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Tau aggregation in neurofibrillary tangles (NFTs) is closely associated with neurodegeneration 

and cognitive decline in Alzheimer’s disease (AD). However, the molecular signatures that 

distinguish between aggregation-prone and aggregation-resistant cell states are unknown. We 

developed methods for the high-throughput isolation and transcriptome profiling of single somas 

with NFTs from human AD brain, quantified the susceptibility of 20 neocortical subtypes for NFT 

formation and death, and identified both shared and cell-type-specific signatures. NFT-bearing 

neurons shared a marked upregulation of synaptic transmission-related genes, including a core set 

of 63 genes enriched for synaptic vesicle cycling. Oxidative phosphorylation and mitochondrial 

dysfunction were highly cell-type dependent. Apoptosis was only modestly enriched, and the 

susceptibilities of NFT-bearing and NFT-free neurons for death were highly similar. Our analysis 

suggests that NFTs represent cell-type-specific responses to stress and synaptic dysfunction. 

We provide a resource for biomarker discovery and the investigation of tau-dependent and tau-

independent mechanisms of neurodegeneration.

eTOC Blurb

Using a new method for profiling single, tangle-bearing neurons from postmortem brain tissue, 

Otero-Garcia et al quantify the susceptibility of 20 neocortical subtypes to tangle formation, define 

signatures of NFT susceptibility, and distinguish molecular changes specifically associated with 

NFTs from those broadly identified in Alzheimer’s disease.

INTRODUCTION

AD pathology is defined by amyloid-β (Aβ) plaques and intracellular hyperphosphorylated 

tau aggregates in neurofibrillary tangles (NFTs) (Braak and Braak, 1991; Hyman et al., 

2012; Serrano-Pozo et al., 2011). In neocortex, plaque buildup begins years before the 

onset of cognitive deficits, while NFTs appear later and progress in parallel with cognitive 

decline (Braak and Del Tredici, 2015; Nelson et al., 2012). Due to the association of tau 

pathology with regional brain atrophy and neuronal and synaptic loss, NFTs have largely 

been viewed as pathogenic (Ballatore et al., 2007; Jack et al., 2010; Nelson et al., 2012; 

Terry et al., 1991). Hyperphosphorylated tau appears to contribute to neurodegeneration 

by disrupting axonal transport and synaptic function, affecting the cellular stress response, 

and promoting neuroinflammation (Busche et al., 2019; Malpetti et al., 2020; Sherman et 

al., 2016; Zhou et al., 2017). Pathological tau may also contribute to disease progression 

by spreading toxic species through synapses (Franzmeier et al., 2019; Gibbons et al., 

2019; Vogel et al., 2020). However, whether tau aggregation is toxic or protective—a main 

driver of neurodegeneration or part of a homeostatic response to cellular injury—remains 

unclear (Ittner et al., 2016; Kuchibhotla et al., 2014; Lewis and Dickson, 2016; Wang and 

Mandelkow, 2016).

Previous studies have identified brain regions and neuronal subtypes susceptible to tau 

pathology in AD, including hippocampal CA1, entorhinal cortex layer 2, and neocortical 

layer 2-3 and 5 pyramidal neurons (Bussière et al., 2003a; Gómez-Isla et al., 1996; Hof 

et al., 1990). Immunohistochemistry (IHC) and in situ hybridization (ISH) studies have 

demonstrated the susceptibility of excitatory projection vs. GABAergic inhibitory neurons 

(Fu et al., 2019; Hof et al., 1991; Hof et al., 1993; Saiz-Sanchez et al., 2015). Bulk 
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RNA-seq and network-based analysis suggested vulnerability of certain pathways to tau, 

including microtubule-related pathways (Roussarie et al., 2020), the heat-shock response, 

and autophagy (Fu et al., 2019). Despite these advances, the heterogeneity of cellular and 

transcriptional responses associated with tau pathology in human AD has not been resolved.

Transcriptome profiling of single cells or nuclei (snRNA-seq) can resolve cellular 

heterogeneity and predict pathological cellular states (Darmanis et al., 2015; Habib et al., 

2017; Hodge et al., 2019; Lake et al., 2016). Studies comparing nuclear gene expression 

to whole cells have shown a high degree of concordance (Bakken et al., 2018; Grindberg 

et al., 2013; Lake et al., 2017). snRNA-seq has been successfully applied to frozen human 

AD brains, revealing shared and cell-type-specific gene expression changes, sex-biased 

transcriptional responses, and potential drivers of disease progression (Del-Aguila et al., 

2019; Grubman et al., 2019; Leng et al., 2021; Mathys et al., 2019). However, nuclear 

profiling cannot distinguish between cells with and without cytoplasmic aggregates, like 

NFTs. Laser-capture microdissection allows the profiling of individual NFT-bearing cells 

(Dunckley et al., 2006; Tagliafierro et al., 2016), but is low-throughput and may present 

sampling bias. Profiling whole cells from fresh brain tissue is feasible (Darmanis et al., 

2015), but presents low yield biased toward glial cell recovery. The difficulty of obtaining 

fresh tissue from unique clinical samples and diseases managed non-surgically, such as 

neurodegenerative dementias, represent another limitation.

We developed a fluorescence-activated cell sorting (FACS) based method for the high-

throughput isolation of somas with NFTs and profiled 63,110 somas with or without 

NFTs from the prefrontal cortex of Braak VI AD donors, and 57,534 somas from age-

matched controls. This method allowed us to quantify the susceptibility of 20 cortical 

neuronal subtypes for NFT formation and death, to characterize molecular signatures 

of NFT susceptibility within and across subtypes, and to distinguish molecular changes 

associated with NFTs from those commonly altered in AD. By comparing NFT-bearing and 

neighboring NFT-free somas, we obtained unbiased, precise identification of the neuronal 

subtypes exhibiting aggregates. NFT-bearing neurons shared a marked upregulation of genes 

related to synaptic transmission, particularly the synaptic vesicle cycle. We provide a ranked 

list of 227 synaptic genes associated with NFTs, including a core set of 63 genes shared 

across neuronal subtypes. Genes encoding neurodegeneration biomarkers NEFL, SNAP25, 

and SYT1 sat within the top 25, highlighting the value of our datasets for discovery. By 

comparing the transcriptomes of non-AD and AD (NFT-bearing and NFT-free) somas, we 

distinguished between susceptibility for NFT formation and cell death. Our analysis reveals 

a modest association between NFTs and death and suggests that NFT-bearing neurons may 

represent a cellular response to stress and synaptic dysfunction.

RESULTS

Isolation and transcriptome profiling of single somas with NFTs

Since the standard methods for profiling nuclei from human brain (Habib et al., 2017; 

Krishnaswami et al., 2016; Lake et al., 2016) cannot distinguish between cells with and 

without cytoplasmic aggregates, we developed procedures for the high-throughput isolation 

and profiling of NFT-bearing somas (Figures 1A-1D, 1F). First, we optimized the isolation 
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of cells with well-preserved somas. We microdissected gray matter from prefrontal cortex 

(BA9), brainstem, and basal ganglia, and applied gentle mechanical dissociation without 

detergents or enzymatic digestion. Using a tissue grinder with a wider clearance between 

the pestle and tube than those typically used for nuclei facilitated the dissociation of 

larger somas (Figure 1A). We then performed sucrose-iodixanol gradient centrifugation with 

adjusted parameters for density barrier composition, centrifugal force, and time to eliminate 

debris and obtain an enriched soma fraction. Microscopic examination showed neurons with 

well-preserved somas, including pyramidal cell bodies with proximal dendrites (Figure 1B).

To compare single-soma and single-nucleus profiling, we used pan-neuronal markers MAP2 

(cytoplasmic) and NeuN (nuclear) to sort single somas or nuclei by FACS and analyze 

the transcriptomes of 74,283 cells from the BA9 of four healthy donors (Figure S1A). 

MAP2+ cells had modest increases in the median number of genes per cell (2,210 vs. 

2,086 for NeuN) and higher mitochondrial gene content (1.49% vs. 0.18% for NeuN) 

(Figure S1B), indicating efficient profiling of nuclear transcripts using both methods and 

limited cytoplasmic transcripts from MAP2+ cells. This outcome is expected in frozen 

tissues whose cell membranes have been disrupted and most cytoplasmic transcripts lost. To 

assess whether single-soma isolation was biased toward the recovery of specific neuronal 

subtypes, we compared the relative percentages of 20 subtypes derived from soma or 

nuclear homogenates. Both methods yielded highly similar cell compositions, except for 

an increased recovery of two rarer excitatory subtypes by soma isolation (Ex3: 3.02 ± 0.30% 

vs. 1.36 ± 0.13% for nuclei; Ex5: 2.83 ± 0.16% vs. 2.05 ± 0.11% for nuclei; Figure S1F). 

Thus, the ability to discriminate between neuronal subtypes remained highly similar using 

both methods (Figures S1C-G).

Next, we applied our method to NFT-bearing somas from AD donors. Immunostaining 

and FACS using MAP2 and the AT8 antibody, which detects hyperphosphorylated tau 

aggregates, allowed us to isolate single NFT-bearing somas (MAP2+/AT8+; referred to as 

AT8+) and neighboring NFT-free somas (MAP2+/AT8−; referred to as AT8−) from the 

same homogenate. As in IHC and immunoblotting, AT8 labeled pretangles and mature 

tangles in fresh somas (Moloney et al., 2021; Wesseling et al., 2020) (Figure 1D). It 

overlapped with populations sorted by FACS using T22, an antibody against oligomeric 

tau enriched in pretangles, and PHF1, which is enriched in mature and ghost tangles (~ 

82% and 89% overlap, respectively; Figure S2). Our method could also isolate glial cells 

with tau aggregates, as shown by FACS of the MAP2−/AT8+ population from donors with 

progressive supranuclear palsy (PSP), a primary tauopathy with both neuronal and glial 

aggregates (Figure 1E).

Census of neuronal subtypes exhibiting NFTs in the prefrontal cortex of human AD brain

To determine the cellular specificity of NFTs, we profiled AT8+ and AT8− somas from 

the BA9 of eight Braak VI AD donors (Table S1). NFTs were present in 6.3 ± 1.15% of 

all neurons in histological sections from the same tissue blocks used for transcriptomics 

(Figure 2A). We analyzed 24,660 AT8+ and 38,465 AT8− single transcriptomes. The median 

numbers of genes and UMIs per soma were ~ 18% higher in AT8+ (1,481 and 2,440, 

respectively) than in AT8− somas (1,248 and 2,062; paired t-test; p = 0.01 and p = 0.02, 
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respectively; Figures 2B and 2C). The increase in UMIs and genes in AT8+ somas may 

have resulted from differences in cell composition (i.e., higher transcript abundance in larger 

cells) and/or transcriptional upregulation.

Unsupervised clustering of the NFT-free (AT8−) dataset identified a cell composition 

concordant with published datasets from control and AD nuclei (Hodge et al., 2019; 

Mathys et al., 2019) (Figures 2B and S1D). Using conservative parameters, we annotated 

17 clusters including 11 expressing the pan-excitatory marker SLC17A7 and 6 expressing 

the pan-inhibitory marker GAD1 (“Ex” and “In” clusters; Figure S1D). Excitatory subtypes 

included layers 2–4 CUX2 (superficial LAMP5/SERPINE [Ex1] and deeper COL5A2 cells 

[Ex2]); layers 4/5 RORB (RORB/PLCH1/MME/GAL, RORB/GABGR1, RORB/RPRM, 
RORB/PCP4 [Ex3, Ex4/5, Ex6, Ex7]); layer 5b PCP4/ROBO3 [Ex8]; layers 5/6 NFIA/
THEMIS [Ex10]; layer 6 THEMIS/NR4A2/NTNG2 [Ex11] and FEZF2/SYT6 [Ex12]; and 

deeper layer 6b FEZF2/SEMA3D/CTGF [Ex13] cells. Inhibitory subtypes included two 

major classes with developmental origins in the medial (LHX6) and caudal (ADARB2) 

ganglionic eminences (MGE, CGE). LHX6 cells consisted of PVALB and SST subtypes. 

A distinct PVALB cluster characterized by high expression of GAD1, low expression 

of GAD2, and expression of SCUBE3 defined putative chandelier cells (Hodge et al., 

2019). ADARB2 cells included LAMP5/KIT cells (split into two clusters by expression 

of CXCL14) and a highly heterogeneous VIP/CALB2 cluster. The proportion of inhibitory 

cells was 26.6%. Thus, all major neuronal subtypes were identified in BA9 from Braak VI 

AD patients, despite neuronal loss in this region throughout disease progression (Bussière et 

al., 2003b; Frisoni et al., 2010; Serrano-Pozo et al., 2011).

Unsupervised clustering of the NFT-bearing (AT8+) dataset using the same pipeline showed 

clusters corresponding to cell types and technical covariates. Multiple canonical correlation 

analysis (multiCCA) (Butler et al., 2018) enhanced cell identity-based clustering and 

removed clusters originating from individual samples. We annotated 8 excitatory and 2 

inhibitory clusters (94% and 3.2% of total cells, respectively) (Figure 2C). The excitatory 

clusters were less distinct, likely resulting from cell state variation associated with tau 

pathology. Some excitatory subtypes were not identified, likely due to the small number of 

cells in those subtypes.

To obtain a census of neuronal subtypes exhibiting NFTs, we integrated the AT8+ and AT8− 

datasets using multiCCA (Figures 2D-F). We annotated the same 17 neuronal subtypes as 

in the AT8− dataset (Figures 2E and 2F). Clustering was not driven by particular samples, 

as all eight donors contributed cells evenly (Figure 2G). The results were consistent across 

clustering algorithms and robust to clustering parameter variation (Figure S3). We counted 

the number of AT8+ and AT8− somas within each cluster (Figures 2H and 2I; Table S2) and 

normalized the cell counts to NFT density by tissue section (Figure 2A). The proportion of 

AT8+ neurons ranged from 1.0–11.7% for excitatory and 0.5–6.8% for inhibitory subtypes 

(Figure 2I). The subtypes with the highest NFT proportion were layers 2–4 CUX2 (Ex1 and 

Ex2; 11.7% and 10.5%, respectively) and layer 5 RORB/PCP4 (Ex7; 10.6%). Notably, layer 

5 was heterogenous and contained highly susceptible (Ex7) and less susceptible (RORB/
GABGR1 [Ex4/5] and RORB/RPRM [Ex6]; 3.6% and 5.2%, respectively) subtypes (Figures 

2I, 3B, and 3D). Layer 6 was largely spared, although a deep layer 6b subpopulation 
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showed intermediate proportions of NFTs (Ex11; 5.6%). Most inhibitory neurons were 

spared (overall 1.9%), except for chandelier cells (In2; 6.8%) (Figure 2I).

To validate markers for susceptible neuronal subtypes, we used histological sections from 

the same tissue blocks (Figure 3). Combined IHC for AT8 and ISH for SLC17A7 and GAD1 
showed proportions of NFTs in excitatory (11.59 ± 3.7%) and inhibitory neurons (0.95 

± 0.41%) similar to those in our transcriptome analysis (Figures 3A and 3F). Layer 2-3 

neurons expressing CUX2 and either LAMP5 (Ex1) or COL5A2 (Ex2), showed high NFT 

proportions (10.64 ± 4.2%; Figures 3C and 3F). Layer 5 neurons expressing PCP4, including 

RORB/PCP4 (Ex7) and layer 5b PCP4/ROBO3 (Ex8) neurons, were susceptible (12.24 ± 

4.2% and 5.70 ± 2.53%, respectively; Figures 3D and 3F). The layer 6 NR4A2/NTNG2 
(Ex11) subtype was largely spared (0.5 ± 0.3%; Figures 3E and 3F). NFT proportions 

obtained by histology were consistent with those in our transcriptome analysis (Figures 

2I and 3F), except for the PCP4/ROBO3 cluster (9.6% vs. 5.7%), likely due to the low 

number of ROBO3 transcripts detected by RNAscope ISH. Thus, various subpopulations 

of excitatory and inhibitory neurons demonstrate markedly different susceptibilities to NFT 

formation. This specificity can be resolved via single-soma transcriptomics.

Signatures of NFT susceptibility within and across excitatory neuronal subtypes

To define shared and cell-type-specific molecular signatures of NFT susceptibility, we 

performed a two-step differential gene expression (DGE) analysis, first between NFT-

bearing and NFT-free neurons within each subtype, and then comparing differentially 

expressed (DE) genes across subtypes. Using the MAST (model-based analysis of single-

cell transcriptomics) generalized linear model (Finak et al., 2015) for DGE analysis within 

each subtype, we identified 692–978 DE genes in clusters with high cell numbers and 

NFT proportions (Ex1, Ex2, Ex3, Ex7, Ex10) and 55–186 DE genes in the smaller clusters 

(Figures 4A and 4B; Table S2) (MAST test; adjusted p-value < 0.05; log-fold change >0.1; 

detection in ≥ 20% of cells). Most DE genes were upregulated in NFT-bearing neurons 

(~66–84% upregulated in Ex1, Ex2, Ex7, Ex10), except in cluster Ex3 (~39% upregulated). 

This widespread transcriptional upregulation is consistent with previous work showing an 

association between hyperphosphorylated tau and chromatin remodeling (Frost et al., 2014; 

Klein et al., 2019). Overall, NFT-associated transcriptomic changes were robust to the 

subsampling of a subset of donors, as assessed by the rank-rank hypergeometric overlap 

(RRHO) test (Figure S4).

We then performed hierarchical clustering of DE genes across neuronal subtypes to identify 

cell-type-specific and shared changes (Figure 4C). We focused on five excitatory clusters 

with the highest cell numbers and NFT proportions (Ex1, Ex2, Ex3, Ex7, Ex10) to 

avoid underestimating the extent of shared changes. While many gene expression changes 

were subtype-specific, this approach distinguished 124 DE genes (102 upregulated; 22 

downregulated) altered across all five clusters and 163 genes upregulated in all clusters 

except Ex3 (Figure 4C). Upregulated genes with the highest fold changes included 

genes encoding synaptic proteins (i.e., CALM1, ATP1B1, GRIN2B, CDK5R1, SYT4, 
CANX, RTN4) and cytoskeletal proteins and microtubule dynamics regulators (i.e., 

ACTG1, TUBB2A, PLPPR4, MAP1A, ENC1, STMN2). Other commonly upregulated 
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genes included the immediate early gene JUN, the integrated stress response transcription 

factor ATF4, the gene encoding the heat shock protein and chaperone Hsp90 (HSP90AA1), 

the gene encoding the lysosomal protein prosaposin (PSAP), and the iron homeostasis-

associated genes FTL and FTH1 (Figure 4C). Notably, APP, which encodes Aβ precursor 

protein, was upregulated in neurons with NFTs in most clusters but not in Ex3. Similar 

changes were observed for the prion protein-coding gene (PRNP; Figure 4D), whose product 

acts as a receptor for soluble Aβ oligomers (Laurén et al., 2009).

To investigate the gene-regulatory networks underlying shared and cell-type-specific 

responses associated with tau, we performed transcription factor (TF) binding site 

enrichment analysis and generated TF regulatory networks integrating neuronal-specific 

ENCODE ChIP-seq data and consensus coexpression networks in AD (Mostafavi et al., 

2018). Among the TF networks shared across neuronal subtypes was REST, a key regulator 

of neuronal differentiation and excitability previously implicated in aging and AD (Lu et 

al., 2014; Zullo et al., 2019). Cluster Ex3 had a unique set of TF networks including 

GABPA, a TF involved in nuclear regulation of mitochondrial function (Figures 4E and S5; 

Table S3) (Yang et al., 2014). Together, our DGE and gene regulatory network analyses 

identified shared and cell-type-specific molecular signatures associated with tau pathology 

across neuronal subtypes.

Shared versus cell-type-specific pathways associated with tau pathology

To visualize shared and cell-type-specific pathways associated with NFTs, we used 

functional enrichment analysis (Reimand et al., 2019) (Figure 5A). First, we generated a 

ranked list of statistically significant gene ontology (GO) terms enriched in NFT-bearing 

neurons for each cell type using g:Profiler (Figure 5B). Then, we integrated results from 

five highly susceptible clusters (Ex1, Ex2, Ex3, Ex7, Ex10) into a single network using 

Cytoscape with EnrichmentMap. The resulting enrichment map illustrates the pathways 

enriched in NFT neurons that were cell-type-specific or shared across subtypes (Figure 5C) 

and delineates the gene set associated with each dysregulated pathway (Table S4). The 

shared pathways with the highest enrichment scores were related to synaptic transmission 

(Figure 5C; Table S4). Other commonly enriched pathways included calcium homeostasis, 

microtubule polymerization, axonal remodeling, dendritic spine remodeling, microtubule-

based transport, and intracellular protein transport. In contrast, glucose metabolism and 

oxidative phosphorylation were cell-type dependent and particularly enriched in Ex3. 

Notably, neuronal cell death and apoptosis pathways were shared across cell types 

but represented only modestly, with both pro- and anti-apoptotic regulators represented. 

Genes in this category included FAIM2 and MIF (downregulated), and ATF4, BAD, 
BNIP3, and HIF1A (upregulated). A smaller set of genes involved in mitochondrial 

membrane permeability transition was upregulated, including BAD, BNIP3, HSPA1A, 

and genes encoding 14-3-3 phospho-serine/phospho-threonine binding proteins (YWHAE, 
YWHAH, YWHAG, YWHAZ, and YWHAB) (Figure 5C; Table S4). Collectively, our 

analysis identified shared and cell-type-specific pathways associated with tau pathology and 

highlighted the enrichment of synaptic transmission pathways in neurons with NFTs across 

subtypes.
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Dysregulation of synaptic transmission pathways in neurons with NFTs

To further characterize synaptic transmission pathways in NFT-bearing neurons, we used 

SynGO, a reference for synaptic gene annotations and ontologies (Koopmans et al., 2019). 

We identified 24 cellular component and 37 biological process terms significantly enriched 

(Table S5). By cellular location, the postsynaptic density membrane, presynaptic membrane, 

and presynaptic active zone were overrepresented. Top-level overrepresented terms included 

synapse organization, process in the presynapse and process in the postsynapse, whereas 

metabolism and transport were underrepresented (Figures 6A and S6). The highest 

enrichment scores corresponded with the synaptic vesicle cycle (Figures 6A and 6B). 

The central role of synaptic vesicle cycle dysregulation in AD pathogenesis has also been 

suggested by previous omics and cellular studies (Canchi et al., 2019; de Wilde et al., 2016; 

Zhou et al., 2017).

A total of 227 DE genes in NFT-bearing neurons mapped to SynGO annotated genes 

(Table S5). The vast majority were upregulated (~89–95% in Ex1, Ex2, Ex6, Ex7), 

except in Ex3 (~60% downregulated). 17 genes were dysregulated in all 5 clusters, and 

46 were dysregulated in 4 of 5 clusters (MAST test; adjusted p-value < 0.05; log-fold 

change > 0.1; detection in ≥ 20% of cells) (Figures 6C and S6). Of these 227 genes, 

15 are AD risk factors (GRIN2B, NRXN3, CTNND2, NRN1, NCS1, CDH13, PTK2B, 
BCL11A, SHANK2, NRGN, FARP1, VCP, CAMK4, SYNGAP1, SYNJ1) (Kunkle et al., 

2019). Notably, among the commonly upregulated were three genes for biomarkers of 

neurodegeneration and cognitive decline in AD: neurofilament light chain protein (NEFL), 

synaptosomal–associated protein 25 (SNAP25), and synaptotagmin-1 (SYT1) (Brinkmalm 

et al., 2014; Davidsson et al., 1996; Mattsson et al., 2017) (Figures 6B and S6; Table S5). 

Other upregulated genes related to the synaptic vesicle cycle included STY4 and STY11, 

SV2B, and BSN. Several ion channel and membrane potential regulators were commonly 

upregulated in NFT neurons, including genes for NMDA glutamate receptor subunits 

(GRIN2B, GRIN2A), GABAA receptor subunits (GABRA1, GABRG2), Na+/K+–ATPase 

subunits (ATP1A3, ATP2B2), and voltage-gated sodium channel Nav1.6 (SCN8A). Other 

commonly upregulated genes included NTRK2, encoding neurotrophic receptor tyrosine 

kinase 2 (TrkB), and NRXN3. No genes were downregulated in all 5 clusters, and only 

2 genes were downregulated in 4 of the 5: RIMS2, encoding a Rab3-interacting protein 

implicated in synaptic vesicle exocytosis, and PNKD, whose product interacts with RIM 

proteins (Kaeser et al., 2012; Shen et al., 2015) (Figures 6C and S6).

To histologically validate the upregulation of synaptic markers in NFT-bearing neurons, we 

quantified SNAP25, GABRA1, GRIN2B, and SYT1 transcripts in AT8+ vs. AT8− excitatory 

neurons from the BA9 of four Braak VI AD donors (Figures 6D and 6E). The integrated 

density of all four synaptic markers was significantly increased in AT8+/SLC17A7+ 

compared to AT8−/SLC17A7+ layer 2-3 neurons, consistent with the upregulation of these 

markers in Ex1 and Ex2 (Figure 6F). Thus, our analysis identified a set of commonly 

dysregulated synaptic genes in neurons with NFTs that included well-established AD 

biomarkers, highlighting the value of our datasets for discovery.
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Uncoupling of NFT and neuronal death susceptibilities in the AD prefrontal cortex

To analyze transcriptional changes associated with NFTs in the context of AD, we profiled 

control tissue with no AD pathology (BA9; 8 cognitively normal, age-matched donors; 

57,534 somas) (Table S1), and integrated the control, NFT-bearing and NFT-free AD 

datasets (referred to as non-AD, AD-AT8+ and AD-AT8−). This approach allowed us to 

determine whether neuronal subtypes prone to forming NFTs are equally susceptible to 

death.

Integration of the non-AD, AD-AT8+ and AD-AT8− datasets (119,326 somas after QC) 

identified the same neuronal clusters as in our AD dataset. Additionally, we identified small 

clusters of putative layer 5b subcortical projection neurons (Ex9; 534 somas) and SST/NPY 
interneurons (In4; 194 somas). Ex4/5 split into two distinct subclusters (Ex4, Ex5; Figures 

7A and 7B).

The BA9 shows atrophy and neuronal loss at Braak stage VI (Bussière et al., 2003b). To 

determine susceptibility to death, we obtained the relative fractions of somas within each 

cluster (13 excitatory and 7 inhibitory) in non-AD vs. AD (Figures 7C and 7D). If NFTs 

were a primary driver of toxicity and death, the neuronal subtypes harboring them (i.e., 

overall excitatory; particularly Ex1, Ex2, Ex7) would be relatively reduced at Braak VI. In 

contrast with the marked differences in susceptibility to NFTs across neuronal subtypes, 

we found only minor differences in their susceptibility to death (Figure S7). Because there 

was a non-statistically significant trend toward a decrease in total excitatory somas relative 

to total neuronal somas in AD vs. non-AD (75.06 ± 3.2% vs. 80.13 ± 2.9%; Figure 7D), 

we analyzed the excitatory and inhibitory populations separately. We found no differences 

across excitatory subtypes and detected a small but statistically significant increase in the 

susceptibility of SST interneurons to cell death (In3 & In4; Figure 7D).

To address susceptibility to death in the BA9 in two independent AD snRNA-seq studies 

(Leng et al., 2021; Mathys et al., 2019), we re-analyzed all datasets using the MapQuery 

function in Seurat v4. This tool enables harmonization by using consistent annotations 

across datasets. We transferred the annotations from our reference dataset (64,792 nuclei 

& somas; 4 donors; Braak 0–II; Figure S1) to the query datasets: Mathys et al. (44,123 

neurons; 48 donors; Braak 0–VI), Leng et al. (23,339 neurons; 7 donors; Braak 0, II & 

VI), and ours (119,326 neurons; 16 donors; Braak 0–II & VI; Figure 7) and projected 

the query datasets onto the reference UMAP (Figures S8A and S8B). None of the query 

datasets showed statistically significant changes in neuronal cell composition as a function 

of Braak stage, except for a decrease in In3/4 (SST+/NPY+) and In6 (LAMP5+) interneurons 

in high vs. low Braak stages in Mathys et al. (Figure S8C), supporting a lack of substantial 

cell-type-specific neuronal loss in the BA9 of AD patients.

Overall, our analysis showed that highly susceptible (layers 2–3 Ex1 & Ex2; layer 5 

Ex7) and resistant (layers 4–5 Ex4–Ex6; layers 6 Ex11–Ex13) subtypes to NFT formation 

were neither more susceptible nor resistant to death. Although interneurons were generally 

resistant to forming NFTs, they were not spared from death. Chandelier interneurons were 

relatively susceptible to NFT formation, whereas SST interneurons were most susceptible 

to death. Our analysis suggests an uncoupling of NFT susceptibility from neuronal death, 
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highlighting the existence of NFT-dependent and NFT-independent mechanisms contributing 

to neurodegeneration.

NFT-specific versus common AD associated transcriptome changes

To distinguish NFT-specific transcriptomic changes from those commonly altered in AD, we 

performed a three-way DGE analysis between non-AD, AD-AT8−, and AD-AT8+ datasets. 

First, we compared the number of DE genes between each pair: AD-AT8− vs. non-AD 

(referred to as Aβ-associated), AD-AT8+ vs. non-AD (AD-associated), and AD-AT8+ vs. 

AD-AT8− (NFT-associated) (Figure 8A and Table S6). Most Aβ-associated DE genes were 

downregulated (~79% to 53%; 276–1,203 DE genes in excitatory clusters excluding Ex9; 

MAST test with adjusted p-value < 0.05, log2 fold change > 0.2, detection in ≥ 20% of 

cells), consistent with previous studies showing a global transcriptional downregulation in 

human AD brain (Wan et al., 2020), and contrasting with the upregulation associated with 

NFTs (Figures 4A and 8B). Next, we obtained the numbers of up- and downregulated genes 

that were unique or shared between the three comparisons (Figure 8C and 8D; Ex1, Ex2, 

Ex3, Ex7, Ex10). We found a high degree of overlap between the three comparisons (55.7% 

to 69.5% of the DE genes), and relatively low numbers of DE genes that were NFT-specific 

(~4% to 7%; 54–146 DE genes) or NFT-independent (~8% to 16%; 145–280 DE genes) 

(Figures 8C and 8D). Most expression changes in the overlap group occurred in the same 

direction (~99%), and the log2 fold expression values were greater in association with NFTs 

(~8% to 23% for downregulated genes; ~9% to 58% for upregulated genes; AD-AT8+ vs. 

non-AD compared to AD-AT8− vs. non-AD in Ex1, Ex2, Ex3, Ex7, Ex10) (Figure 8E and 

Table S6).

To visualize Aβ-associated, NFT-associated, and AD-associated pathways, we generated 

functional enrichment maps (Ex1, Ex2, Ex3, Ex7, Ex10; Figure 8F; Table S7). As expected, 

most enriched pathways were shared between all three groups. These included pathways 

related to the synapse (synaptic transmission, synapse assembly, calcium homeostasis, 

action potential regulation), the cytoskeleton (microtubule dynamics, axonal remodeling, 

microtubule-based transport), transport (intracellular protein transport, protein targeting to 

the membrane), and metabolism (oxidative phosphorylation, ATP synthesis). In contrast, 

pathways identified exclusively as NFT-associated or Aβ-associated were underrepresented. 

Notably, RNA splicing was underrepresented in the NFT-associated category. This pathway 

included the spliceosomal complex and nuclear speck genes PDCD7, HNRNPU, FUS, 
SRSF10, SRRM2, RBM5, and SNU13 (Figure 8G and Table S7). Autophagy pathways 

were enriched in association with AD and with NFTs and included macroautophagy 

and regulation of autophagy by lysosomal pH (e.g., BNIP3, IRS2, UBB, UBC, TSC1, 
TSC2, RHEB, CAMKK2, PIK3C3, MAPK1). Correspondingly, we found an increase in 

SQSTM1/p62 protein expression in AT8+ vs. AT8− FACS-sorted neuronal somas (Figure 

S9D), as previously reported in postmortem sections from AD patients (Piras et al., 2016). 

Neuronal death and neurodegeneration were also overrepresented in association with both 

AD and NFTs. This complex category included master regulators of neuronal survival, 

the stress response, and apoptosis: UBB, encoding ubiquitin (upregulated in AD); BAD, 

encoding Bcl-2 agonist of cell death protein (upregulated in AD and NFT-bearing); and 

JUN and ATF4 (upregulated in NFT-bearing) (Figure 8G and Table S7). Notably, ATF4, the 
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main effector of the integrated stress response, a common adaptive pathway for restoring 

cellular homeostasis (Pakos-Zebrucka et al., 2016), was highly upregulated in association 

with NFTs. We validated this finding using RNAscope ISH in histological sections (Figure 

S9A-C). Collectively, our analysis highlighted dysregulated genes and pathways enriched in 

an NFT-associated and NFT-independent manner in the AD brain.

DISCUSSION

Despite evidence linking tau pathology to histological and neuroimaging features of 

neurodegeneration in AD (Bejanin et al., 2017; Braak and Del Tredici, 2015; Franzmeier 

et al., 2019; Hanseeuw et al., 2019; Jack et al., 2018; Nelson et al., 2012; Schöll et al., 2016; 

Schwarz et al., 2016), the molecular signatures that distinguish between aggregation-prone 

and aggregation-resistant cell states remain undetermined. To address this, we developed 

procedures for the unbiased, high-throughput profiling of NFT-bearing neurons from fresh-

frozen human brain.

A caveat of our method is the disruption of cell membranes by freeze-thawing which 

results in loss of most cytoplasmic transcripts. Our analysis comparing nuclear and soma 

FACS-sorted populations showed highly similar total gene and UMI content in both 

conditions; however 50–80% of transcripts are estimated to be cytoplasmic (Bakken et 

al., 2018; Grindberg et al., 2013). Variable cytoplasmic amounts may introduce bias in 

transcript quantification and/or cell recovery. To reduce this variability, we compared 

NFT-bearing and NFT-free somas processed in parallel from the same tissue sample. 

This strategy also reduced potential confounding effects from patients’ genetics, sex, age, 

comorbidities, medication, and premortem agonal state. The loss of cytoplasmic transcripts 

did not undermine our method’s ability to discriminate between closely related neuronal 

subtypes, as shown in previous snRNA-seq studies (Bakken et al., 2018; Lake et al., 

2017). The relative abundance of each neuronal subtype was highly similar after sorting 

somas or nuclei, except for an increase in two relatively rare subtypes (Ex3, Ex5) in the 

soma preparations. This selection bias may be explained by technical differences in cell 

fractionation and/or immunostaining and should be considered particularly when analyzing 

mixed datasets from both nuclei and somas. Thus, we provide a method for profiling single 

cells with cytoplasmic protein aggregates. Our method can be applied to other tauopathies 

such as PSP, corticobasal degeneration, Pick’s disease, primary age-related tauopathy 

(PART), and chronic traumatic encephalopathy to investigate shared and disease-specific 

mechanisms of tau-mediated neurodegeneration.

Previous studies have suggested morphological and molecular features that may underlie 

selective susceptibility of cortical neuronal subtypes to tau pathology. NFT formation has 

been associated with larger cell size, low expression of Ca2+-binding proteins, sparse 

myelination, and dysregulation of autophagy and microtubule dynamics (Bussière et al., 

2003a; Dunckley et al., 2006; Fu et al., 2018; Fu et al., 2019; Roussarie et al., 2020). 

Here, we demonstrate specificity of NFT formation in 20 neocortical neuronal subtypes. 

The subtypes with the highest proportions of NFTs included putative cortico-cortical 

projection neurons in layers 2–3 (Ex1, Ex2; CUX2+) and intratelencephalic projection 

neurons in layer 5 (Ex7; RORB/PCP4+) (Harris et al., 2019; Harris and Shepherd, 2015; 
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Zeng et al., 2012). Among cortico-thalamic neurons, a population of deep layer 6b neurons 

(Ex13; FEZF2/CTGF+) that projects to anterior and mediodorsal (i.e., association) thalamic 

nuclei in rodents (Hoerder-Suabedissen et al., 2018; Zeng et al., 2012) was relatively 

vulnerable. Combined with previous studies showing the stereotypical distribution pattern 

of tau pathology and its spread through functionally connected brain regions (Braak and 

Braak, 1991; Braak and Del Tredici, 2018; Franzmeier et al., 2019; Rüb et al., 2016), these 

results support an association between tau pathology and neural connectivity. As previously 

suggested, vulnerable circuits may correspond to the default-mode network (Greicius et al., 

2004; Raichle et al., 2001; Seeley et al., 2009).

Our DGE analysis comparing non-AD, AD-AT8−, and AD-AT8+ somas illustrated shared 

AD and NFT-associated pathways converging on the synapse, supporting the notion of AD 

as synaptopathy (de Calignon et al., 2010; de Wilde et al., 2016; Selkoe, 2002; Sheng 

et al., 2012; Spires-Jones and Hyman, 2014). Although the pathogenic cascade leading to 

synaptic failure in AD is incompletely understood, APP cleavage products, Aβ oligomers, 

and tau oligomers appear to play key roles (Busche et al., 2019; Moore et al., 2015; Pickett 

et al., 2019; Puzzo et al., 2017; Zott et al., 2019). We identified APP upregulation in NFT-

bearing neurons across excitatory subtypes. APP/Aβ is upstream of tau pathology in AD, 

and duplication of APP causes early-onset AD (Hardy and Selkoe, 2002; Rovelet-Lecrux 

et al., 2006). Increased APP levels in NFT-bearing neurons may contribute to changes 

in gene expression via the APP intracellular domain (AICD), an APP cleavage product 

that translocates to the nucleus and acts as a transcriptional regulator (Cao and Südhof, 

2001). NFT-bearing neurons may also modulate their response to extracellular, soluble Aβ 
through the expression of Aβ receptors. Putative cell surface receptors for Aβ upregulated in 

NFT-bearing neurons include PRNP, GRIN2B, GRIN2A, ATP1A3, EPHA4, and PGRMC1 
(Fu et al., 2014; Izzo et al., 2014; Laurén et al., 2009; Ohnishi et al., 2015; Shankar et 

al., 2007). Thus, our findings support a model in which APP upregulation and/or synaptic 

dysregulation in NFT-bearing neurons may contribute to neurodegeneration.

However, the ultimate role of APP/Aβ and tau as drivers of neurodegeneration remain 

undetermined. Mouse models of AD and tauopathy have provided insight into synergistic 

and independent pathogenic effects of APP and tau (Busche and Hyman, 2020; Puzzo et 

al., 2020). Mice with mutations in Mapt exhibit tau pathology resembling aspects of AD. 

However, in contrast to our human results, these mice show subtle transcriptional changes 

and downregulation of synaptic genes (Pickett et al., 2019; Sierksma et al., 2020). This 

discrepancy may be explained by differences in methodology (i.e., profiling of all cells vs. 

comparing AT8+ and AT8− neurons), the cell types exhibiting tau aggregates (i.e., glial and 

neuronal in tau transgenic models vs. neuronal in human AD), or the potential effects of 

APP/Aβ on NFT-bearing neurons in AD. Profiling NFT-bearing neurons in AD vs. PART, a 

primary tauopathy featuring tau aggregates in a similar distribution to AD without amyloid 

(Crary et al., 2014), could help elucidate the effects and potential synergy of amyloid and 

tau.

In contrast to the shared dysregulation of synaptic and stress response genes in NFT-bearing 

neurons, we found that changes in glucose metabolism and mitochondrial function genes 

were highly cell-type dependent and particularly enriched in Ex3. This cluster differed in the 
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directionality of changes (mostly downregulated in NFT-bearing), pathway enrichment (i.e., 

ATP metabolic process, oxidative phosphorylation, respiratory electron transport chain), and 

its TF regulatory networks (i.e., GABPA). Intriguingly, this cluster corresponds to a poorly 

characterized but distinct neuronal subtype in middle cortical layers that expresses RORB 
and PLCH1 and contains neurons expressing the genes for the neuropeptide galanin (GAL) 

(Alexandris et al., 2019) and neprilysin or CD10 (MME). Neprilysin is a transmembrane 

endopeptidase involved in the cleavage of several neuropeptides, and a major Aβ-degrading 

enzyme (Farris et al., 2007; Iwata et al., 2001). In neocortex, neprilysin expression has been 

described in parvalbumin interneurons (Rossier et al., 2015) but its expression by neocortical 

excitatory neurons was unknown.

We identified a dissociation between NFT susceptibility and neuronal death in the 

BA9. Although imaging and histopathological studies have demonstrated the regional co-

occurrence of NFTs and neurodegeneration, whether NFTs play toxic and/or neuroprotective 

roles remains debated (Ittner et al., 2016; Kuchibhotla et al., 2014; Menkes-Caspi et al., 

2015; Ossenkoppele et al., 2016; Spires-Jones et al., 2008; Wang and Mandelkow, 2016). 

While we identified notable differences in NFT susceptibility among 20 neuronal subtypes 

from BA9, we found subtle differences in their susceptibility to death. We replicated this 

result by re-analyzing two independent snRNA-seq datasets from the same brain region 

(Leng et al., 2021; Mathys et al., 2019). Other regions including entorhinal cortex and 

hippocampal CA1 undergo early and substantial neuronal loss (Gómez-Isla et al., 1996). 

Leng et al. showed the early selective vulnerability of RORB+ excitatory neurons in Braak 

II vs. Braak 0 caudal entorhinal cortex. Thus, different brain regions may possess different 

patterns of vulnerability. Large-scale multi-region and multi-stage single-cell studies are 

needed to characterize selective vulnerability in greater detail.

Our BA9 results suggest that NFTs may represent cell-type-specific responses to cellular 

and microenvironmental stressors in AD, and that these responses are neither fully protective 

nor deadly to the cells bearing them. NFT-bearing neurons showed altered expression 

of both pro- and anti-apoptotic genes. Although their ultimate effect in survival remains 

undetermined, upregulation of ATF4 and other genes involved in the cellular stress 

response such as APP, JUN, and HSP90AA1 suggests a homeostatic response to cellular 

injury. This response appears to be insufficient to protect neurons from death in the AD 

microenvironment, where other factors such as neuroinflammation, hyperexcitable circuits, 

and vascular pathology (Arboleda-Velasquez et al., 2019; Chen et al., 2020; De Strooper 

and Karran, 2016; Merlini et al., 2021; Palop and Mucke, 2016) may critically impact 

neuronal function and survival. Although we cannot distinguish drivers of degeneration from 

compensatory responses, our datasets provide a resource for exploring tau-dependent and 

independent pathogenic mechanisms and serve as a platform for discovery.

STAR METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the lead contact, Inma Cobos (icobos@stanford.edu).
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Materials availability—This study did not generate new unique reagents.

Data and code availability

• Raw single-cell RNA sequencing data generated in this study, associated 

metadata, and processed digital expression matrices have been deposited at the 

NCBI's Gene Expression Omnibus with accession number GSE129308. This 

paper also analyzes existing, publicly available data. The accession numbers for 

the datasets are listed in the key resources table.

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human samples—Fresh-frozen human brain samples were obtained from public 

repositories. Donor demographics and samples characteristics can be found in Table S1. 

All AD donors used for single-soma transcriptomics (n = 8; 5 females and 3 males) 

died with dementia and received a neuropathological diagnosis of Alzheimer’s disease 

neuropathological change, a Braak stage VI of VI, and an ABC score (NIA-AA Research 

Framework criteria) of A3B3C3 (Hyman et al., 2012; Braak and Braak, 1991). All controls 

(n = 8; 3 females and 5 males) were cognitively normal and Braak stage 0–II. Donor 

age ranged from 66 to 93 years (76.9 ± 12.4 and 69.9 ± 7.7 years for AD and controls, 

respectively [mean ± STD]; not significant change in AD vs. controls; p = 0.20; two-sample 

equal variance t-test). The postmortem interval (PMI) ranged from 1 to 33 hours (12.8 ± 7.6 

and 18.2 ± 7.9 hours for AD and controls, respectively [mean ± STD]; not significant change 

in AD vs. controls; p = 0.20; two-sample equal variance t-test). The RNA integrity number 

(RIN) ranged from 5.7 to 7.8 (6.5 ± 0.4 and 6.9 ± 0.5 for AD and controls, respectively 

[mean ± STD]; not significant change in AD vs. controls; p = 0.08; two-sample equal 

variance t-test).

METHOD DETAILS

Isolation of individual somas with tau aggregates from frozen human brains
—Fresh-frozen brain tissue blocks stored at −80°C were first warmed to −12°C to enable 

the dissection of thick (~500 μm) tissue sections while preserving the remaining frozen 

tissue for additional experiments. For each experiment, a section of the cortex (~200 

mg) encompassing an equal representation of all cortical layers was cut. The tissue 

was dissected under a stereomicroscope to remove the white matter and leptomeninges 

and was then chopped into small pieces (< 1 mm3) using a chilled razor blade. RNA 

quality was assessed from ~10 mg of tissue using the RNeasy kit (Qiagen Cat#74134) 

according to the manufacturer’s instructions to purify RNA, and the Agilent Bioanalyzer 

2100 RNA Nano chips (Agilent Technologies Cat#5067-1511) were used according to the 

manufacturer instructions to quantify the RNA integrity number (RIN). To prevent further 

RNA degradation during soma isolation, all steps were performed on ice in RNase-free 

conditions. For tissue homogenization, a Potter-Elvehjem tissue grinder was used. These 

grinders have a clearance space between the pestle and tubes (0.1-0.15 mm clearance; 8 mL 
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tubes) wider than those of the grinders typically used to dissociate nuclei, which facilitates 

the dissociation of relatively well-preserved somas. Each tissue sample was dissociated 

using 2.4 mL of homogenization buffer (10 mM Tris pH 8, 5 mM MgCl2, 25 mM KCl, 

250 mM sucrose, 1 μM DTT, 0.5x protease inhibitor [cOmplete Protease Inhibitor Cocktail, 

MilliporeSigma Cat#11697498001], and 0.2 U/μL RNase inhibitor). No enzymatic digestion 

or detergents were used. For this amount of tissue, ~15 grinder strokes were needed. The 

number of strokes was adjusted by microscopically assessing the number and morphology of 

somas and the presence of clumps using a hemocytometer. Homogenates were then filtered 

through a 100-μm cell strainer and transferred into two 1.5-mL Eppendorf tubes.

Further clean-up was performed using iodixanol gradient centrifugation. The homogenate 

was first centrifuged at 400 ×g for 5 min at 4°C. Then, the supernatant was aspirated 

and discarded, and the pellets were gently resuspended in 200 μL of cold homogenization 

buffer. The homogenates were pooled into one tube, and the total volume was measured and 

adjusted with homogenization buffer to obtain an exact volume of 450 μL. An equal volume 

(450 μL) of 42% v/v iodixanol medium (75 mM sucrose, 25 mM KCl, 5 mM MgCl2, 

10 mM Tris [pH 8], and 42% w/v iodixanol) was added to the homogenate and gently 

mixed with a pipette to obtain a final concentration of 21% iodixanol. The mixture was 

then transferred to a new 2-mL Eppendorf tube containing 900 μL of cold 25% iodixanol 

medium (146 mM sucrose, 48 mM KCl, 10 mM MgCl2, 19 mM Tris [pH 8], and 25% w/v 

iodixanol) by slow layering on the top. The tubes were centrifuged at 8,000 ×g for 15 min 

at 4°C, resulting in the sedimentation of somas at the bottom, covered by the supernatant 

and a top layer of thick material containing cell clumps and abundant myelin. The top 

layer and supernatant were removed and discarded carefully, avoiding contamination of the 

pellet. Pellets were detached with a small amount (~50 μL) of immunostaining buffer (0.1 

M phosphate-buffered saline [PBS; pH 7.4], 0.5% bovine serum albumin [BSA], 5 mM 

MgCl2, 2 U/mL DNAse I, and 0.2 U/μL RNase inhibitor), transferred to clean tubes, and 

gently resuspended in a total volume of 200 μL of immunostaining buffer. After a 15-min 

incubation with immunostaining buffer, at 4°C, with gentle rocking, primary antibodies 

were added (mouse anti-phospho-Tau [Ser202, Thr205] monoclonal antibody [AT8], 1:150, 

ThermoFisher Cat#MN1020; rabbit anti-MAP2 polyclonal antibody, 1:40, MilliporeSigma 

Cat#AB5622), and the suspension was incubated for 40 min at 4°C with gentle rocking. 

An equal volume (500 μL) of immunostaining buffer was then added, and the tubes were 

inverted several times before being centrifuged at 400 ×g for 5 min at 4°C. The supernatant 

was carefully removed, and the pellets were resuspended in 600 μL of immunostaining 

buffer. Secondary antibodies (goat-anti-mouse, Alexa Fluor 350, 1:500; goat-anti-rabbit, 

Alexa Fluor 647, 1:500) and a nuclear stain (SYTOX green, 1:40,000) were added, and 

the solutions were incubated for 30 min at 4°C with gentle rocking. Aliquots of unstained, 

secondary antibody-treated only, and single-stained (SYTOX green, MAP2, or AT8) cells 

were saved as FACS controls.

The number and morphology of the somas were evaluated microscopically after each critical 

step and immediately before FACS. Good-quality samples contained a suspension of single 

somas and naked nuclei, with few clumps and little debris; the proportion of cells with 

relatively well-preserved somas varied between 20-50% of the total sample. The typical 

yield for ~100 mg of cerebral cortex tissue was between 0.5–1.5 × 106 somas.
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FACS of somas with and without NFTs—FACS was used to collect single-cell 

suspensions of somas with tau aggregates. Sorting was performed using a BD FACS Aria 

II at the Flow Cytometry Core Laboratory at UCLA or a Sony SH800S equipped with four 

excitation lasers (488nm, 405nm, 638nm and 561nm) at Stanford. We tested three antibodies 

against pathological tau that recognize different stages of NFT maturity: AT8, T22 and 

PHF1 (Moloney et al., 2021). AT8 (mouse anti-phospho-Tau [Ser202, Thr205] monoclonal 

antibody; ThermoFisher Cat#MN1020) is the standard antibody in Neuropathology for 

clinical and research applications and a marker for both pretangles and mature tangles; T22 

(rabbit polyclonal anti oligomeric tau [T22]; MilliporeSigma Cat#ABN454) is an antibody 

against oligomeric tau; PHF1 (rabbit anti-phospho-Tau [Ser396] monoclonal antibody; 

Abcam Cat#ab109390) is enriched in mature and ghost tangles. Suspensions of single somas 

isolated from the BA9 of Braak VI AD donors (n = 4) were co-stained with AT8 and either 

T22 or PHF1, analyzed by FACS, and collected for microscopic examination (Figure S2).

We selected AT8 for the isolation and profiling of neurons with pathological tau aggregates. 

We collected single-cell suspensions of somas with tau aggregates (AT8+) and neighboring 

neurons without tau aggregates (MAP2+/AT8−) from AD brains as well as neuronal somas 

(MAP2+) from control brains. PBS was used as the sheath fluid, with a sheath pressure of 

20 psi. A 100-μm nozzle tip was used, and the frequency of droplet generation was ~30 

kHz. The primary laser was a blue Trigon 488-nm used in the generation of forward scatter 

(FSC) and side scatter (SSC). The secondary lasers were UV Trigon 355-nm, blue Trigon 

488-nm, and red Trigon 640-nm, used for the excitation of Alexa 350, SYTOX green, and 

Alexa Fluor 647, respectively. Sample events were acquired at < 30% droplet occupancy.

FACS gates were based on a combination of regions drawn around target populations in 

2D plots, performed in the following order: FSC height vs. SSC height; SSC area vs. 

FSC width; FSC area vs. FSC width; SSC area vs. SYTOX green fluorescence (bandpass 

filter 525/50); and Alexa 350 fluorescence (bandpass filter 450/50) vs. Alexa Fluor 647 

fluorescence (bandpass filter 670/30). The FSC versus SSC gates were set with permissive 

limits, discarding the smallest and largest particles. SYTOX green fluorescence was used 

to discriminate single cells from cell clumps and anucleated cell fragments. Alexa Fluor 

647 was used to discriminate neurons with soma (MAP2+) from nonneuronal cells and 

naked neuronal nuclei (MAP2−). Alexa Fluor 350 was used to discriminate between somas 

containing tau aggregates (AT8+) and somas without tau aggregates (AT8−). Unstained, 

only secondary antibody-treated, and only single primary antibody-treated cell suspensions 

were included as controls to minimize false positives due to nonspecific staining or 

autofluorescence.

Two populations from AD brains were collected: AT8+ (either positive or negative for 

MAP2) and MAP2+/AT8− somas; a population of MAP2+ somas was collected from control 

brains. The yield per sample ranged from 1,600–37,000 somas for AT8+ and over 3 x 105 

somas for MAP2+. Somas were collected in 1.5-mL Eppendorf tubes containing 100–200 μL 

of collection buffer (0.1 M PBS [pH 7.4] and 0.1 U/μL RNase inhibitor). After collection, 

BSA was added to each tube for a final concentration of 1%. To prevent somas from 

adhering to the tube walls, the Eppendorf tubes used for collection were precoated with 
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BSA. BSA precoating was performed by filling the tubes with 10% BSA solution in PBS for 

5 min, rinsing with PBS, and drying at 4°C overnight.

Western blotting of FACS-sorted somas—Somas with and without NFTs were 

collected by FACS in 0.1 M PBS (30,000–400,000 somas per sample), and the pellets 

lysed in RIPA buffer (Cell Signaling Technology, Cat#9806S) in the presence of cOmplete 

Protease Inhibitor Cocktail (MilliporeSigma Cat#11697498001). Total protein concentration 

was quantified using a Bradford protein assay in duplicate. Samples were separated on 

4-20% Mini-PROTEAN TGX Gels (Bio-Rad Cat#4561094) and then transferred to PVDF 

membranes (Bio-Rad Cat#10026934). Membranes were blocked with 5% skimmed milk 

in Tris Buffered Saline + 0.1% Tween 20 (TBST) and incubated with anti-SQSTM1/p62 

antibody (1:1000, Abcam Cat#ab109012) at 4°C overnight, and then washed and incubated 

with horseradish peroxidase-conjugated (HRP) conjugated secondary antibody for 1 hour 

at RT. Membranes were visualized with ECL substrate (ThermoFisher Cat#32209). To 

control for loading, the membranes were stripped with Blot Stripping Buffer (ThermoFisher 

Cat#46430) and reprobed with the following antibodies: anti-beta Actin (1:25000, Abcam 

Cat#ab49900), anti-Lamin B1 (1:1000, Cell Signaling Technology Cat#12586), and anti-

Histone H3 (1:5000, EpiCypher Cat#13-0001).

Single-soma RNA-sequencing—Single-soma mRNA capture and library preparation 

were performed using the 10x Genomics Chromium Single Cell 3’ v2 or v3 assays. Single-

cell suspensions for FACS were centrifuged at 400 ×g for 5 min at 4°C to concentrate cells. 

Without disturbing the pellet, sufficient supernatant was removed to achieve a concentration 

of ~350 cells per μL. Cell concentrations were measured using a hemocytometer, and the 

quality of cells was examined under a fluorescence microscope. The numbers of loaded cells 

ranged from 1,400–11,000 to capture the maximum number of cells, with an upper limit of 

~5,000 cells per sample (for an expected cell capture efficiency of ~40%). The following 

steps were performed according to the manufacturer’s instructions. For cDNA amplification, 

the number of PCR cycles used was 13–15 (adjusted to the targeted cell recovery). For 

library construction, the number of cycles for the sample index PCR was 12–13 (adjusted for 

the quantified cDNA input).

The generated paired-end libraries were sequenced on Illumina Novaseq 6000. All the 

libraries from the AD donors were combined and sequenced together in a single run. The 

concentration of each sample was normalized to the total number of cells to achieve similar 

numbers of reads per cell. Cells were sequenced at a depth of ~72,000 reads per cell, 

corresponding to a sequencing saturation of ~85%.

Paired-end sequence reads were processed using the 10x Genomics software package Cell 

Ranger version 3.1. We used the Cell Ranger count pipeline with default parameters to 

perform alignment to the prebuilt reference genome GRCh38 and for filtering, barcode 

counting, and UMI counting. The resulting digital expression matrices were analyzed using 

the R-based Seurat package, versions v2, v3, or v4.

Analysis of the AT8−, AT8+, and combined AT8− and AT8+ datasets—To analyze 

the AT8− datasets, we loaded all digital expression matrices into Seurat, filtered out cells 
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with < 250 genes or > 12,000 UMIs, and removed mitochondrial DNA-encoded genes, 

ribosomal genes, and uncharacterized RP11-, RP13-, RP1-, RP3-, RP4-, RP5-, and RP6- 

genes. All datasets were combined and normalized using the function LogNormalize with 

the default scale factor 10,000. The number of UMIs and samples of origin were regressed 

out. We selected genes with average expression values between 0.0075 and 3 and dispersion 

values > 0.3 (~4,200 genes) for downstream analysis. Principle component analysis (PCA) 

was used to reduce dimensionality, and the first 22 statistically significant principal 

components (PCs) were selected for clustering. Clusters were identified using a graph-based 

clustering approach (Seurat FindClusters function with the following parameters: 1:22 PCs; 

1.0 resolution; 100 random start positions and 10 iterations per random start; and 30 k 

for the k-nearest neighbor algorithm) and visualized with t-SNE using the same PCs. 

Cluster-specific marker genes were obtained by comparing the gene expression levels for 

each individual cluster with those for all other cells using the Wilcoxon rank-sum and 

MAST tests. Genes detected in ≥ 25% of cells (in either the tested cluster or in all other 

cells combined) with positive log-fold changes > 0.25 and adjusted p-values < 0.05 were 

included. Cluster robustness was assessed by examining cluster stability after subsetting 

and rerunning clustering and by comparing our data with previous human brain snRNA-seq 

(Hodge et al., 2019; Mathys et al., 2019) and gene expression data. We annotated 23 clusters 

corresponding to 13 excitatory neuron subtypes, 7 inhibitory neuron subtypes, and 3 glial 

cell types. Clusters containing cells with mixed identities and/or cell states (1.57%; gray 

colored) were removed from further analysis.

To analyze the AT8+ datasets and the combined AT8− and AT8+ datasets, we used multiCCA 

for dimensionality reduction (Butler et al., 2018). MultiCCA performed better than PCA 

in distinguishing between cell types and disease states. We used the same parameters as 

described above to filter low-quality cells, except that we regressed out mitochondrial 

DNA-encoded genes instead of filtering them. The top 4,200 highly variable genes that were 

present in at least two datasets were selected for downstream analysis. The first 26 canonical 

correlation vectors were aligned using the datasets/samples as a grouping variable (Figures 

S4G-J). Clustering and t-SNE were performed using the same canonical correlation and a 

resolution of 1. Cluster-specific marker gene identification and cluster robustness assessment 

were performed as described above.

To further assess the robustness of the clustering of the combined AT8− and AT8+ 

datasets, we reanalyzed our sequencing data after alignment to a pre-mRNA reference 

genome (Figure S3). This approach has been shown to markedly improve gene detection 

in nuclear preparations due to the high fraction of intronic reads captured in nuclear 

sequencing (Bakken et al., 2018). We created a custom pre-mRNA reference package by 

modifying the prebuilt reference genome GRCh38 provided by Cell Ranger to include 

both intronic and exonic reads for downstream analysis. The resulting digital expression 

matrices were analyzed using version v3.1 of the R-based Seurat package. We used the 

single-cell transform (SCT) method for normalization, variance stabilization, regression 

of the number of UMIs and mitochondrial gene fraction (Hafemeister and Satija, 2019), 

and uniform manifold approximation and projection (UMAP) for dimensionality reduction 

and clustering. By selecting the first 6 statistically significant PCs, we first obtained three 

clusters corresponding to excitatory neurons, inhibitory neurons, and nonneuronal cells. 
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Subsequently, we performed an independent clustering analysis for the excitatory neuron 

and inhibitory neuron subsets. Identification of cluster-specific marker genes and cluster 

annotation was performed as described above.

Analysis of the non-AD, AD-AT8− and AD-AT8+ datasets—To analyze the non-AD 

(healthy controls), AD-AT8−, and AD-AT8+ datasets together, we generated two sets of 

digital expression matrices from each sample, after alignment to exons (prebuilt reference 

genome GRCh38 provided by Cell Ranger version 3.1) or to our custom pre-mRNA 

reference (built by modifying the prebuilt reference genome in Cell Ranger to include both 

intronic and exonic reads) and integrated both into a single Seurat object. The reads aligned 

to pre-mRNA were used for clustering, and the reads aligned to exons were used for DGE 

analyses.

We used SCT for multidataset integration and UMAP for dimensionality reduction and 

clustering using Seurat versions v3 and v4. SCT integration was performed after splitting 

the combined dataset into different objects based on a combination of two variables, sorting 

(AT8+ or AT8−) and sequencing chemistry (10x Genomics v2 or v3), and then applying 

the sctransform function, which incorporates normalization, scaling and identifying highly 

variable genes (top 3000 genes) while regressing out two unwanted sources of variation, the 

total number of UMIs and the percentage of mitochondrial genes per sample.

For clustering, we first subset the clusters corresponding to excitatory or inhibitory neurons 

identified after running UMAP, FindNeighbors and FindClusters with default parameters 

and using the first 10 statistically significant PCs. We then performed an independent 

clustering analysis for the excitatory neuron and inhibitory neuron subsets with higher 

resolution parameters. We used the R-based package Clustree version 0.4.4 to visualize the 

clustering at different resolutions from 0.1 to 1.0. Identification of cluster-specific marker 

genes and cluster annotation was performed as described above.

Single-cell reference mapping and annotation of published datasets—To 

compare the neuronal composition of the BA9 across single-cell AD datasets (Figure 

S8), we used the neuronal subtype annotations from our BA9 control dataset as reference 

(Figure S1; neuronal nuclei and somas; 64,792 cells after QC) to reanalyze and annotate 

our single-soma AD dataset (Figure 7) and two published single-nucleus datasets (Leng 

et al., 2021; Mathys et al., 2019) using the function MapQuery in the Seurat package 

version v4. The published query datasets were downloaded from Synapse (Mathys et 
al.: https://www.synapse.org/#!Synapse:syn18485175) and Cellxgene (Leng et al.: https://

cellxgene.cziscience.com/collections/180bff9c-c8a5-4539-b13b-ddbc00d643e6). For each of 

the published query datasets, we subset the excitatory and inhibitory neurons as annotated 

by the authors and kept only the nuclei that passed the QC parameters set by the authors 

(44,123 neuronal nuclei in Mathys et al. and 23,339 neuronal nuclei in Leng et al.).

First, we used the function FindTransferAnchors in Seurat v4 to define a set of anchors 

between the reference and each of the three query objects (default parameters with SCT as 

normalization method and PCA for dimensional reduction with 50 dimensions). Then, we 

computed a reference UMAP model (RunUMAP function with default parameters and the 
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first 25 dimensions) from our BA9 control dataset as a reference for cluster annotations. 

Finaly, we used the wrapper function MapQuery to predict the identity of the query cells and 

to transfer the annotations from the reference to the query datasets (TransferData function), 

integrate the datasets using the pre-computed set of anchors (IntegrateEmbeddings function), 

and project the query datasets onto the reference UMAP (ProjectUMAP function, a wrapper 

for FindNeighbors and RunUMAP).

Statistical analysis of NFT and cell death susceptibility—To test for statistically 

significant differences in cell composition among datasets (i.e., AD vs. non-AD in Figure 

7, comparisons across published single-cell AD datasets in Figure S8, and comparisons 

between nuclear and soma isolation methods in Figure S1), we obtained the relative 

abundance of each neuronal subtype for each donor, on a scale from 0 to 1, either 

relative to all neurons or to either excitatory or inhibitory neurons separately and 

performed beta regression using the R package betareg version 3.1-4. We used the 

formula Relative.Abundance ~ Condition with the bias-corrected maximum likelihood 

estimator (R>betareg(Relative.Abundance ~ Condition, data=data ,type="BC")). To correct 

for multiple hypothesis testing, we used Holm's method to adjust the p values obtained 

from beta regression using the p.adjust function of the R Stats package with the number of 

neuronal subtypes tested as the "length" variable.

For the AT8+ vs. AT8− comparison, where both AT8+ and AT8− cells were obtained 

from the same donor, we added random effects to the model to account for the 

paired design. We fitted a generalized linear mixed model using maximum likelihood 

estimation via 'TMB' (Template Model Builder) with the R package glmmTMB, using the 

formula Relative.Abundance ~ AT8.condition + (1∣Donor), and the function "beta_family". 

Correction for multiple hypothesis testing was performed as described above.

DGE analysis—DGE between NFT and NFT-free and between non-AD and AD datasets 

was assessed using the MAST generalized linear model (Finak et al., 2015) on each cluster 

separately (Tables S2 and S6). MAST considers the characteristic bimodal distribution 

of single-cell data in which gene expression is either detected (nonzero) or not detected 

(typically high due to the high rate of dropout events). It has been shown to perform highly 

favorably on statistical power and FDR control compared to other methods for DGE analysis 

in single-cell datasets (Soneson and Robinson, 2018). To generate the lists of DE genes, we 

applied MAST using the Seurat function FindMarkers (Seurat v4). The following parameters 

and cut-off values were included in the design formula: adjusted p-value < 0.05 (based on 

Bonferroni correction using the total number of genes in the dataset); log2 fold change 

(positive or negative) > 0.2; detection in ≥ 20% of cells for at least one condition; and 

nUMI (i.e., cellular detection rate), age, sex, and RIN as latent variables (i.e., cofounding 

variables).

To visualize shared and distinct DE genes across cell types with or without NFTs, we 

generated gene expression heatmaps by hierarchical clustering of genes using Ward’s 

minimum variance method with the heatmap.2 R package. The resulting clustering was used 

to build the row (genes) dendrogram. Columns (cell types) were clustered using Euclidian 

distance and reordered by mean values.
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Cross-validation of the molecular signatures associated with NFTs was performed by 

rerunning DGE after excluding a subset of samples. We removed different combinations 

of two of the eight samples from the dataset, generated full lists of DE genes using MAST, 

and compared them with the lists of DE genes generated from the 8-sample dataset. We used 

the RRHO (Plaisier et al., 2010) to identify and visualize statistically significant overlap 

between pairs of gene lists (RRHO 1.22.0 R package). The full lists of genes without any 

cut-off filters were ranked by their adjusted p-values, and the statistical significance of 

the number of overlapping genes was measured successively to determine the strength and 

pattern of correlations. The output was visualized using heatmaps with a step size (i.e., 

resolution) of 50 (Figure S4).

TFBS analysis—Transcription factor binding site (TFBS) enrichment analysis was 

performed in the promoters of the genes that were DE in cells with NFTs, compared to 

cells that were NFT free in five neuronal subtypes (Ex1, Ex2, Ex3, Ex7, Ex10), using the 

TFBS pipeline described elsewhere (Parikshak et al., 2016). The region 1 kb upstream of 

the transcription start site was defined as the canonical promoter region. For each of the 

five clusters, we assessed the top 200 connected genes, ranked by intramodular connectivity 

(kME), using the Religious Orders Study and Memory and Aging Project (ROSMAP) 

prefrontal cortex AD dataset (Mostafavi et al., 2018). Putative motifs bound by the TF were 

obtained from the TRANSFAC database (Matys et al., 2003). We identified the upstream 

sequences of these 200 genes using the Clover algorithm (Frith et al., 2004) to calculate 

motif enrichment. The background for enrichment was calculated with the MEME algorithm 

(Bailey and Elkan, 1994) using 1000-bp sequences upstream of all human genes, human 

CpG islands, and the sequence of human chromosome 20. We calculated p-values by 

selecting 1,000 sequences of the same length, testing them for enrichment using MEME, 

and computing the p-values based on the observed motif enrichment ranks versus the 

randomized sets. The enriched TFs for each of the five neuronal subtype clusters were 

obtained (Figure S5).

TF regulatory networks—To generate neuronal TF regulatory networks, we obtained 

data for human neuronal TFs and their target genes from the ENCODE ChIP-seq dataset 

(Consortium, 2012; Davis et al., 2018) and intersected them with the TFs identified in 

our TFBS enrichment analysis. For each TF regulatory network, we defined the genes 

with robust evidence of coexpression across brain tissues based on AMP-AD network 

analysis using the top 100 connected genes (ranked by kME) for each coexpression module 

(Morabito et al., 2020) the genes that were DE in cells with NFTs versus NFT-free cells 

(Table S2), and cluster-specific background genes (expressed in ≥ 10% of cells in the 

cluster). The edges in the networks represent the bicorrelation of gene expression values 

in the AMP-AD datasets, and the nodes are spatially arranged by multidimensional scaling 

(MDS) of the AMP-AD gene expression. In the interest of visual clarity of the networks, 

we limited the genes displayed to a maximum of 25 DE genes (ranked by p-value) and 

20 background genes (ranked by p-value); the numbers of DE genes between NFT versus 

NFT-free cells that were also coexpressed in the AMP-AD network analysis were not 

limited (Figure S5B). The complete list of genes and intramodular connectivity data for each 

transcriptional regulatory network are provided in Table S3.
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GO enrichment analysis—The web server g:Profiler (version Ensembl 97, Ensembl 

Genomes 44) (Raudvere et al., 2019) was used to perform GO enrichment analysis. To 

analyze the NFT-bearing and NFT-free somas, we input for each cluster the list of DE 

genes between cells with and without NFTs against a list of background genes (expressed 

in ≥ 10% of cells in the cluster) and obtained hierarchical sorting lists of GO terms. 

Statistical significance thresholds were determined using Fisher's exact test and multiple 

testing correction (default native method g:SCS). To limit the size of functional categories 

subjected to enrichment analysis, we filtered out GO terms with < 50 or > 500 genes. 

Data were downloaded in generic enrichment map (GEM) format to be used as input for 

functional enrichment analysis. Cytoscape with EnrichmentMap (Merico et al., 2010) was 

used to integrate and visualize GO enrichment results from the five excitatory clusters 

with the highest cell numbers and percentages of AT8+ cells into a single network. The 

ranked lists of statistically significant GO biological process terms obtained with g:Profiler 

were loaded into Cytoscape v3.8.2 with the EnrichmentMap app. v3.2 using the following 

conservative parameters: nodes (representing GO-derived gene sets) included gene sets with 

p-values < 0.02 and FDR q-values <0.1; edges (representing gene overlap between gene 

sets) used an overlap coefficient threshold of 0.7. Each of the five clusters was color coded 

to visualize the shared and distinct contributions of each cell type. The enrichment map 

was annotated automatically using the Autoannotate app. and the clusters labeled with three 

words using the WordCould app. To analyze together AD-associated and NFT-associated 

enrichment, we followed the same workflow to first generate hierarchical sorting lists of 

GO terms (AD-associated: DE genes between AD-AT8− and non-AD; NFT-associated: DE 

genes between AD-AT8+ and AD-AT8−) and then integrate the two comparisons into a 

single network for each cluster (Ex1, Ex2, Ex3, Ex7, Ex10).

The SynGO enrichment tool (Koopmans et al., 2019) was used to further characterize the 

synaptic transmission pathways enriched in neurons with NFTs. The list of genes associated 

with synaptic transmission by functional enrichment analysis (genes in clusters #1, #2 and 

#6 in Table S4; 510 genes) was loaded against a custom background list containing all genes 

expressed in the five excitatory cell subtypes analyzed (6,843 genes; expressed in ≥ 10% of 

cells). Using high-stringency parameters to filter annotations by experimental evidence and 

a minimum of 3 matching input genes per term, 227 genes mapped to SynGO annotated 

categories; 171 genes had a cellular component annotation, and 176 genes had a biological 

process annotation. A total of 24 cellular component and 39 biological process terms were 

significantly enriched at 1% FDR.

Histological validation in human brain tissue—Validation of selected gene markers 

was performed in the BA9 from the same AD donors used for transcriptomics. Single and 

double chromogenic RNAscope ISH staining was performed on 20-μm-thick cryosections 

from fresh-frozen tissue following the manufacturer’s protocol (RNAscope 2.5 HD assay 

and duplex assay). Human RNAscope probes were obtained from ACD Bio. to detect 

the following genes: SLC17A7 (#415611), GAD1 (#404031), CUX2 (#425581), LAMP5 
(#487691), COL5A2 (#510911), RORB (#446061), GAL (#317631), GABRG1 (#485931), 

RPRM (#565701), PCP4 (#446111), ROBO3 (#483191), NR4A2 (#582621), and NTNG2 
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(#551651). Adjacent Nissl-stained and NeuN-immunostained sections served as anatomical 

references to delineate boundaries between cortical layers.

Quantification of the proportions of neurons with NFTs within neocortical layers was 

performed on 20-μm-thick cryosections immunostained with NeuN (mouse anti-NeuN 

antibody, 1:1,000, MilliporeSigma Cat#MAB377) and p-tau Thr205 (rabbit anti-p-tau 

Thr205, 1:1000, ThermoFisher Cat#44-738G) and counterstained with DAPI (8 donors). 

Quantification of the proportions of neurons with NFTs in specific neuronal subtypes was 

performed by double or triple fluorescent AT8 IHC and RNAscope ISH for cell identity 

markers (SLC17A7, GAD1, CUX2, PCP4, ROBO3, NR4A2, NTNG2) on 12-μm-thick 

sections (4 donors). Prior to staining, the sections were photobleached to quench lipofuscin 

autofluorescence using an LED light source (Sun et al., 2017). For this, sections were 

fixed in 4% paraformaldehyde for 15 min at 4°C, washed twice in 1x PBS for 5 min, 

and then exposed to an LED light source (300-watt, full spectrum LED; Platinum LED 

Lights, Cat# P300). Sections were kept in 1x PBS, placed at a distance of 40 cm from 

the LED, and exposed for 36–48 hours at 4°C. After photobleaching, RNAscope ISH was 

performed using the Multiplex Fluorescent Reagent Kit v2 according to the manufacturer's 

instructions, except for a shortened protease treatment time of 15 min. Fluorescence 

signals were amplified and visualized using the TSA Plus Cyanine-5 and the TSA 

Plus Fluorescein systems (Akoya Biosciences, #NEL745E001KT and #NEL741E001KT, 

respectively), according to the manufacturer’s instructions, using a TSA Plus working 

solution concentration of 1:500. After ISH, the sections were fixed in 4% paraformaldehyde 

for 15 min at 4°C and then washed twice in 1x PBS for 5 min. Nonspecific binding 

was blocked with 10% normal goat serum in PBS for 30 min at 4°C. Sections were then 

incubated with 1:100 AT8 antibody in 1x PBS with 5% normal goat serum at 4°C overnight. 

The next day, the sections were washed three times for 10 min in 1x PBS and incubated 

with 1:50 goat anti-mouse Alexa Fluor 350 for 1 hour at 4°C. Sections were washed in 1x 

PBS three times for 5 min and mounted with Vectashield antifade mounting medium (Vector 

Laboratories).

We used digital images taken at 400x magnification with a Zeiss Axio Imager M2 

microscope equipped with a monochrome digital camera (Hamamatsu C11440-22CU) and 

the Zeiss ApoTome.2 optical sectioning system to quantify the colocalization of AT8 with 

the different neuronal subtype markers. Multiple images were acquired automatically within 

a region of interest that was traced manually to include the entire thickness of the cortex (for 

SLC17A7 and GAD1), the upper layers 2-3 (for CUX2), the middle layers 3b-5 (for PCP4), 

layer 5b (for PCP4 and ROBO3), or layer 6 (for NTNG2 and NR4A2) and then combined 

into a single image using the slide-scanning module in Stereo Investigator software v.2018 

(MBF Bioscience). A total of 10–12 counting frames (400 μm x 250 μm) were randomly 

placed within the region of interest to cover an area of ~5 mm2. Double- or triple-positive 

cells were counted manually using the Placing markers module in Stereo Investigator. For 

PCP4/ROBO3/AT8 triple staining, cells were counted throughout layer 5b (7.5 to 15 mm2). 

Four patients and ≥ 2 sections per marker were analyzed. The investigator was blinded to the 

sample and to the results obtained from single-cell RNA-seq studies. A total of 1,200–5,000 

cells per marker were analyzed. The results are expressed as the percentage of double- or 

triple-positive cells and the standard deviation for each gene marker.
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The quantification of synaptic markers and ATF4 expression levels in excitatory neurons 

with and without NFTs was performed by double AT8 IHC and RNAscope ISH (Multiplex 

Fluorescent Reagent Kit v2) for SLC17A7 combined with either SNAP25, GABRA1, 
GRIN2B, SYT1, or ATF4 (ACD Bio. probe numbers #518851, #472141, #485851, #525791, 

and #405741 respectively), on 12-μm-thick sections from 4 AD donors (2 sections each). 

The sections were photobleached to quench lipofuscin autofluorescence, immunostained 

for AT8 and processed for RNAscope ISH as described above, then counterstained 

with DAPI. Four-channel image acquisition was performed at 200x magnification using 

a Zeiss Axio Imager M2 microscope equipped with a monochrome digital camera 

(Hamamatsu C11440-22CU) and the Zeiss ApoTome.2 optical sectioning system. Each 

area of acquisition was selected using the slide-scanning module in the Stereo Investigator 

software v.2018 (MBF Bioscience) within a region of interest traced manually to include 

layers 2-3.

Images were processed using ImageJ (Fiji v.2.3.1). First, individual cells were identified 

via segmentation of the DAPI images using the watershed function with default parameters. 

Nuclei were filtered by size to exclude cell fragments and clumped nuclei. Then, the 

integrated density (IntDen; defined as the product of area and mean grey value of each 

region of interest) of each RNA probe was calculated and recorded within each cell (~5,000–

15,000 cells per marker). Non-excitatory neurons were filtered out by eliminating cells 

with a SLC17A7 IntDen value below a threshold ranging from 0.12 to 0.4 by sample. 

Similarly, cells were sorted into AT8− and AT8+ populations by identifying an AT8 IntDen 

threshold for tau-positive cells in each case. To assess expression level differences of 

SNAP25, GABRA1, GRIN2B and SYT1 between AT8− and AT8+ cells, we compared the 

mean IntDen of each gene from the AT8− and AT8+ populations for each sample and gene 

after fitting a Linear Mixed Model with IntDen as dependent variable, AT8 as independent 

pseudo-variable (AT8+, AT8−), and "sample" as a random effect with the formula IntDen ~ 

AT8 + (1∣sample). Outliers due to imaging artifacts were excluded from the analysis using 

the R function rstatix::identify_outliers(IntDen).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using R version 4.0.2 or GraphPad Prism version 9 

(GraphPad, San Diego, CA). The number of donors, tissue sections, or cells and p values 

for each experiment are noted in the figure legends. Statistical details of each experiment are 

included in the Method details section.

ADDITIONAL RESOURCES

• The datasets are publicly available for interactive viewing and exploration 

on the cellxgene platform by the Chan Zuckerberg Initiative at https://

cellxgene.cziscience.com/collections/b953c942-f5d8-434f-9da7-e726ba7c1481

• The single-soma isolation protocol is publicly available 

at https://www.protocols.io/view/isolation-of-single-somas-from-postmortem-

fresh-fr-bp2l64o2dvqe/v1
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Highlights

• Method for profiling cells with cytoplasmic protein aggregates from the 

human brain

• Comparison of ~120K NFT-bearing and NFT-free transcriptomes from AD 

and controls

• Ranked list of 227 synaptic genes associated with NFTs in human prefrontal 

cortex

• Uncoupling of susceptibility to NFT formation and neuronal death
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Figure 1. Isolation of single somas with pathological tau aggregates
(A) Experimental approach to single-soma isolation.

(B) Representative single cell suspensions displaying neuronal somas (arrows) and naked 

nuclei (arrowheads).

(C) Representative FACS plots of pallidum-derived somas from a PSP donor. Gating using 

MAP2 and AT8 allows the collection of glial cells with tau aggregates (Q1; MAP2−/AT8+), 

neuronal somas with tau aggregates (Q2; MAP2+/AT8+), and neuronal somas without 

aggregates (Q4; MAP2+/AT8−).

(D) FACS plot and sorted AT8+/MAP2+ neurons displaying mature tangles (band or flamed 

shaped; arrowheads) and early perikaryal fibrils (arrow) from AD neocortex.

(E) FACS plot and sorted MAP2−/AT8+ glia displaying oligodendrocytes with coiled bodies 

from a PSP donor.
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(F) Overview of strategy for single-soma transcriptomics of NFT-bearing and NFT-free 

neurons from AD brain.

See also Figures S1 and S2.

Otero-Garcia et al. Page 35

Neuron. Author manuscript; available in PMC 2023 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Census of neuronal subtypes exhibiting NFTs in AD
(A) Quantification of NFT density in tissues used for transcriptomics. NFTs were abundant 

in layers 2–3 (8.94 ± 1.52%) and 5 (8.86 ± 1.56%) and sparse in layers 4 (1.75 ± 1.03%) and 

6 (3.03 ± 0.96%). Data are represented as mean ± STD.

(B and C) Clustering of NFT-free and NFT-bearing somas separately. t-SNE plots illustrate 

the annotated cell types. Gray clusters represent mixed populations. Violin plots show the 

distribution of UMI counts per cell in each sample.

(D–F) Clustering of NFT-free and NFT-bearing combined datasets after multiCCA (63,110 

somas after QC). One color in (D) per sample. Unsupervised clustering (E) identified the 

same neuronal subtypes as in (B). Dot plots (F) depict the expression of marker genes 

(x-axis) within Ex and In clusters (y-axis).

(G) Bar plots illustrating the fraction of somas derived from each donor per cluster 

(normalized to sample size).
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(H) t-SNE plot highlighting the relative contributions of AT8− and AT8+ somas to each 

cluster.

(I) Bar plots showing the percentages of AT8− and AT8+ somas per cluster. Data are 

represented as mean ± SEM. The column adjacent to the bar plots shows the predicted 

percentages of AT8+ neurons in histological sections for each subtype (percentage of AT8+ 

somas per cluster normalized to total somas obtained in clustering analysis divided by 

percentage of NFT-bearing neurons obtained in histological sections from the same donor 

[Figure 2A]).

See also Figures S3 and S4, and Table S2.
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Figure 3. Histological validation of vulnerable excitatory neuronal subtypes
(A) Nissl, AT8 and NeuN IHC, and SLC17A7 ISH provide anatomical reference. Double 

fluorescent AT8 IHC (blue) and ISH (white) stains illustrate susceptibility of excitatory 

(SLC17A7) and resistance of inhibitory (GAD1) neurons. Arrowheads point to neurons with 

NFTs.

(B) t-SNE and violin plots highlight marker genes for excitatory neuronal subtypes and their 

laminar distribution.

(C) Susceptibility of layers 2–3 CUX2 (Ex1, Ex2) neurons. Feature plots illustrate gradient-

like expression of SERPINE2/LAMP5 and COL5A2 within the CUX2 cluster. Double 

chromogenic ISH illustrates two subpopulations with preferential distributions in superficial 

(CUX2/LAMP5+; Ex1) or deep (CUX2/COL5A2+; Ex2) layers 2–3. Arrows point to 

double-positive cells. Double fluorescent AT8 IHC and CUX2 ISH illustrate CUX2+ 

neurons with NFTs.

(D) Susceptibility of layer 5 RORB/PCP4 (Ex7) and layer 5b PCP4/ROBO3 (Ex8). Feature 

plots illustrate a heterogenous RORB population comprised of RORB/PLCH1/GAL (Ex3), 
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RORB/GABRG1 (Ex4/5), RORB/RPRM (Ex6), and RORB/PCP4 (Ex7) clusters, and a 

RORB−, PCP4/ROBO3/HTR2C cluster (Ex8). Double chromogenic ISH for RORB and 

either GAL, GABRG1, RPRM or PCP4 confirmed distinct neuronal populations within 

layers 4–5. Double chromogenic ISH for PCP4 and ROBO3 illustrates small PCP4/ROBO3+ 

neuronal bodies in layer 5b (arrows). Fluorescent staining for AT8 and either PCP4 or PCP4 
and ROBO3 illustrates neurons with NFTs.

(E) Resistance of layer 6 NR4A2/NTNG2 (Ex11). Double chromogenic and triple 

fluorescent staining illustrate AT8−, NR4A2/NTNG2+ neurons.

(F) Bar plot showing the frequency of NFTs in cells expressing SLC17A7 (11.59 ± 3.7%), 

GAD1 (0.95 ± 0.41%), CUX2 (10.64 ± 4.2%), PCP4 (12.24 ± 4.2%), PCP4/ROBO3 (5.70 ± 

2.53%), and NR4A2/NTNG2 (0.5 ± 0.3%). Error bars indicate STD.
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Figure 4. Transcriptomic signatures of tau pathology within and across neuronal subtypes
(A) Total numbers of up- and downregulated genes between neurons with and without 

NFTs.

(B) Volcano plots of DE genes for five excitatory subtypes with high NFT proportions. 

Dots represent genes (green = upregulated; magenta = downregulated). Dashed lines indicate 

significance thresholds (log-fold change <0.1 or > 0.1; adjusted p-value < 0.05; for genes 

detected in ≥ 20% of cells in at least one condition; MAST test). Top 10 DE genes are 

displayed.

(C) Heatmap and hierarchical clustering of DE genes highlighting shared and cell-type-

specific up- and downregulated genes. Input lists of genes were truncated to match the cell 

type with the smallest number of DE genes. The genes listed include shared DE genes with 

the highest log-fold change values.

(D) Box plots showing median expression values of HSP90AA1, APP, PRNP, and the 

epigenetic repressor MPHOSPH8 in neurons with and without NFTs in each cluster. *p < 

0.05 (MAST test); n.s. = not significant.

(E) REST and GABPA transcriptional regulatory networks (color code: cyan = genes 

coregulated and coexpressed based on our single-cell data and/or ROSMAP datasets; red 

= genes coregulated, coexpressed, and differentially expressed in neurons with NFTs).
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See also Figure S5 and Tables S2 and S3.
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Figure 5. Shared versus cell-type-specific pathways associated with tau pathology
(A) Overview of strategy to identify shared and cell-type-specific pathways overrepresented 

in the five clusters with highest cell numbers and NFT proportions.

(B) Manhattan plots of GO biological processes enriched in NFT-bearing vs. NFT-free 

neurons for each cluster, obtained using g:Profiler. Colored circles represent significant 

terms (thresholds: g:SCS significance < 0.001; GO terms with > 50 or < 500 genes; capped 

at terms with a −log10 [Padj] > 16). Top 5 nonredundant terms are highlighted.

(C) Functional enrichment map. Nodes represent gene sets of GO biological processes; 

each node is color-coded by cluster to illustrate shared and cell-type-specific contributions. 

Yellow circles delineate constellations of functionally related gene sets.

See also Table S4.
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Figure 6. Dysregulation of synaptic transmission pathways in NFT-bearing neurons
(A and B) Enrichment of synaptic transmission pathways in NFT-bearing neurons by 

SynGO. Sunburst plot illustrates over- and underrepresented biological process terms; colors 

represent enrichment values at 1% FDR. The bar plot highlights top 12 enriched terms and 

commonly DE genes in NFT-bearing neurons within each term.

(C) Heatmap and hierarchical clustering of 63 synaptic genes dysregulated across five 

excitatory subtypes (green = upregulated; magenta = downregulated; MAST test with 

adjusted p-value < 0.05; log-fold change >0.1; detection in ≥ 20% of cells). Arrows indicate 

genes for known biomarkers.

(D) Experimental design to validate upregulation of synaptic markers in AT8+ excitatory 

neurons. Representative section illustrates AT8 and GRIN2B colocalization in layers 2–3 

SLC17A7+ neurons (arrowheads).
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(E) Representative double fluorescent ISH staining for SLC17A7 and either SNAP25, 

GABRA1, GRIN2B, or SYT1 in AT8+ neurons (arrowheads).

(F) Quantification of integrated density (IntDen) of SNAP25, GABRA1, GRIN2B, or SYT1 
in AT8+ vs. AT8− excitatory neurons. Average expression in AT8+ vs. AT8− neurons for each 

donor was significantly increased for 3 of the 4 markers (paired t-test; n = 4 donors; p = 

0.11 [SNAP25], p = 0.05 [GABRA1], p = 0.02 [GRIN2B], p = 0.04 [SYT1]). After fitting 

a linear mixed model to predict IntDen with AT8, using the donor as a random effect, the 

effect of AT8 was statistically significant and positive (p < 0.001) for all markers.

See also Figure S6 and Table S5.
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Figure 7. Uncoupling of NFT and neuronal death susceptibilities in AD
(A and B) Integration of non-AD, AD-AT8−, and AD-AT8+ datasets. UMAP plots show 

unsupervised clustering of excitatory and inhibitory subsets. The three datasets are split and 

represented side-by-side to illustrate similar cell compositions of the non-AD and AD-AT8− 

datasets, and different cell compositions of the AD-AT8+ dataset. Dot plots (B) depict the 

expression of marker genes (x-axis) within Ex and In clusters (y-axis).

(C) UMAP plots highlighting relative contributions of non-AD, AD-AT8−, and AD-AT8+ 

somas to each Ex or In cluster.

(D) Bar plots showing fractions of AD-AT8+ vs. AD-AT8− somas (relative susceptibility to 

exhibit NFTs) and fractions of non-AD vs. AD somas (interpreted as relative susceptibility 

to death). The red and green colors indicate the most susceptible and resistant subtypes 

(adjusted p-values: *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001; n.s. = not 

significant; beta regression analysis). Data are represented as mean ± SEM.
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See also Figures S7 and S8 and Table S6.
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Figure 8. NFT-associated versus AD-associated transcriptomic changes in AD
(A) Three-way DGE analysis between non-AD, AD-AT8−, and AD-AT8+ datasets; colors 

represent DGE between each pair.

(B) Bar chart showing the total number of up- and downregulated genes for each comparison 

within each excitatory subtype.

(C) Venn diagrams showing the number of overlapping and unique DE genes for each 

comparison in five excitatory subtypes susceptible to tau aggregation.

(D) Scatter plots illustrating the distribution of up- and downregulated genes.

(E) Bar plot showing average log2 fold change values for overlap genes in a representative 

vulnerable subtype (Ex2). Each bar represents a DE gene (n = 793). The bars are overlaid 

(orange = AD-AT8− vs. non-AD; green = AD-AT8+ vs. non-AD) to demonstrate the 

directionality and log2 fold change per gene for the two comparisons. Only the 11 genes 

named in the figure were dysregulated in opposite directions.
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(F) Functional enrichment maps illustrating Aβ-associated, NFT-associated, and AD-

associated terms. Nodes represent gene sets of GO biological processes. Gray circles 

delineate constellations of functionally related gene sets.

(G) Heatmaps of DE genes within the RNA splicing, death, and autophagy pathways 

highlighting Aβ-associated, NFT-associated, and AD-associated genes (green = upregulated; 

magenta = downregulated; MAST test with adjusted p-value < 0.05; log2 fold change >0.1; 

detection in ≥ 20% of cells).

See also Figure S9 and Table S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-MAP2 polyclonal MilliporeSigma Cat#AB5622

Mouse anti-NeuN MilliporeSigma Cat#MAB377

Mouse anti-phospho-Tau Ser202, Thr205 
monoclonal (AT8)

ThermoFisher Cat#MN1020

Rabbit polyclonal anti oligomeric tau (T22) MilliporeSigma Cat#ABN454

Recombinant rabbit anti-phospho-Tau (Ser396) 
monoclonal [EPR2731]

Abcam Cat#ab109390

Phospho-Tau (Thr205) Polyclonal ThermoFisher Cat#44-738G

Recombinant anti-SQSTM1/p62 [EPR4844] Abcam Cat#ab109012

HRP Anti-beta Actin [AC-15] Abcam Cat# ab49900

Lamin B1 (D4Q4Z) Rabbit monoclonal Cell Signaling Technology Cat#12586

Histone H3 C-terminal EpiCypher Cat#13-0001

Biological Samples

Human postmortem brain tissue Table S1 N/A

Chemicals, Peptides, and Recombinant Proteins

RNAscope Probe SLC17A7 ACD Bio Cat#415611

RNAscope Probe GAD1 ACD Bio Cat#404031

RNAscope Probe CUX2 ACD Bio Cat#425581

RNAscope Probe LAMP5 ACD Bio Cat#487691

RNAscope Probe COL5A2 ACD Bio Cat#510911

RNAscope Probe RORB ACD Bio Cat#446061

RNAscope Probe GAL ACD Bio Cat#317631

RNAscope Probe GABRG1 ACD Bio Cat#485931

RNAscope Probe RPRM ACD Bio Cat#565701

RNAscope Probe PCP4 ACD Bio Cat#446111

RNAscope Probe ROBO3 ACD Bio Cat#483191

RNAscope Probe NR4A2 ACD Bio Cat#582621

RNAscope Probe NTNG2 ACD Bio Cat#551651

RNAscope Probe SNAP25 ACD Bio Cat#518851

RNAscope Probe GABRA1 ACD Bio Cat#472141

RNAscope Probe GRIN2B ACD Bio Cat#485851

RNAscope Probe SYT1 ACD Bio Cat#525791

RNAscope Probe AFT4 ACD Bio Cat#405741

Critical Commercial Assays

Chromium Single Cell 3’ v2 Reagent Kit 10x Genomics PN-120237

RNAscope Multiplex Fluorescent Reagent Kit v2 ACD Bio Cat#323120

RNAscope 2.5 HD Duplex Assay ACD Bio Cat#322430
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Raw and processed data This paper GSE129308

Published dataset Mathys et al., 2019 https://www.synapse.org/#!
Synapse:syn18485175

Published dataset Leng et al., 2021 https://cellxgene.cziscience.com/
collections/180bff9c-c8a5-4539-b13b-
ddbc00d643e6

Software and Algorithms

Seurat Seurat v2.4, v3 and v4 https://satijalab.org/seurat/

Fiji/ImageJ Fiji v.2.3.1 RRID:SCR_002285

Adobe Illustrator CC Adobe Systems RRID:SCR_010279

SynGO SynGO consortium https://www.syngoportal.org/

g:Profiler g:Profiler version Ensembl 97, Ensembl 
Genomes 44

https://biit.cs.ut.ee/gprofiler/gost

Cytoscape Cytoscape v3.8.2 RRID:SCR_003032

Stereo Investigator MBF Bioscience v.2018 RRID:SCR_002526

Cell Ranger 10x Genomics RRID:SCR_017344

Neuron. Author manuscript; available in PMC 2023 September 21.

https://www.synapse.org/#!Synapse:syn18485175
https://www.synapse.org/#!Synapse:syn18485175
https://cellxgene.cziscience.com/collections/180bff9c-c8a5-4539-b13b-ddbc00d643e6
https://cellxgene.cziscience.com/collections/180bff9c-c8a5-4539-b13b-ddbc00d643e6
https://cellxgene.cziscience.com/collections/180bff9c-c8a5-4539-b13b-ddbc00d643e6
https://satijalab.org/seurat/
https://www.syngoportal.org/
https://biit.cs.ut.ee/gprofiler/gost

	SUMMARY
	eTOC Blurb
	INTRODUCTION
	RESULTS
	Isolation and transcriptome profiling of single somas with NFTs
	Census of neuronal subtypes exhibiting NFTs in the prefrontal cortex of human AD brain
	Signatures of NFT susceptibility within and across excitatory neuronal subtypes
	Shared versus cell-type-specific pathways associated with tau pathology
	Dysregulation of synaptic transmission pathways in neurons with NFTs
	Uncoupling of NFT and neuronal death susceptibilities in the AD prefrontal cortex
	NFT-specific versus common AD associated transcriptome changes

	DISCUSSION
	STAR METHODS
	RESOURCE AVAILABILITY
	Lead contact
	Materials availability
	Data and code availability

	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	Human samples

	METHOD DETAILS
	Isolation of individual somas with tau aggregates from frozen human brains
	FACS of somas with and without NFTs
	Western blotting of FACS-sorted somas
	Single-soma RNA-sequencing
	Analysis of the AT8−, AT8+, and combined AT8− and AT8+ datasets
	Analysis of the non-AD, AD-AT8− and AD-AT8+ datasets
	Single-cell reference mapping and annotation of published datasets
	Statistical analysis of NFT and cell death susceptibility
	DGE analysis
	TFBS analysis
	TF regulatory networks
	GO enrichment analysis
	Histological validation in human brain tissue

	QUANTIFICATION AND STATISTICAL ANALYSIS
	ADDITIONAL RESOURCES

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Table T1

