving their degree. Formally, given two edges ei = (v1,v2) and ej = (u1, 

u2), a single rewiring is transforming ei, ej edges to ei′ = v1, u2  and ej′ = u1, v2 . The rewiring 

function repeated E
2 ∗ log1

δ  times where the repeated factor δ is 10−6 following the rule of 

thumb termination criteria for generating independent random graph (Ray et al., 2015).

Calculating the transmission and receiver scores—The transmission and the 

receiver scores were calculated as the probability for an outgoing (respectively, ingoing) 

edge at topological distance ≤ 2 (nearest and next-to-nearest neighbor), where the 

topological distance was calculated using the Delaunay triangulation.

The transmission (denoted Tr) and receiver (denoted Re) scores were calculated 

independently for each cell ci using its cell neighbours at topological 

distance one and two Nci 1 ∪ Nci 2 : Tr ci =
cj ∈ Nci 1 ∪ Nci 2 1GCci − > cj

Nci 1 ∪ Nci 2
 and 

Re ci =
cj ∈ Nci 1 ∪ Nci 2 1GCci < − cj

Nci 1 ∪ Nci 2
.

We treat each cell as an independent observation thus characterizing the role of each cell in 

the multicellular network without specifically committing on the exact network edges. To fix 

spurious edges due to multiple hypothesis testing we applied the strict Bonferroni correction 

that defines the edge significance threshold based on the number of edges considered 

(Bonferroni, 1936). In our case, with a significance threshold of 0.05 and n - number of 

potential edges we get a new significance threshold of 0.05/n. Edges passing this strict 

statistical test were termed GC edges.

The reason for using topological distances of up to two in calculating the transmission and 

receiver score is twofold. First, for analytic reasons and second due to irregularity in cell 

shape. Calculating the transmission and receiver score based on a small number of neighbors 

will increase the uncertainty. These neighborhood sizes were determined empirically for 

sufficient observations for statistics, and the expected short-range communication between 

the cells. Topological distance of two is a sweet spot in terms of reducing the false-positive 

errors. Specifically, increasing the number of neighbors makes the statistical test for 

determining GC edges stricter (from ~0.008 for topological distance of one to 0.003 for 

topological distance of two) because we use Bonferroni correction to determine statistical 

significance (Fig. S2B). This way, the statistical test also becomes less variable between 

cells since the variability in the number of neighbors also decreases.

A second reason for choosing to include next-to-nearest neighbor in the analysis due to 

the irregular shapes of the cells (Fig. S2C). Gap junctions often connect cells that are 

next-to-nearest neighbors as defined by Delaunay Triangulation. Nevertheless, the main 

results regarding heterogeneity, memory, and local-to-global information propagation held 

also when considering topological distance of size one (Fig. S12).
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Note that the variance in the transmission and receiver scores gradually increased over time 

(Fig. S13). This result is in agreement with our results associating collective heterogeneity 

and synchronization.

Partitioning the normalized transmission-receiver space—The transmission and 

receiver scores of each cell were normalized across the population to allow direct 

comparison of single cell heterogeneity between cycles and between experiments. We 

calculated the receiver and transmission z-score for each cell ci, the variation from the mean 

in units of standard deviations: Tr_norm(ci) = (Tr(ci)-μ)/σ, where μ is the mean transmission 

score across the population over all cycles, and σ is the standard deviation. The same 

normalization was applied for the receiver score. Kernel Density Estimation (Scott, 2015) 

was used for the visualization of the 2-dimensional normalized transmission and receiver 

score space (Fig. 5A). We partitioned the normalized transmission-receiver space to five 

regions, and assigned each cell to one of these regions. Individual: transmission and receiver 

z-score < −0.5. Common: transmission z-score in the range of (−0.5, 0.5) and receiver 

z-score < 0.5 or receiver z-score in the range of (−0.5, 0.5) and transmission z-score < 0.5. 

Leader: transmission z-score > 0.5 and receiver z-score < 0.5. Follower: receiver z-score 

> 0.5 and transmission z-score < 0.5. Hub: transmission and receiver z-score > 0.5. The 

z-score threshold of 0.5 was selected to maintain sufficient number of cells in each role for 

statistical analysis.

Measuring information flow—GC edge probability was defined as the probability of a 

GC edge in the experiment. This was calculated as the ratio between the total number of 

GC edges and the total number of potential edges in the experiment (defined by topological 

distance ≤ 2 for each cell). Because GC edge probability is a proxy for the information flow 

within the multicellular network, we also used the term information flow to refer to the GC 

edge probability in the manuscript text.

Enrichment factor of cellular state transitions—We calculated the enrichment factor, 

the fold change in the observed transition probabilities of single cells from one state 

(functional role) to another cell state in consecutive cycles in relation to a null model derived 

from the expected transitions based on the marginal distribution of cells’ functional roles.

First, we constructed the single cell transition matrix trcc + 1 i, j, k  (Equation I) where the (i, 

j, k) bin holds the total number of transitions of the single cell k ∈ k between state i and state 

j in consecutive cycles, c, c + 1 ∈ C observed throughout an experiment, and where Sc [k] 

indicates the state of cell k in cycle c.

trcc + 1 i, j, k =
1, Sc k = i, Sc + 1 k = j
0, else

I.

Second, we accumulated all transitions over all cells in the accumulated transition matrix T 
(i, j) (Equation II).
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T i, j =
k = 1

K
c
C − 1 trcc + 1 i, j, k II.

Third, we normalized each row of the accumulated matrix T (i, j = 1, …, |S |) to compute 

the Markov transition matrix T i, j  (Equation III), the observed probability for a cell to 

transition from state i to state j throughout the experiment (Fig. S10 top-left).

T i, j = T i, j
j = 1
S T i, j III.

Finally, we calculated the enrichment factor matrix T̈ i, j , the fold change in single cell 

transition from state i to state j in consecutive cycles in respect to the expected probability 

from a null model assuming random transitions drawn from the marginal state distribution E 
(i, j) (Equation IV–VI, Fig. S10 bottom-left and right).

f i = k = 1
K

c = 1
C 1Sc k = i

j = 1

S

k = 1
K

c = 1
C 1Sc k = j

IV.

E i, j = u ⊗outer product uT

u , u = f i = 1 , …, f i = S V.

T̈ i, j = T i, j ∗ 1
E i, j VI.

Measuring cell memory—To measure the cell memory we calculated the Pearson 

correlation of the cells transmission or receiver scores between consecutive cycles with 

step Δt (Δt = 1 in Fig. 4C, Δt ≥ 1 in Fig. S8B). We evaluated the significance of our 

results using a permutation test by shuffling the cells’ spatial locations with over 1000 

permutations. The permutation test was performed by concatenating the vector scores of 

the cycles c, c+Δt, shuffling the values, splitting back to two vectors, and calculating the 

absolute Pearson correlation. The p-value was set as the fraction of permutations where 

the shuffled correlation surpassed the observed experimental correlation. In this analysis, 

each stimulus cycle was considered as an independent event, although the cells’ calcium 

dynamics Rl t  never reached equilibrium between cycles because the shear stress was 

periodic and continuous. We performed an additional experiment with rest time between 

the applications of shear-stress periodic cycles. Even though the system did not synchronize 

well (in a single replicate), positive correlations were measured between cycles, specifically 

before and after the idle (i.e., pause in shear stress) cycle providing further evidence that the 

memory is a cell property that is independent across cycles (Fig. S14).

Zamir et al. Page 19

Cell Syst. Author manuscript; available in PMC 2023 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Activation Time—The activation time of a cell in a given cycle is the time where 

its calcium dynamics exceeds a threshold value of γ within a cycle. The threshold is 

parametrized by δ in the range of 0.1, 0.2 or 0.3 from the calcium dynamics range - the 

initial value subtracted from the maximal value within the cycle.

γ = RCi t = 0 + δ ∗ max RCi − RCi t = 0

The initial time was shifted by 60 seconds (30 frames) from the onset of the cycle to the time 

where the mean value of the cells’ calcium dynamics is zero to ensure that the single cell 

calcium signal is on the rise for the vast majority of the cells.

Correlating the topological distance between pairs of cells to their GC-edge 
probability—In Fig. 6B we correlated the topological distance to the corresponding GC 

edge probabilities. For each topological distance, for each cell, we randomly selected ten (or 

less in topological distances with smaller numbers) cells and calculated the GC statistical 

test for each cell pair in both directions. We evaluated the critical value (i.e., p-value 

correction) using FDR, to correct for multiple hypothesis testing. Finally, we calculated the 

probability for GC significant edge as the total number of significant edges divided by total 

GC tests performed.

Data—N = 47 biological replicates for the “step” experiments: n = 6 (0.1 Pa), n = 13 (0.2 

Pa), n = 8 (0.6 Pa), n = 10 (1 Pa), n = 10 (1.6 Pa). N = 14 biological replicates for the 

“cycles” experiments: control n = 4 (0.1 Pa) and n = 6 (0.2 Pa), low density n = 2 (0.2 Pa), 

gap-junction inhibition n = 2 (0.2 Pa).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Endothelial monolayers synchronize calcium dynamics in response to 

mechanical stimuli

• Causal inference measures asymmetric information transfer at single cell 

resolution

• Heterogeneity, memory, and information flow enable collective information 

processing

• A gradual transition from local to global information spread drives 

synchronization
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Figure 1. Collective calcium signaling of mechanosensing as a model to investigate the emergence 
of multicellular synchronization at the single cell resolution.
(A) In a typical experiment, a monolayer of HUVEC was cultured in a microfluidic device 

where fluid flow applied shear stress on the cells. Top: Schematics of the setup. The input 

pressure that drives a laminar flow in the single channel microfluidics is controlled by a 

computer interface. The pressure is regulated in real time via a PID loop consisting of a 

pressure regulator and a flow sensor. Bottom: A monolayer of HUVEC loaded with the 

fluorescent calcium indicator Calbryte-520 as a readout of the cellular response to flow 

shear stress. Scale bar = 50 μm. Inset: manual annotation of single cells.

(B) Particle image velocimetry verified that the regulated input pressure produces a smooth 

flow profile in the microfluidics channel.

(C) Cells respond to step increase in the flow shear stress. Relative intensity is the relative 

change of the fluorescence intensity from the basal cell level (Methods). Colored lines: 

individual cell calcium responses. Black line: mean response of over 400 cells in the field 
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of view. Dashed horizontal lines indicate the time interval of 0, 0.2, 0.3 Pa shear stress 

correspondingly.

(D) Multicellular calcium dynamics is synchronized over time in response to external 

mechanical stimuli. The flow shear stress is applied from the onset of imaging (t = 0). 

The calcium dynamics of each cell was represented by the time-derivative of its relative 

fluorescent intensity. Black: mean calcium Ri(t) dynamics; Green: standard deviation. Top 

inset: mean (black) and standard deviation (green) of single cell calcium relative intensity 

(Methods) over time. Bottom Inset: standard deviation of calcium dynamics over time.

(E) Depiction of the adaption rate measure overlayed on the plot of the standard deviation of 

calcium dynamics overtime. There are two solid lines; the black represents faster adaptation 

compared to blue. Adaption rate of the black / blue solid line is one minus the ratio between 

the area under the curve for 400 seconds (200 frames, purple / yellow + purple area) and 

the area of the rectangle whose height is set by the maximum variations of individual cell 

dynamics (yellow + orange + purple area). See Methods for full description.

(F) Multicellular adaption rate for increasing shear stress levels. Each observation represents 

a biological replica. N =47 biological replicates: n = 6 (0.1 Pa), n = 13 (0.2 Pa), n = 8 (0.6 

Pa), n = 10 (1 Pa), n = 10 (1.6 Pa).
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Figure 2. Correlating information flow, collective and local heterogeneity in single cell 
information transfer and multicellular adaptation.
(A) Schematics of cell-cell communication. Generic estimation of the asymmetric mutual 

influence between a pair of cells from their fluctuating time series. The influence of cell i on 

cell j is defined as the extent to which the past signal of cell i improves the prediction of cell 

j’s signal beyond the past signal of j alone and is determined using the pairwise asymmetric 

Granger Causality statistical test.

(B) Visualization of the spatial single cell heterogeneity of the degree rank (in-degree + 

out-degree). The color scale is linear.

(C) Heterogeneity in degree rank distribution. The Kernel Density Estimation (KDE) of the 

degree rank distributions of 10 null models that considered random shuffling of GC edges 

while preserving the probability for an edge (green) versus the experimentally observed 

degree rank distribution (red). The raw distribution (input to KDE) is shown in Fig. S3A, 

with Rinku index ~29 versus ~25 for the observed and null model correspondingly.
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(D) Example of collective (top) and local (bottom) heterogeneity for three different network 

structures. Networks are ordered from left-to-right according to their heterogeneity levels 

measured with (Jacob et al., 2017) (collective) and (Estrada, 2010) (local). Graph (I) node 

degree ranks are (2,2,2,2,2,2): local heterogeneity = 0, collective heterogeneity = 0. Graph 

(II) node degree ranks are (1, 4, 2, 2, 3): local heterogeneity ≈ 0.38, collective heterogeneity 

≈ 1. Graph (III) node degree ranks are (1,1,1,1, 4): local heterogeneity = 1, collective 

heterogeneity ≈ 0.59. See Methods for full details.

(E) Pairwise associations between two heterogeneity measures (local heterogeneity, 

collective heterogeneity), adaptation rate and GC edge probability. Edges color represents 

the level of association, as quantified by the magnitude of correlation coefficients. 

Color scale is linear. Note that some edges reflect positive correlations (e.g., collective 

heterogeneity - GC edge probability) while others reflect negative correlations (e.g., local 

heterogeneity – adaptation rate). N = 23 biological replicates, across shear stress levels, that 

passed the stationarity criterion were considered to calculate correlations. See full data (with 

signed correlations) in Fig. S4.
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Figure 3. Information flow and collective heterogeneity are associated with multicellular 
synchronization to periodic mechanical stimuli.
The shear stress was applied from the onset of the experiment (t = 0).

(A) Depiction of the periodic mechanical stimuli experiment setup that included 13 cycles of 

continuous shear stress in 10 biological replicates (Methods).

(B) Multicellular calcium dynamics is synchronized over time to periodic external 

mechanical stimuli. In total there are 13 cycles. Black: mean calcium dynamics; Green: 

standard deviation; Red dashed lines: shear stress onsets. Inset: standard deviation of 

calcium dynamics over time.

(C) Gap junctions are required for multicellular synchronization. The calcium dynamics fail 

to synchronize following gap-junction inhibition. Representative of two experiments. Black: 

mean calcium dynamics; Green: standard deviation; Red dash lines: shear stress onsets. 

Inset: standard deviation of calcium dynamics over time.

(D) Multicellular calcium dynamics synchronized over time for control (red) (Pearson 

coefficient = −0.7067, p-value < 0.007) but not for gap-junction inhibited (cyan) monolayers 

(Pearson coefficient = 0.6442, p-value < 0.0325).

(E) Information flow increased over time for control (red) (Pearson coefficient = 0.9054, p-

value < 0.0000207) but not for gap-junction inhibited (cyan) monolayer (Pearson coefficient 

= −0.3726, p-value < 0.25898).
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(F) Collective heterogeneity increased over time for control (red) (Pearson coefficient = 

0.8836, p-value < 0.000062) but not for gap-junction inhibited (cyan) monolayer (Pearson 

coefficient = −0.2376, p-value < 0.4818).
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Figure 4. Functional cell memory is reinforced over time.
(A) The transmission and the receiver scores were calculated as the probability for a 

significant outgoing (respectively, ingoing) Granger Causality edge at topological distance 

of up to two (nearest (yellow polygons) and next-to-nearest neighbor cells (green 

polygons)). For example, the red cell in the center has total of 15 neighbors, 5 in topological 

distance 1 (yellow) and 10 in topological distance 2 (green). The transmission score of the 

red cell is 3(outgoing edges)/15 and receiver score is 3(ingoing edges)/15.

(B) The mean transmission and receiver scores increased over the cycles. Shown are the 

cells color coded according to their transmission (top, blue) and receiver (bottom, red) 

scores. The color scale is linear.

(C) Cells transmission and receiver scores were correlated across consecutive cycles (solid 

lines), reinforced over time (Pearson coefficient = 0.7512, p < 0.0001), and were a local 

cell property as validated with permutation analysis - shuffling the cells in the next cycle 

and calculating correlation (dashed line, see Methods). P-value for the significance of the 

memory ≤ 0.001 (except the first cycle: p-value of transmission and receiver score 0.021 and 

0.15 correspondingly, and the third cycle’s transmission score p-value of 0.017, Fig. S8A).
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Figure 5. Cells’ communication states, state transitions and enrichment of communication hubs.
(A) Kernel density estimate plot visualization of the normalized transmission and receiver 

score over the cycles (blue gradient contours). Left: partitioning of the z-score normalized 

transmission-receiver space to five regions (blue dashed lines), each cell (yellow dot) was 

assigned to a group or “state” (red text) according to the region they resided at. Individual: 

transmission and receiver z-score < −0.5, Common: transmission z-score in the range of 

(−0.5, 0.5) and receiver z-score < 0.5 or receiver z-score in the range of (−0.5, −0.5) and 

transmission z-score < 0.5. Leader: transmission z-score > 0.5 and receiver z-score < 0.5. 

Follower: receiver z-score > 0.5 and transmission z-score < 0.5. Hub: transmission and 

receiver z-score > 0.5.

(B) Visualizing the cells’ communication states over the cycles with color code.

(C) Fraction of cells at each communication state over the cycles.

(D) Enrichment factors of cellular state transition. Depiction of the single cell transitions 

between states that were enriched beyond the expected values of a null model. The null 
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model was based on the marginal distribution of the states (Fig. S10, Methods). Shown are 

edges with fold increase over 1 (linear color code).
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Figure 6. Gradual local to global transition in information spreading.
(A) Main panel: the observed versus permuted Granger causality edge probability, P(GC 

edge), over the cycles. Upper left panel: the mean observed versus mean permuted neighbor 

cross correlation over the cycles. For both panels the red horizontal line is the experimental 

observation, while each blue dot is the result of one of ten independent spatial cell 

permutations. Bottom right inset: experimental GC edge probability subtracted from the 

mean permuted GC edge probability using the same data as in the main panel. Through 

cycles 0 to 12 Pearson coefficient = 0.94, p-value < 0.0001.

(B) In the main panel each dot represents the Pearson correlation between the topological 

distances of pairs of cells to the corresponding GC edge probability in a given cycle. 

Through cycles 0 to 12 Pearson coefficient = 0.964, p-value < 0.0001. *** - p-value < 

0.0001, * - p-value < 0.05, for Pearson correlation significance test. Insets show the P(GC 

edge) as a function of the topological distance between cell pairs for the first (bottom right) 

and last (top left) cycles. For this analysis, we randomly selected for each cell at each 

topological distance at most ten neighboring cells due to computational cost and performed 

FDR multiple hypotheses correction (see Methods for full details).
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

TrypLE Select Life Technologies Cat#12604021

Palmitoleic acid Sigma-Aldrich Cat#76169

Dimethyl sulfoxide ≥99.9% USP, Multi-Compendial, J.T. 
Baker®

VWR Cat#BDH1115–4LP

Krayden Dow Sylgard 184 Silicone Elastometer Kit (1.1lb) Fisher scientific Cat#NC9285739

EGMTM-2 Endothelial Cell Growth Medium-2 BulletKit Lonza Cat#CC-3162

ReagentPackTM Subculture Reagents, 100 mL Lonza Cat#CC-5034

     

Deposited data

Raw and analyzed data This work https://doi.org/10.5281/zenodo.6568945

Raw data of gap-junction inhibition experiments This work https://figshare.com/s/2e2ba004102bdd96f414

Raw data of step function This work https://doi.org/10.6084/
m9.figshare.19807864.v1

Raw data of step function This work https://doi.org/10.6084/
m9.figshare.19807870.v1

Raw data of cyclic pressure This work https://doi.org/10.6084/
m9.figshare.19807873.v2

Experimental models: Cell lines

HUVEC – Human Umbilical Vein Endothelial Cells, Single 
Donor, in EGM™−2

Lonza C2517A

Software and algorithms

Source code and test data This work https://doi.org/10.5281/zenodo.6589859

Other

Fluorescent calcium dye, Calbryte 520 AAT Bioquest Cat#21130

CMOS camera Hamamatsu Flash 2.8

PID-regulated pressure pump Elveflow OB-1

flow sensor Elveflow BFS

NE-1000 One Channel Programmable Syringe Pump New Era Pump Systems Model#NE-1000

Corning BioCoat Collagen I-coated Flasks T-25 50/cs VWR Cat#12777–072

Flow switcher- 2 switch Fluigent
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