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recurrent genomic alterations in commonly 
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Abstract 

Background:  Breast cancer cell lines (BCCLs) and patient-derived xenografts (PDXs) are the most frequently used 
models in breast cancer research. Despite their widespread usage, genome sequencing of these models is incom-
plete, with previous studies only focusing on targeted gene panels, whole exome or shallow whole genome sequenc-
ing. Deep whole genome sequencing is the most sensitive and accurate method to detect single nucleotide variants 
and indels, gene copy number and structural events such as gene fusions.

Results:  Here we describe deep whole genome sequencing (WGS) of commonly used BCCL and PDX models using 
the Illumina X10 platform with an average ~ 60 × coverage. We identify novel genomic alterations, including point 
mutations and genomic rearrangements at base-pair resolution, compared to previously available sequencing data. 
Through integrative analysis with publicly available functional screening data, we annotate new genomic features 
likely to be of biological significance. CSMD1, previously identified as a tumor suppressor gene in various cancer types, 
including head and neck, lung and breast cancers, has been identified with deletion in 50% of our PDX models, sug-
gesting an important role in aggressive breast cancers.

Conclusions:  Our WGS data provides a comprehensive genome sequencing resource of these models.

Keywords:  Breast cancer cell lines, Patient-derived xenografts, Whole genome sequencing, Structural variants, Non-
coding mutations
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Background
Breast cancer cell line (BCCL) models are indispen-
sable tools to study breast cancer biology and hetero-
geneity. Molecular profiling of BCCLs has generated 
useful insights into breast cancer subtypes and provides a 
resources for cancer gene discovery [2, 13, 19]. A number 

of large-scale cancer cell line projects have characterised 
hundreds of cell lines with whole transcriptome profiling 
[14], DNA microarray and targeted sequencing [3]. These 
studies provide great resources for cancer cell line stud-
ies; however, none of them have performed deep whole 
genome-wide sequencing analysis of genetic changes, 
including mutations and structural variations, on these 
critical breast cancer models.

Patient-derived xenograft (PDX) models, which closely 
resemble the heterogeneity of clinical BC, are estab-
lished as important preclinical models [6, 8]. These breast 
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cancer PDX models have been only characterised by shal-
low (< 1X coverage) whole genome sequencing (WGS) or 
exome sequencing [6].

WGS is the most sensitive method for detecting struc-
tural variants (SVs) and copy number variants (CNVs) 
and the only method to survey non-coding mutations. 
WGS is also a more powerful tool compared to exome-
seq in detecting exome variants [4]. To fully understand 
the genomic features of these models, it is important to 
conduct deep WGS analysis of these models to exhaus-
tively identify complex genomic features of PDX models. 
In this study, we performed deep WGS to provide a com-
prehensive resource of genomic events of these impor-
tant BCCLs and PDX models.

Results
Whole genome sequencing of breast cancer cell line 
models
According to a PubMed search, the top six studied 
BCCLs are MCF7, MDAMB231, T47D, SKBR3, MCF10A 
and MDAMB468, which cover more than 90% of all 
BCCL associated studies across more than 90,000 pub-
lications (Additional file  1: Fig. S1). Previous studies on 
these cell lines are restricted to whole-exome or low-
pass whole genome sequencing at 0.2X coverage [5]. 
Here we describe whole genome sequencing (WGS) of 
these models on the Illumina X10 platform with an aver-
age ~ 60 × coverage, including two replicates of the most-
commonly used MCF7 cell line (~ 53× and ~ 78×). Raw 
reads were mapped to human genome GRCh37 and sin-
gle nucleotide variants were called using the Issac pipe-
line [22]. WGS is the most accurate way to assess cell 
line identity [26]. We have compared the genotyping 
calls from our WGS data with SNP array from two inde-
pendent studies previously published [3, 12]. Correlation 
analysis of the genotyping calls at the same genomic loci 
shows high concordance between ours and the published 
data (R > 0.9) (Additional file  1: Fig. S2), confirming the 
identity of all cell lines used in this study. In total, we 
have identified 3,540,312 to 4,108,844 variants per sam-
ple from the WGS data, including SNVs and small indels 
(Additional file 2: Table S1). The majority of variants are 
present in the dbSNP database [25] (94.0–96.2%) (Addi-
tional file 2: Table S1). About 90% of these dbSNP vari-
ants have also been reported in the 1000 genome projects 
[10], suggesting most variants in these cell lines models 
represents common variants in the human population, 
similar to the previous finding of WGS of the Hela cell 
line [15]. However, each of the cell lines has about 5% of 
total variants that are cell line specific variants (Fig. 1A).

In MCF7, for example, more than half of the cell 
line specific variants are located in inter-genic regions 
and ~ 1/3 are found in introns (Fig.  1B). This is similar 

across all the cell lines models (Additional file 1: Fig. S3). 
We compared the list of missense mutation in MCF7 to 
a recent study of multiple strains of MCF7s [5] (Fig. 1C). 
Most of the missense mutations in [5] shared between 
MCF7 strains, therefore likely to come from the founder 
tumor, were have been identified in this study (20/23), 
and the concordance with our data increases as the num-
ber of mutant MCF7 strains increases (Fig.  1D, E). In 
addition to the mutations reported in Ben-David et  al., 
our WGS data identified 9,555 additional missense muta-
tions, 635 of which are not reported in 1000 genome or 
dbSNP database (Additional file  2: Table  S2). Sequenc-
ing of large cohorts of breast cancer tissue has revealed 
recurrent mutations in long non-coding genes including 
MALAT1 and NEAT1[20]. Among all the cancer associ-
ated long non-coding genes reported [21] ([9], Lnc2Can-
cer v3.0), we identified mutations of MALAT1, HOTAIR 
and ZFAS1 in these cell line models. For example, Malat1 
showed a heterozygous mutation (chr11:65271832T > C) 
in MCF7, but not in MDA-MB-231 (Additional file  1: 
Fig. S4). The complete list of variants in the non-cod-
ing regions in these cell lines models (Additional file  2: 
Table S3) could serve as a useful database for selection of 
models in non-coding RNA studies.

We also analysed the mutational signatures [2] using 
“deconstructSig” r package in the cell lines [24] (Meth-
ods). There is no difference between cell lines, likely due 
to the high number of mutations (Fig. 2A). As we do not 
have germline genomic data for cell line donors, we have 
used missense mutations for the cell lines after filtering 
against the dbSNP and 1000 genomes databases. Signa-
tures 1A/1B, 3 and 6 are commonly observed across all 
the cells lines. Signature 1 has previously been commonly 
observed across all cancer types, while Signature 3 has 
been found in breast, ovarian and pancreatic cancers 
(Fig.  2B and Additional file  2: Table  S4). Interestingly, 
Signature 3 is associated with DNA double-strand break-
repair and germline and somatic BRCA1 and BRCA2 
mutations. Signature 6 has been found in a majority of 
cancers and is associated with DNA mismatch repair and 
microsatellite unstable tumours.

In addition to the SNVs, we also called SVs and CNVs 
from the WGS data using different methods, includ-
ing Breakdancer [7] and Delly [7] for structural vari-
ants; CNVnator [1] and Lumpy [1] for copy number (see 
Methods). A summary of SVs and CNVs identified in 
MCF7 and the other four cell lines is shown in Fig.  3A 
and Additional file  1: Fig. S5 respectively. In total, we 
have identified 321 inter-chromosomal SVs, with 38–108 
SVs per cell line (Additional file 2: Table S5). We use the 
GREAT program [17] to perform pathway analysis of the 
SVs events from individual cell lines. As expected, the 
top enriched pathways are genes in amplified regions 
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Fig. 1  Summary of single nucleotide variations (SNVs) in six breast cancer cell lines, including two replicates for MCF-7. A Classification of SNVs 
into different categories: overlap with 1000 genome project; overlap with dbSNP but not in 1000 genome project; cell-line specific events; B 
Distribution of the SNVs in MCF-7 in respect to location of protein coding genes. “RNA variant” are the variants that lie on one of the RNA transcripts 
C unsupervised hierarchical clustering of MCF7 in this study together with 27 MCF7 strains in Ben-David et al., based on their missense mutation 
obtained from supplementary information from (Ben-David et al.) D Percentage of overlapping missense mutations between our findings and 
those identified in multiple strains of MCF7s in Ben-David et al. E Venn diagram shows the overlap of missense mutations in Ben-David et al. and this 
study
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Fig. 2  Mutational signature analysis of the Breast Cancer Cell Lines. A Output mutational profiles of the six cells lines from deconstructSigs 
displaying the fraction of mutations found in each trinucleotide context B pie charts of the mutational signatures identified for each of the six cell 
lines models from deconstructSigs
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previously identified from breast cancer, such as genes 
like ZNF217 and BCAS3 in MCF7 [11]; a selected list of 
luminal genes have also been enriched in the luminal cell 
lines MCF7 and T47D (Additional file 1: Fig. S6).

In addition to SVs, we also identified copy number 
alterations in these cell line models (Additional file  3: 
Table  S6). WGS has improved accuracy in detecting 
CNVs compared to exome-seq due to its uniform cover-
age [4]. We compared the CNVs identified from MCF7 
with existing data from array-based COSMIC and shal-
low WGS from Ben-David et  al. (Fig.  3B, Additional 
file 4: Table S7). Ben-David et al. reported that high vari-
ability in copy number calling, our study is more con-
cordant with both of the studies than they are with each 
other (Fig.  3B). For example, a substantial proportion 
(138/478) of the CNVs identified in this study but not 
in COSMIC are reported in Ben-David et al. using shal-
low WGS, suggesting the array-based method missed 
a lot of CNVs due to poor coverage. WGS can identify 
the known key copy number events in each of the cell 
lines with fine resolution, including AURKA and MYC 
amplification, CDKN2A (Fig.  3C) deletion in MCF7, 
ERBB2 amplification in SKBR3, and CDKN2A deletion in 
MDAMD231 (Additional file 3: Table S6). Our WGS data 
can also identify novel CNVs not reported in either COS-
MIC or Ben-David et al. LINC00290, a long non-coding 
RNA, which has been previously reported to undergo 
copy number loss in a pan-cancer study (Zack et  al. 
2013), has a homozygous deletion in MCF7 (Fig.  3D). 
Furthermore, CNV boundaries were accurately detected 
by WGS compared to WES, in many cases with base pair 
precision (Additional file  3: Table  S6). For example, in 
MCF7 cell line, the boundaries of the homozygous dele-
tion cover only CDKNA2A, and the nearby CDKN2B is 
in a hemizygous deletion region (Fig. 3C). FOXA1 copy 
number gain is in a focal amplicon, whereas GATA3 is in 
a broad copy number gain region about 0.5  Mb long & 
ESR1 copy number gain is towards the 5’ end of the gene 
(Additional file 1: Fig. S7).

In order to estimate the functional impact of these 
variants, we compared our list of copy number variations 
with functional screen data from these cell lines [16]. In 

MCF7, 33 out of the 445 copy number events harbour at 
least one of the breast cancer essential genes from [16]. 
Interestingly this reveals coordinated amplification of 
ESR1 and its co-factors NCOA3 and GATA3 and pioneer 
factor FOXA1, perhaps explaining the extreme estrogen-
sensitivity of this cell line (Additional file  3: Table  S6). 
Therefore, this study resolves known copy number events 
at nucleotide resolution and reports a substantial num-
ber of new copy number variants, some with evidence for 
function in these commonly used cell line models.

Patient‑derived xenograft models
Bruna et al. performed shallow WGS (< 1X) profiling of 83 
breast cancer PDX models and assessed their response to 
drug treatment [6]. Copy number calls were generated at 
100  kb resolution. Here we have selected six well-estab-
lished and frequently used PDX models with two matched 
blood samples [8] and performed WGS with at least 
90 × coverage (blood samples were sequenced at 30 × cov-
erage) (Additional file 5: Table S8) to generate reliable SNP, 
copy number and structural variant calls. Using the same 
pipeline as the cell line analysis based on the reads mappa-
ble to human genome, we identified 3,435,230 to 4,172,800 
variants per sample from the WGS data, including SNVs 
and small indels (Additional file 2: Table  S1). Similarly to 
the cell line data, the majority have been identified in the 
dbSNP database [25] (95.6–95.9%) (Additional file  1: 
Table S1). About 84% of these variants identified in dbSNP 
have also been reported in 1000 genome projects [10]. Each 
of the PDXs has about 4% of total variants as PDX specific 
variants (Fig. 4A). In HCI002, more than half of the PDX 
line specific variants are located in inter-genic regions, 
followed by variants in introns (Fig.  4B). While HCI004, 
HCI008 and two blood samples have the least number 
of variants in intron regions (Additional file  1: Fig. S8). 
To validate our findings, we performed exome sequenc-
ing analysis of selected models and identified There are 
12 non-synonymous mutations identified using an inde-
pendent exome sequencing analysis of these models, all of 
which have been also identified in our WGS data (Addi-
tional file 5: Table S9). Similar to the cell lines, we also per-
formed mutational signature analysis in the PDX models. 

(See figure on next page.)
Fig. 3  Genomics landscape of copy number and structural variants in breast cancer cell lines. A Representative circos plot of MCF7 for genomics 
alterations. Copy number events are summarized in the inner circle with red and blue colour indicates copy number gains and blue respectively, 
two inner circles are represented two replicates of MCF7 samples (one 30X and one 60X). Arcs connecting two loci of difference chromosomes 
indicate inter-chromosomal structural variations. B Venn diagram shows the overlap of CNV genes between COSMIC, Ben-David et al. and this study. 
C Representative genome browser view of copy number alterations covering a common CNV gene, CDKN2A. Tracks from top to bottom: depth of 
coverage in an NA12878 control (control), all reads in the sample (all reads), or reads with mapping quality >  = 20 (MQ > 20), the average mapping 
quality of aligned reads from the sample (MQ, if no reads align MQ = 0), coverage standard deviation from 500 controls (Coverage SD, indicating 
common CNV), overlapping segmental duplications published by Bailey JA et al. 2002 (SEG-DUP, used as control for germline CNVs), discordant 
pairs (DP), split reads (SR), variants from the Database of Genomic Variants (DGV), and RefSeq genes (Genes). D Representative genome browser 
view plot of a novel CNV gene LINC00290 in this study
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Fig. 3  (See legend on previous page.)
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For PDX samples, we are able to generate somatic missense 
mutation lists for the HCI004 and HCI0010 models as we 
have matched blood samples for these models and can fil-
ter sample-specific germline variants in additional to 1000 

genomes and dbSNP (Fig. 5A). While Signatures 1A/1B, 3 
and 6 are found in most of the PDX models, there are also 
model-specific signatures (Fig. 5B). Interestingly, Signature 
2, which is associated with hypermutation or kataegis, is 

Fig. 4  Summary of SNVs in breast cancer patient-derived xenograft models: A classifications of SNVs into three categories: overlap with 1000 
genome project; overlap with dbSNP but not in 1000 genome project; PDX-specific variants. B Distribution of the SNVs in HCI002 model in respect 
to location of protein coding genes. C Representative genome browser view of copy number alteration covering PTEN in HCI004 model. Tracks from 
top to bottom: depth of coverage in HCI004 germline (control) and HCI004 PDX, and the average mapping quality of aligned reads from the sample 
(MQ, if no reads align MQ = 0), coverage standard deviation from 500 controls (Coverage SD, indicating common CNV), overlapping segmental 
duplications published by Bailey JA et al. 2002 (SEG-DUP, used as control for germline CNVs), discordant pairs (DP), split reads (SR), variants from the 
Database of Genomic Variants (DGV), and RefSeq genes (Genes)
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Fig. 5  Mutational signature analysis of the PDXs. A Output mutational profiles of the six PDX models from deconstructSigs displaying the 
fraction of mutations found in each trinucleotide context B pie charts of the mutational signatures identified for each of the six PDX models from 
deconstructSigs
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found in the HCI004 model only. Other model-specific sig-
natures including Signature 5 for HCI008 and Signature 3 
for HCI010 and HCI012 (Additional file 5: Table S10).

Using a stringent cutoff [18], we have created a list of 
high confidence copy number alterations and structural 
variants for each of the PDXs (Additional file 6: Table S11 
and Additional file  7: Table  S12). Recurrently amplified 
regions across the PDX models are chromosome 8q in 
HCI002/005/010/012 (covering MYC, Additional file  8: 
Table  S13) and chromosome 7p in HCI004/HCI008 (cov-
ering EGFR). Frequent deleted regions harbour classic 
tumour suppressor genes, for example PTEN in HCI004/
HCI010 (Fig. 4C, Additional file 6: Table S11). There are a 
few SV regions that harbouring breast cancer associated 
tumour suppressor genes, such as PTPRD in HCI008 model 
and CSMD3 in HCI012 model (Additional file 7: Table S12).

Because PDX tumours probably model more aggres-
sive breast cancers (DeRose et  al.), we proposed that 
genomic analysis of PDX models may reveal genes associ-
ated with very aggressive disease. Interestingly, the most 
frequently deleted gene in PDX models, CSMD1(in 3 out 
of our six PDX models), is much more frequently deleted 
in metastatic breast cancer (14%) than in early disease 
(2%) (Fig.  6A). Low expression of CSMD1 is also associ-
ated with poor survival outcome in the METABRIC early 
cancer cohort (Fig.  6B) and is especially associated with 
poor survival outcome in the LumB subtype (Additional 
file 1: Fig. S9). Interestingly, we identified copy number loss 
of CSMD1 in 23 of 32 PDXs in another PDX sequencing 
dataset [6]. These data suggest that CSMD1 plays a critical 
role in suppressing growth or survival of metastatic breast 
cancers.

Discussion
We have completed whole genome analysis for widely 
used breast models, including mutations, copy number 
and SVs. The data has refined previously finding in cell 
lines such as AURKA and MYC amplification/CDKN2A 
deletion in MCF7, ERBB2 amplification in SKBR3, 
and CDKN2A deletion in MDAMD231 at nucleotide 
resolution. Our WGS data also identified novel muta-
tions in non-coding genes and novel CNVs such as a 
homozygous deletion in LINC00290, and will be an 
important resource for research in this area. It is worth 
noting that WGS didn’t identify all the mutations 
reported in the targeted sequencing from Ben-David 

et  al. (Fig.  1D). This could be due to that targeted 
sequencing provides very high coverage (> 300x) for 
these regions and can identify mutations with very low 
minor allele frequency. Since WGS is far more accurate 
in identifying CNVs boundaries, it can provide further 
insights into well-known cancer associated genes, such 
as focal amplification of FOXA1 in MCF7 versus broad 
copy number gain in GATA3 and partial gain of ESR1. 
By comprehensively identifying the genomic features 
of these models, the field can now choose appropriate 
models to examine the functional significance of genes 
or pathways of interest.

Genomic studies of PDX may help us identify 
genomic features associated with very poor prognosis, 
as growth in a PDX acts as a ‘filter’ to enrich for the 
most aggressive tumours and cells that otherwise occur 
at low patient frequency in unselected breast cancer 
cell populations. In support of this, we found recurrent 
deletion of CSMD1 in the PDXs models and its asso-
ciated with metastatic disease and survival. However, 
since we are comparing unmatched cohorts of primary 
and metastatic disease and relying on different platform 
to detect copy number, further studies on the match 
primary and metastatic disease based on the same 
platform is needed to confirm the roles of CSMD1 in 
metastatic breast cancer. Further extension of this 
idea to more PDX models may reveal further drivers 
of aggressive disease. The WGS data in this study is a 
valuable resource for other genomics studies to map to, 
for instance, CHIP-Seq or RNA-Seq studies to focus on 
non-coding and regulatory regions.

Conclusions
We have applied deep whole genome sequencing 
(WGS) of commonly used cell lines and PDX mod-
els using the Illumina X10 platform with an aver-
age ~ 60 × coverage. We show that this resource can be 
used to identify novel genomic alterations, including 
point mutations and genomic rearrangements, com-
pared to previously available sequencing data.

Specific outcomes include:

•	 A comprehensive list of point mutations, copy num-
ber and structural variants for cell lines and PDX 
models.

Fig. 6  Genes with enriched genomic alterations in PDXs. A, B Genes with frequent copy number alterations in PDXs samples showing higher 
copy number variations in a metastatic breast cancer cohort than a primary breast cancer cohort (cbioportal). Each row indicates a gene and each 
column indicates a breast cancer sample. Copy number gains are in red and deletions are in blue. CSMD1, for example, showing a much high 
frequency of copy number deletion in the metastatic cohort. C Kaplan–Meier survival analysis of METABRIC discovery cohort samples stratified by 
CSMD1 expression status. Top 25% samples with high CSMD1 is in red, showing a better survival outcome compared to those with low CSMD1 
expression

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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•	 Integrative analysis with publicly available functional 
screening data identifies new genomic features of 
biological significance.

•	 CSMD1, a known tumour suppressor gene, identified 
with deletion in 50% of our PDX models, suggesting 
an important role in aggressive breast cancers.

•	 Raw data and processed data are publicly availa-
ble through European Genome Archive.

Methods
Sample acquisition and preparation
The MCF7 cell line was originally obtained from Michi-
gan Cancer Foundation, the MCF10A from Brugge Lab, 
Boston, the MDAMB231 from EG&G Mason RI Worces-
ter MA, and the MDAMB468, SKBR3 and T47D were 
from ATCC. Cells were cultured in their standard media 
to expand and frozen cell pellets used for DNA extrac-
tion. Breast Cancer PDX models were obtained from 
Alana Welm, and were expanded in house using tech-
niques previously reported in DeRose et al. (2010).

DNA extraction
The DNeasy Blood & Tissue Kit (Qiagen) was used for 
DNA isolation from about 25 mg frozen tumor, according 
to the manufacturer’s recommendations. RNase A (Qia-
gen) was used to obtain RNA-free genomic DNA. Only 
isolated DNA with A260/280 and A260/230 ratios above 
1.8 and proven to be high quality by gel electrophoresis 
were used for sequencing.

Whole genome sequencing analysis of cell lines and PDX
The five cancer cell lines MCF7, MDAMB231, T47D, 
SKBR3, MDAMB468 and one non-malignant cell line 
MCF10A and six PDX models were submitted for 
sequencing with at least 60 × coverage. Raw reads were 
mapped to human genome GRCh37 using Issac aligner 
from Illumina and called point mutations and small 
indels by Issac (Issac aligner and variant caller v1.14 
were used). Oncotator was used to annotation the vari-
ants, details of the definitions for each variant category 
can be found from oncotator web page (https://​gatk.​
broad​insti​tute.​org/​hc/​en-​us/​artic​les/​36004​18488​11-​
Funco​tator). Copy number alterations from the cell lines 
were estimated from cn.mops (R package), and CNVna-
tor [1]. Structural variants were computed from Break-
dancer [7], Delly [7] and Lumpy [1]. Breakdancer and 
Delly were used to call large inter-chromosomal changes, 
while lumpy and CNVnator were performed to call small 
scale SVs and CNVs. The SVs and CNVs from different 
tools were grouped together for each individual model. 
Structural variants were annotated and visualized using 
ClinSV (https://​github.​com/​KCCG/​ClinSV) [18] and 
IGV [23]. Raw sequencing files (fastqs) and annotated 

variants files are deposited at European Genome Archive 
with accession number EGAS00001006285.

Mutational signature analysis
deconstructSig r package version 1.8.0 was used to analyse 
the mutation signatures. “whichSignatures” function was 
used to identify the mutational signatures with signature 
score default cutoff at 0.06 and the signature plots were 
plotted using “plotSignature” and “makePie” functions.

Cell line identity check using SNP array
These common cell lines have been profiled by Affyme-
trix SNP 6.0 array previously in multiple studies. Raw cel 
files were downloaded from the Heiser et  al. and CCLE 
and were analysed by affymetrix genotyping console soft-
ware. Correlation analysis between the genotyping calls 
between array and WGS data to confirm cell line identity. 
The coefficient correlation was calculated based on con-
cordance rate of genotyping calls between difference 
platform. For example, Vcij, Vdij are the number of con-
cordant and discordant variants between platform i and 
platform j, then the coefficient correlation is define as 
Cij =

Vcij
Vcij+Vdij.
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The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13058-​022-​01540-0.

Additional file 1: Fig. S1. number of citations from PubMed for breast 
cancer cell lines. Number of citations for each of the cell lines obtained 
from PubMed, data retrieved from Pubmed in May 2022. Figure S2. 
Heatmap of correlation of genotyping calls of breast cancer cell lines 
from three different studies. Correlation analysis of genotyping calls from 
this study to compare with SNP calls from Heiser et al and CCLE. Figure 
S3. barplots of number of different types of variants identified in the 
cell lines. Figure S4. IGV plot of a non-coding gene MALAT1 in MCF7 
and MDAMB231 respectively, showing a mutation in MCF7 but not in 
MDAMB231. Figure S5. Circos plot of structural variations in breast cancer 
cell lines, MDA-MB-231, T47D, MDA-MB-468 and SKBR3. Arcs connecting 
two loci of difference chromosomes indicate inter-chromosomal struc-
tural variations. Figure S6. GREAT analysis of genes affected by SV variants 
in the breast cancer cell lines. Figure S7. Representative IGV plot showing 
copy number gains in FOXA1, GATA3 and ESR1 in MCF7. Tracks from top 
to bottom: depth of coverage in an NA12878 control (control), all reads 
in the sample (all reads), or reads with mapping quality >=20 (MQ>20), 
the average mapping quality of aligned reads from the sample (MQ, if no 
reads align MQ=0), coverage standard deviation from 500 controls (Cover-
age SD, indicating common CNV), overlapping segmental duplications 
published by Bailey JA et al. 2002 (SEG-DUP, used as control for germline 
CNVs),  discordant pairs (DP), split reads (SR), variants from the Database of 
Genomic Variants (DGV), and RefSeq genes (Genes). Figure S8. barplots of 
number of different types of variants identified in the six PDX models. Fig‑
ure S9. Kaplan-Meier survival analysis of METABRIC samples stratified by 
CSMD1 expression status by four different breast cancer PAM50 subtypes. 
Top 25% samples with high CSMD1 is in red, showing a better survival 
outcome compared to those with low CSMD1 expression. (PDF 8335 kb).

Additional file 2: Table S1. Summary of total number of variants in 
difference cell line models and PDXs from whole genome sequenc-
ing. Table S2. List of the 635 additional missense mutations in MCF7 
compared to Ben-David et al. Table S3. The complete list of variants in 
the non-coding regions in these cell lines models. Table S4. Weights of 
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mutational signatures identified from DeconstructSigs for each of the cell 
lines. Table S5. List of structural variants identified in the cell line models.

Additional file 3: Table S6. List of copy number alterations identified in 
the cell line models.

Additional file 4: Table S7. Comparison of the genes with copy number 
alterations in COSMIC, Ben-David et al and this study.

Additional file 5: Table S8. Summary of sequencing depth for PDXs. 
Table S9: List of mutations identified and validated in breast cancer PDXs. 
Table S10: Weights of mutational signatures identified from Deconstruct-
Sigs for each of the PDX models.

Additional file 6: Table S11. List of copy number alterations and identi-
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Additional file 7: Table S12. List of structural variants identified in the PDXs.
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