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Abstract 

Background:  Transcriptomic analysis is crucial for understanding the functional elements of the genome, with the 
classic method consisting of screening transcriptomics datasets for differentially expressed genes (DEGs). Additionally, 
since 2005, weighted gene co-expression network analysis (WGCNA) has emerged as a powerful method to explore 
relationships between genes. However, an approach combining both methods, i.e., filtering the transcriptome dataset 
by DEGs or other criteria, followed by WGCNA (DEGs + WGCNA), has become common. This is of concern because 
such approach can affect the resulting underlying architecture of the network under analysis and lead to wrong 
conclusions. Here, we explore a plot twist to transcriptome data analysis: applying WGCNA to exploit entire datasets 
without affecting the topology of the network, followed with the strength and relative simplicity of DEG analysis 
(WGCNA + DEGs). We tested WGCNA + DEGs against DEGs + WGCNA to publicly available transcriptomics data in one 
of the most transcriptomically complex tissues and delicate processes: vertebrate gonads undergoing sex differen‑
tiation. We further validate the general applicability of our approach through analysis of datasets from three distinct 
model systems: European sea bass, mouse, and human.

Results:  In all cases, WGCNA + DEGs clearly outperformed DEGs + WGCNA. First, the network model fit and node 
connectivity measures and other network statistics improved. The gene lists filtered by each method were differ‑
ent, the number of modules associated with the trait of interest and key genes retained increased, and GO terms of 
biological processes provided a more nuanced representation of the biological question under consideration. Lastly, 
WGCNA + DEGs facilitated biomarker discovery.

Conclusions:  We propose that building a co-expression network from an entire dataset, and only thereafter filtering 
by DEGs, should be the method to use in transcriptomic studies, regardless of biological system, species, or question 
being considered.
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Background
The transcriptome is defined as the entire set of mes-
senger RNA (mRNA or transcripts) expressed by a 
cell or tissue type of an organism of a given genotype 
under certain internal and external influences. The 
total amount and types of transcripts vary depend-
ing on multiple factors such as stage of development, 
physiological state, or environmental conditions [1]. 
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Transcriptomics, the analysis of the whole transcrip-
tome, started using complementary DNA (cDNA) 
clones to generate expressed sequence tags (ESTs), and 
the development of the first microarrays in the early 
90s [2–4]. An accurate comprehension of the transcrip-
tome is essential to reveal the molecular constituents of 
cells and tissues, to understand the functional elements 
of the genome, and also to gain a better understand-
ing of development and disease [5]. With the advent 
of high-throughput technologies to analyze the tran-
scriptome, several bioinformatic challenges appeared 
in storing, pre-processing, and analyzing the large data-
sets produced. As a consequence, a variety of bioinfor-
matic pipelines arose to overcome such challenges [6, 
7]. To date, the most commonly used method in various 
fields of biology and medicine is screening for differ-
entially expressed genes (DEGs), which compares the 
mean expression levels for individual genes between 
two or more groups of samples [8–15].

In 2005, Zhang and Horvath proposed a bioinformatic 
application called weighted gene co-expression network 
analysis (WGCNA) to gain a deeper understanding of 
the transcriptome and to elucidate the underlying cellu-
lar processes based on the coordinated co-expression of 
genes encoding the interacting proteins [16]. In contrast 
to DEG analysis, WGCNA is a gene screening method 
that takes advantage of the inherent variability in gene 
expression among different biological samples to illumi-
nate higher-order relationships among genes. WGCNA 
generates clusters (called modules) of strongly corre-
lated genes based on the Pearson correlation as a meas-
ure of their functional relatedness and assigns a different 
color to each module for easy identification purposes. 
WGCNA is a powerful method and has many advan-
tages over DEG analysis since it also allows evaluating 
the association of modules with phenotypic sample traits 
using network properties. Furthermore, WGCNA facili-
tates the identification of candidate biomarkers and hub 
genes relevant to the process under study. The weighted 
co-expression network consists of an adjacency matrix 
reporting the connection strength between gene pairs 
[16, 17]. Since its development, its use has become expo-
nentially widespread and allows integrating network 
parameters with genetic information from microar-
ray datasets and, more recently, from RNA sequencing 
experiments [18–20]. It should be noted that varia-
tions or methods other than WGCNA have also been 
developed, such as Differential Co-expression Analysis 
or metaDCN [21], THD-Module Extractor [22], Diff-
coex [23], and module differential analysis for weighted 
gene co-expression network (MODA) [24]. However, 
WGCNA remains by far the most commonly used in 
numerous research fields.

In reviewing the literature extensively, we found three 
main strategies to analyze the transcriptome (Fig.  1) 
that can be broadly classified as (1) screening for differ-
entially expressed genes between two conditions (from 
now on referred to as method #1 or simply as DEGs), 
(2) WGCNA and derivatives (from now on referred as 
method #2 or simply as WGCNA), and (3) a method 
that has become also very popular that can be viewed as 
a combination of the two former and consists in filter-
ing the transcriptome dataset by DEGs or other criteria, 
e.g., considering only the most expressed genes, or the 
top 25% genes with more expression variance, etc., and 
only then applying WGCNA to the filtered dataset (from 
now on referred to as method #3 or DEGs + WGCNA). 
Another strategy that we have found in reviewing the lit-
erature is the independent use of methods #1 (DEGs) and 
#2 (WGCNA) in the same study but then using only one 
of the two for the subsequent downstream analysis on 
the data [13, 25–32]. Some examples of studies following 
each one of the three broad methods defined above are 
shown in Table 1. Of note, regardless of the method used, 
usually, these analyses are followed by data visualization 
and functional analysis (gene ontology and/or pathways 
enrichment analysis).

The emergence of method #3 (DEGs + WGCNA) 
apparently seems a logical forward step to take: by first 
filtering DEGs, the analysis is limited to a set of previ-
ously selected genes, based on a statistical or quantita-
tive threshold and, thus, it requires less computational 
power than the required by WGCNA of the entire data-
set. However, and this is very important for the proper 
analysis of gene interactions, in a scale-free network (i.e., 
a network whose characteristics are independent of the 
size or number of nodes making up the network) such as 
the gene networks, the fraction of nodes with degree k, 
where k is connectivity (i.e., the sum of connections of 
a node), follows a power-law k−α distribution, where α 
is some exponential. In this manner, the network topol-
ogy is dominated by a few highly connected nodes, called 
hubs, linked to the rest of less connected nodes [16]. 
Therefore, applying a filtering step such as DEGs previ-
ous to WGCNA, as done in method #3, might eliminate 
many of the less connected genes that, if not filtered, 
would contribute to some nodes being identified as 
hubs. This is of great concern because it thus could affect 
the core architecture of the network and lead to biased 
results and interpretations. In contrast, construction of 
a network with the unfiltered dataset allows drawing the 
complete map of the network.

As we have just seen, method #3 has the main advan-
tage that one ends up dealing with a much-reduced gene 
list, albeit all genes are DEGs, but it has serious dangers 
that can affect the architecture of the networks and lead 
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to false conclusions. Furthermore, the validity of method 
#3 was never established and, in fact, the developers of 
method #2 (WGCNA) recommend against the applica-
tion of such filter before WGCNA [61]. Thus, to com-
bine the benefits from WGCNA, taking advantage of 
the whole dataset and not affecting the topology of the 
network, with the strength and relative simplicity of DEG 
analysis, in the present study we propose a sort of plot 
twist in transcriptome data analysis. We propose a new 
strategy (referred to as method #4): to perform WGCNA 
using the entire transcriptome dataset and, only subse-
quently, filtering by DEGs (Fig.  1). To validate this new 
method, we compared it with the performance of method 
#3, which is, as mentioned above, nowadays much spread 
in the literature.

For the purpose of this study, we selected one of the 
most transcriptomically complex tissues, the gonads [62] 
and one of the most complicated developmental pro-
cesses that involve many genes interacting in a delicate 

spatio-temporal and orchestrated manner: vertebrate 
gonadal sex differentiation. At the bi-potential stage, 
the vertebrate gonad expresses genes from the pro-male 
(leading to testis differentiation) and pro-female (lead-
ing to ovarian differentiation) pathways with opposing 
effects until the time when, depending on the species, a 
combination of genetic and/or environmental influences 
switch the balance towards the differentiation of one sex-
ual phenotype and the repression of the other [63]. Thus, 
vertebrate gonadal sex differentiation provides an excel-
lent opportunity to compare different methods to ana-
lyze large amounts of gene expression data. Furthermore, 
we used data from the European sea bass, Dicentrarchus 
labrax (from now on sea bass), a modern teleost with a 
polygenic sex-determining (PSD) mechanism without 
sex chromosomes [64], the mouse model, where gonadal 
sex differentiation has been extensively studied, and the 
human, a species where despite the limited availability of 
normal fetal gonads, it has been extensively studied for 

Fig. 1  Flow diagram of the three most used methods in the literature to analyze transcriptomic data plus one method (#4) proposed. Method #1 
Analysis of the differentially expressed genes (DEGs) between two conditions followed by volcano plot visualization, functional enrichment analysis 
(FEA), and biomarker identification. #2 Construction of a gene co-expression network by using the WGCNA package (Langfelder and Horvath, [17]) 
in R, following the general WGCNA guidelines to perform FEA, identify modules and genes related to a trait of interest (Zhang and Horvath, 2005). 
#3 To filter the transcriptome by DEGs and conduct WGCNA using the filtered dataset and continue with FEA. In this study, we propose method #4 
to use WGCNA and filter the output of the selected modules by DEGs to follow with FEA and biomarker discovery
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Table 1  Examples of some transcriptomic studies classified according to the three different methods described (#1, DEGs; #2, WGCNA; 
# 3, DEGs + WGNCA; # 1 + 2 indicates the use of both methods, without combining them, as in #3) to analyze transcriptomic data since 
the development of WGCNA in 2005

Method # Species Cell type/ tissue Technology Reference

1 Rattus norvegicus Gonads Microarray [9]

1 Setaria italica L Plant seeds SSH [11]

1 Gallus gallus Gonads RNA-seq [33]

1 Trachemys scripta Embryos RNA-seq [15]

1 Triticum aestivum L Plant seeds Microarray [14]

1 Homo sapiens Breast RNA-seq [12]

1 Xenopus laevis Gonads Microarray [34]

1 Rattus norvegicus Brain RNA-seq [10]

1 Dicentrarchus labrax Gonads Microarray [35]

2 Homo sapiens Brain Microarray [36]

2 Homo sapiens Brain Microarray [37]

2 Homo sapiens Brain RNA-seq [19]

2 Homo sapiens Bone Microarray [38]

2 Homo sapiens Liver Microarray [39]

2 Mus musculus Placenta Microarray [40]

2 Homo sapiens Brain Microarray [41]

2 Oplegnathus fasciatus Spleen RNA-seq [42]

2 Homo sapiens Blood RNA-seq [43]

2 Homo sapiens Lung Microarray [44]

2 Homo sapiens Bladder RNA-seq [20]

3 Homo sapiens Bladder Microarray [45]

3 Homo sapiens Colon mucose Microarray [46]

3 Homo sapiens Podocyte cells Microarray [47]

3 Bubalus bubalis Mammary gland RNA-seq [48]

3 Homo sapiens Bladder Microarray [49]

3 Homo sapiens Lung Microarray [50]

3 Homo sapiens Bladder RNA-seq [51]

3 Bubalus bubalis Blood RNA-seq [52]

3 Homo sapiens Brain RNA -seq [53]

3 Homo sapiens Liver RNA-seq [54]

3 Scophthalmus maximus Gill RNA-seq [55]

3 Scophthalmus maximus Kidney RNA-seq [56]

3 Homo sapiens Breast Microarray [57]

3 Rattus norvegicus Spinal cord RNA-seq [58]

3 Homo sapiens Stem cells RNA-seq [59]

3 Bos taurus Blood RNA-seq [60]

1 + 2 Scophthalmus maximus Gonads Microarray [13]

1 + 2 Paralichthys olivaceus Embryo RNA-seq [25]

1 + 2 Homo sapiens Brain RNA-seq [26]

1 + 2 Gallus gallus Lung RNA-seq [27]

1 + 2 Homo sapiens Organoids RNA-seq [28]

1 + 2 Homo sapiens Placenta Microarray [29]

1 + 2 Mus musculus Gonads RNA-seq [30]

1 + 2 Homo sapiens Lung RNA-seq [31]

1 + 2 Mus musculus Pancreas Microarray [32]
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better understanding of the complex pathways related to 
disorders of sexual development (DSDs) [65, 66]. As with 
most mammals, mouse and human have an XX/XY sex-
determining system where SRY is the master male sex-
determining gene [67]. These three species with different 
sex-determining mechanism and differentiation dynam-
ics were used to show that our approach was not only 
working on a complex process but also to show that the 
results are consistent regardless of the underlying genetic 
architecture. In all cases, we show that method #4 pro-
vides a more realistic and nuanced picture of the complex 
gene interactions taking place over time during gonadal 
sex differentiation and propose this method for future 
transcriptomic studies regardless of the biological system 
or question being considered.

Results
Construction of WGCNA using different approaches
WGCNA was conducted on male and female samples at 
two developmental stages (sea bass and mouse) or three 
developmental stages (human) to investigate the gene 
network operating during gonadal development in the 
sea bass, mouse, and human (Supplementary Figure 1).

We applied method #3 to the sea bass transcriptome, 
composed of a total of 20,978 genes, and identified 8434 
DEGs between males and females at 250 days post fertili-
zation (dpf) (P < 0.05) (Supplementary Figure 2). The nor-
malized intensities of the 8434 DEGs (Additional file  1) 
were then used for WGCNA to build the network. The 
selected soft threshold used for the adjacency function 
closest to meet scale-free topology criterion and addi-
tional considerations was β = 9, leading to signed R2 = 0.7 
(Fig.  2A). Regarding connectivity, the second parameter 
considered for the selection of the soft threshold indi-
ces, the mean value was < 1000 (Fig. 2B) while the slope 
of the regression line between log10 (p(k)) and log10 (k) 
was − 0.47 (R2 = 0.73) (Fig.  2C). In contrast, when the 
entire transcriptome was used (methods #2. WGCNA 
and #4. WGCNA + DEGs), the selected soft threshold 
obtained was β = 5, which resulted in a better fit, signed 
R2 = 0.87 (Fig.  2D), and more than doubled the mean 
connectivity to ~ 2000 (Fig. 2E) while also improving the 
slope − γ =  − 0.51 (R2 = 0.82) (Fig. 2F).

The same difference between the two methods was 
observed in the mouse. Analysis of the gonadal transcrip-
tome between males and females at 16.5 days  post  coi-
tum (dpc) (P < 0.05) identified 8109 DEGs (Additional 
file 2). Using method #3, the selected soft threshold was 
β = 14 which resulted in a signed R2 = 0.55 (Supplemen-
tary Figure  3 A), a mean connectivity value < 500 (Sup-
plementary Figure 3 B), and slope − γ =  − 0.79 (R2 = 0.51) 
(Supplementary Figure  3 C). However, when the entire 
gene expression dataset (14,088 genes) were used for 

the construction of the network (methods #2. WGCNA 
and #4. WGCNA + DEGs), the soft threshold was β = 12, 
resulting in signed R2 = 0.7 (Supplementary Figure 3 D), 
the mean connectivity ~ 500 (Supplementary Figure 3 E), 
and the slope improved to − γ =  − 0.88 (R2 = 0.55) (Sup-
plementary Figure 3 F).

The discrepancies between the methods were repli-
cated using human data as well, where using method 
#3 the selected soft threshold was β = 8, resulting in 
signed R2 = 0.67 (Supplementary Figure  4 A), a mean 
connectivity value < 50 (Supplementary Figure  4 B), and 
slope − γ =  − 1.02 (R2 = 0.63) (Supplementary Figure  4 
C). With methods #2 WGCNA and #4 WGCNA + DEGs, 
the soft threshold was β = 8, resulting in signed R2 = 0.89 
(Supplementary Figure 4 D), the mean connectivity > 200 
(Supplementary Figure  4 E), and the slope improved 
to − γ =  − 1.38 (R2 = 0.87) (Supplementary Figure 4 F).

To ensure that the improvement in the model fit were 
not caused by the selection of a particular soft threshold, 
results were calculated for a range of thresholds (Table 2). 
In the three species, method #4 outperformed method #3 
when it referred to scale-free topology model fit, mean 
connectivity, and the slope of the regression line between 
log10 (p(k)) and log10 (k) being closer to − 1, regardless 
of the soft threshold selected.

Selection of modules related to sex
Because method #3 uses a smaller dataset than method 
#4, a different number of modules were produced using 
the average linkage hierarchical clustering algorithm in 
WGCNA. Thus, in the sea bass the 8434 DEGs retained 
in method #3 were grouped into eight modules, of which 
two were strongly associated with the trait of interest, 
sex (red module: R2 = 0.93, P = 7e − 10; blue module: 
R2 =  − 0.84, P = 1e − 06) (Fig. 3A, C). On the other hand, 
the 20,978 genes of methods #2 and #4 were grouped 
into 29 modules, of which four were strongly associated 
with sex (pink, R2 = 0.95, P = 7e − 12; green, R2 =  − 0.79, 
P = 1e − 05; blue sky, R2 =  − 0.8, P = 7e − 06; magenta 
R2 =  − 0.72, P = 2e − 04) (Fig. 3B, D).

In the mouse, the 8109 DEGs retained in method #3 
were clustered into six modules, of which two were 
associated with sex (blue: R2 = 0.69, P = 0.01; turquoise: 
R2 =  − 0.8, P = 0.002). Using the entire transcriptome in 
methods #2 and #4, a total of 21 modules were obtained, 
of which two were associated with sex (red: R2 = 0.98, 
P = 1e − 07; brown: R2 =  − 0.75, P = 0.008) (Supplemen-
tary Figure 5).

The 1479 differentially expressed transcripts at 6 post-
conceptional weeks (PCW) in human were grouped 
into eight modules, among which three of them were 
positively associated with sex (red: R2 = 0.64, P = 9e − 05; 
blue: R2 = 0.8, P = 3e − 08; yellow: R2 = 0.87, P = 2e − 10), 
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while one module was negatively associated with sex 
(turquoise: R2 =  − 0.91, P = 8e − 13). In contrast, the 
analysis of 35,194 transcripts using method #4 resulted 
in 36 modules, of which seven modules were associated 
with sex (light-yellow: R2 =  − 0.6, P = 3e − 04; black: 
R2 =  − 0.85, P = 5e − 10; dark olive-green: R2 =  − 0.57, 
P = 6e − 04; red: R2 =  − 0.72, P = 4e − 06; dark red: 
R2 =  − 0.66, P = 3e − 05; green: R2 = 0.72, P = 4e − 06; 
green-yellow: R2 = 0.78, P = 2e − 07) (Supplementary 
Figure 6).

Next, considering only the genes from the modules that 
significantly associated with sex, we selected those that, 
in addition, showed a significant correlation between 
modular membership and the gene significance for sex. 
All the modules associated with sex in the sea bass using 
methods #3 (Fig. 4A), #2, and #4 (Fig. 4B) showed a signif-
icant positive correlation and were kept for further analy-
sis. However, in the weighted network obtained from 
the mouse data using method #3 the blue module was 
discarded because it did not pass the established criteria 

Fig. 2  WGCNA model fit and soft threshold determination. Soft thresholding power analysis was used to obtain the scale-free fit index (ranging 
from 1 to 20) of network topology, for method #3 (A) and #2 and #4 (D), which until that step of the working pipeline are the same. Mean 
connectivity when using method #3 (B) and method #4 (E). The plot of log10(p(k)) vs log10(k) indicates that by using the chosen β value, C method 
#3 (β = 9) and F method #4 (β = 5), the network is close to a scale-free network because it is approximately following a straight line. k is the whole 
network connectivity and p(k) is the corresponding frequency distribution
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(cor = 0.25, P = 1.8e − 28), while the turquoise module 
was kept for further analysis (cor = 0.64, P < 1e − 200) 
(Supplementary Figure  7 A). Also the two modules 
associated with sex obtained from mouse data using 
the methods #2 (WGCNA) and #4 (WGCNA + DEGs) 
were kept for further analysis given their positive sig-
nificant correlation (red: 0.96, P < 1e − 200; brown: 0.67, 
P < 1e − 200) (Supplementary Figure  7 B). In human, 

four modules were retained using method #3 (red: 0.75, 
P = 5.3e − 99; blue: 0.81, P = 4.6e − 120; yellow: 0.87, 
P = 6.6e − 27; turquoise: 0.84, P = 1.7e − 145) (Supple-
mentary Figure  8 A), and seven modules were kept for 
further analysis using method #4 (light-yellow: 0.74, 
P < 1e − 200; black; 0.86, P < 1e − 200; dark green: 0.8, 
P = 1.4e − 13; red: 0.77, P < 1e − 200; dark red; 0.81, 
P = 1.3e − 56, green: 0.74, P < 1e − 200; yellow-green: 0.82, 

Table 2  Comparison of model fit parameters under different soft thresholds using methods #3 (DEGs + WGCNA) and #4 
(WGCNA + DEGs) on the gonadal transcriptome during early sex differentiation in three different species: sea bass, mouse, and human. 
The selected threshold and results obtained with the selected threshold are shown in bold

Method Threshold Signed R2 (model 
fit)

Mean connectivity Slope R2

(scale-free 
topology)

Dicentrarchus labrax #3 DEGs + WGCNA 5 0.19 1580  − 0.12 0.08

7 0.63 1100  − 0.33 0.59

9 0.7 800  − 0.47 0.73
11 0.8 650  − 0.56 0.79

13 0.8 450  − 0.64 0.81

#4 WGCNA + DEGs 5 0.89 2050  − 0.51 0.82
7 0.9 1400  − 0.63 0.87

9 0.91 900  − 0.71 0.88

11 0.9 700  − 0.78 0.87

13 0.9 500  − 0.83 0.86

Mus musculus #3 DEGs + WGCNA 8 0.13 540 0.02  − 0.3

10 0.33 375  − 0.5 0.24

12 0.47 300  − 0.65 0.4

14 0.55 230  − 0.79 0.51
16 0.62 180  − 0.89 0.57

#4 WGCNA + DEGs 8 0.62 495  − 0.62 0.4

10 0.67 325  − 0.77 0.49

12 0.7 220  − 0.88 0.55
14 0.7 200  − 0.96 0.59

16 0.73 160  − 1.02 0.62

Homo sapiens #3 DEGs + WGCNA 4 0.45 105  − 0.74 0.38

6 0.61 50  − 0.93 0.56

8 0.67 25  − 1.02 0.63
10 0.68 19  − 1.1 0.64

12 0.69 15  − 1.17 0.65

#4 WGCNA + DEGs 4 0.7 950  − 1.3 0.66

6 0.79 410  − 1.36 0.77

8 0.89 210  − 1.38 0.87
10 0.93 100  − 1.42 0.92

12 0.95 85  − 1.45 0.95

Fig. 3  Identification of gene modules associated with sex. Gene hierarchical cluster analysis using method #3 (A) and #4 (B) using the sea bass 
gonadal transcriptome. Heat map of the correlation of sex with module eigengene distances using method #3 (C) and #4 (D). Each color represents 
a module in the constructed gene co-expression network by WGCNA. The heat map is colored from red (1, positive) to blue (− 1, negative) 
to indicate the level of correlation of each module with the trait of interest. The red boxes highlight the selected modules for further analysis 
associated with sex (P < 0.01) (color in the online version). Genes not assigned to any of the previous modules are included in the gray module

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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Fig. 4  Filtering of genes based on network properties in the sea bass. Scatterplots of correlation between GS vs module membership of each 
module which were used for determination of interesting modules for sex trait in the gonadal transcriptome of sea bass using method #3 (A) 
and #2 and/or #4 (B). The modules were selected when GS was positively and significantly correlated to modular membership. Gene significance 
is defined as − log of the p-value of association of the gene with the trait. Module membership (kME) measures how correlated each gene is to a 
particular module eigengene [68]
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P < 1e − 200) (Supplementary Figure 8 B). Thus, a total of 
5876 genes from the four selected modules in sea bass, 
3069 genes obtained from the three chosen modules in 
the mouse, and 8452 transcripts within the seven selected 
modules from human were kept for further analysis with 
method #4 (Supplementary Figure 2).

Co‑expressed DEGs involved in gonadal differentiation
After the selection of interesting modules, we further 
filtered the genes within those modules by its gene sig-
nificance (GS) for sex (|GS|> 0.2) and intra-modular 
membership (|kIM|> 0.8). Furthermore, to implement the 
method #4 (WGCNA + DEGs), we further filtered the 
gene lists with the DEGs between males and females at 
the second stage of development, i.e., 250 dpf in the sea 
bass, 16.5 dpc in the mouse, and 6 PCW in the human, 
to identify the most relevant genes of each module. 
The number of genes co-expressed and, further, that 
are DEGs at 250 dpf was 3782 in sea bass (pink mod-
ules, n = 365; green module, n = 621; magenta module, 
n = 930; sky blue module, n = 1866 genes) (Additional 
file 3 and Supplementary Figure 2). In the mouse, there 
were 2205 co-expressed DEGs at 16.5 dpc (red module, 

n = 544; brown module, n = 1661) (Additional file 4), and 
in the human there were a total of 1023 differentially co-
expressed transcripts (Supplementary Figure 2).

Comparison of methods using network properties 
and statistics
We calculated several topological parameters to com-
pare the performance of methods #2 (WGCNA), #3 
(DEGs + WGCNA), and #4 (WGCNA + DEGs). Some 
of the most relevant parameters are shown in Table  3, 
including (1) the number of nodes, (2) number of edges, 
(3) characteristic path length, (4) average number of 
neighbors, (5) heterogeneity, (6) betweenness central-
ity, (7) mean degree, and (8) maximum degree. The 
detailed definitions of topological parameters were pub-
lished by the developer of the NetworkAnalyzer [69]. 
In the three species, method #4 showed a lower num-
ber of nodes than method #2  since only co-DEGs were 
retained; however, method #4 resulted in a much higher 
number of nodes and edges than method #3 in the sea 
bass and human. The average number of neighbors, 
which indicates the average connectivity of a node, 
showed higher (better) results when using method #4 

Table 3  Network statistics results when using methods #2, #3, and #4 in sea bass, mouse, and human transcriptomic data

Network statistics Method #2
WGCNA

Method #3
DEGs + WGCNA

Method #4
WGCNA + DEGs

Dicentrarchus labrax No. of nodes 638 291 365

No. of edges 180,759 6059 98,783

Average no. of neighbors 480.7 42.3 263.42

Characteristic path length 1.37 2.35 1.66

Network heterogeneity 0.34 0.68 0.77

Mean degree 480.7 41.6 263.42

Max degree 720 135 349

Max betweenness 0.003 0.07 0.03

Mus musculus No. of nodes 2257 2697 1661

No. of edges 1,016,156 377,169 798,757

Average no. of neighbors 903,648 280.21 964.1

Characteristic path length 1.66 2.39 1.43

Network heterogeneity 0.563 0.865 0.365

Mean degree 900.4 105.2 964.1

Max degree 1867 327 1556

Max betweenness 0.003 0.02 0.002

Homo sapiens No. of nodes 558 48 481

No. of edges 5632 382 3375

Average no. of neighbors 20.2 15.9 14.0

Characteristic path length 2.4 1.7 2.2

Network heterogeneity 1.88 0.72 2.3

Mean degree 20.2 15.9 14.03

Max degree 309 42 309

Max betweenness 0.25 0.09 0.39
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than method #3, in proportion to the number of nodes 
obtained from each method (average number of nodes/ 
number of nodes) × 100, in sea bass: method #2 = 75%, 
method #3 = 14%, method #4 = 72%, and mouse: method 
#2 = 40%, method #3 = 10%, method #4 = 58%, but not 
in human: method #2 = 3.3%, method #3 = 37%, method 
#4 = 4.2%. Regarding the characteristic path length, the 
expected distance between two connected nodes (the 
shortest, the more compacted is a network), method #4 
showed better results than method #3, except in human 
where the network of the module from method #3 was 
much smaller and, hence, resulted in shorter character-
istic path length. Network heterogeneity is an impor-
tant parameter for biomarker discovery as it reflects the 
tendency of a network to contain hub nodes [70]. Such 
parameter was higher when using method #4 in the sea 
bass and the human. The maximum betweenness central-
ity was obtained from method #3 in the sea bass and the 
mouse, as well as from the human using method #4. The 
maximum degree was higher in the three species when 
using method #4. Taken together, the topological param-
eters of the different networks produced using the three 
different methods showed that the most robust networks 
were achieved using methods #2 and #4. Besides, method 
#4 allows further filtering of the interesting genes without 
altering main network properties and without remov-
ing too many genes that could be importantly related to 
the trait of interest. Of note, when method #3 resulted 
in better parameter values, this was always in the mouse, 
incidentally the species in which the minimum number 
of samples recommended for network construction was 
not reached (n < 15), leading to less robust conclusions. 
Considering this and that the construction of the net-
work in the mouse required the highest soft threshold 
(β = 12 in the mouse vs β = 5 in the sea bass and β = 8 in 
the human) while achieving the poorer model fit using 
method #4, the results support the original recommen-
dation of at least 15 samples to construct networks with 
method #2 (WGCNA) and #4 (WGCNA + DEGs).

Proportion of genes related to sexual development 
identified by the different approaches in the sea bass 
and the mouse
We found that the proportion of retained genes and, 
within those, of key genes for gonadal sex differentia-
tion among the four methods tested were similar in the 
sea bass and mouse (compare Fig.  5A and Supplemen-
tary Figure  9 A). When using method #1, filtering the 
transcriptome by DEGs, a large proportion of the tran-
scriptome was kept. Up to 40.2% in sea bass (Fig. 5A) and 
57.6% in mouse (Supplementary Figure 9 A) of the tran-
scriptomes were differentially expressed. Among them, 
78.6% of the key genes previously known to be involved 

in sexual development were found in the sea bass, and 
78% of them were identified in the mouse when using 
method #1.

When using method #2 for the same datasets, we 
obtained smaller lists of genes being related to sex. In 
sea bass, we found that 28% of the transcriptome was 
involved, of which 64% of the key genes were identified. 
Similarly, in mouse, 22% of the transcriptome was co-
expressed and associated with sex and 76% of the key 
control genes were detected. The third method, the appli-
cation of DEG filter previous to network construction, 
leads to slightly smaller gene lists: 19.9% in the sea bass, 
and 20% of the mouse transcriptome. However, the pro-
portion of key genes detected by this method was much 
smaller in the sea bass (34%, 1 gene in the red module 
and 8 genes in the blue module, Fig. 5B) and in the mouse 
(50%, 25 genes, Supplementary Figure 9 B). Finally, when 
using the proposed method #4, to perform WGCNA 
first and to apply the DEG filter afterwards, it provided 
us with the smaller proportions of potential novel genes 
related to sex trait (18% in sea bass and 15.6% of the tran-
scriptome in the mouse) without harming the capability 
to detect the key genes previously known to be involved 
in sex development. In sea bass, 64% of the key genes 
were identified (Fig. 5A, C), and in mouse, 58% of the key 
genes were captured (Supplementary Figure 9 A and  C).

It is important to note that the lists of genes produced 
by methods #3 and #4 differ. Method #3 yielded a total 
of 4192 co-expressed genes in sea bass, 1870 of which 
were uniquely detected using this method. On the other 
hand, method #4 produced a total of 3782 genes, of 
which only 877 were unique to that method (Fig. 6A). In 
the mouse dataset, method #3 detected a total of 2835, of 
which 1023 were unique to that method, while method 
#4 detected 2205, of which 393 genes were uniquely 
detected by this method (Supplementary Figure  9 D). 
Furthermore, the Jaccard index revealed low similarity 
between the gene lists obtained from methods #3 and #4 
(45.02% in sea bass, and 56.13% in mouse).

Network visualization and gene expression profiles 
of the selected genes
The data presented so far indicates that our proposed 
approach (method #4) gives more meaningful results 
of the biological process being studied than the cur-
rently used method #3. To further explore its advantages, 
we used the gene lists obtained with method #4 in sea 
bass for further network visualization and plotted the 
mean gene expression profiles of the chosen modules. 
Interestingly, the average gene expression profile of the 
genes making up the four significant modules showed 
clear differences in their temporal dynamics during sea 
bass sex differentiation between 110 and 250 dpf. Thus, 
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co-expressed genes of the green module were upregu-
lated in males and downregulated in females, reaching 
very disparate expression levels (Fig.  6B). Genes of the 
sky blue module did not change expression in males but 
were actively downregulated in females (Fig.  6C) while 

genes of the magenta modules were downregulated in 
both sexes (Fig.  6D). Finally, genes of the pink module 
started upregulated in females but were strongly down-
regulated by 250 dpf, while in the males their expression 
increased slightly (Fig. 6E).

Fig. 5  Identification of key genes involved in sex differentiation in the sea bass when using the different methods to analyze transcriptomic data. 
A Percentage of genes and key genes retained according to the methods mentioned in this study. B Venn diagram of the key genes found in each 
module using method #3 and C in method #4
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Genes making up the green module (n = 621) were 
those whose expression levels differed the most over 
time. For representation purposes, Fig.  7 shows only a 
subset of these genes (n = 102) having the highest num-
ber of  connections (width > 0.3). From the inside to 
the outside, the four concentric circles show the genes 
with a higher degree (number of connections), includ-
ing Cytochrome C Oxidase Copper Chaperone COX17 
(cox17), Cyclin A2 (ccna), Cytochrome P450 Family 11 

Subfamily A Member 1 (cyp11a1), Ajuba LIM Protein 
(ajuba), and Proteasome 20S Subunit Alpha 6 (psma6b). 
Importantly, 18 of the 28 key genes selected for their 
role in sea bass gonadal sex differentiation were repre-
sented in the different modules. Nine of them were in 
the green module with the highest degree (from higher 
to lower): Anti-Müllerian Hormone (amh), Cytochrome 
P450 Family 17 Subfamily A Member 1 (cyp17a1), Folli-
cle Stimulating Hormone Receptor (fshr), Steroidogenic 

Fig. 6  A Comparison of the gene lists obtained from the sea bass dataset when using method #3 and #4. The Jaccard index indicates low similarity 
between gene lists. Gene expression profile of the co-expressed DEGs from the four modules associated with sex and filtered by method #4. The 
background color of the plots indicates the color of the modules they belong to: B green, C sky blue, D magenta, and E pink module. G Gene 
expression of sox9a in males (blue) and females (red) at 110 and 250 dpf
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Acute Regulatory Protein (star), Androgen Receptor (ar), 
Gonadal soma derived factor (gsdf), Heat Shock Protein 
Family a Member (hsp70), Cytochrome P450 Family 11 
Subfamily B Member 1 (cyp11b1), and Luteinizing Hor-
mone/Choriogonadotropin Receptor (lhr).

In the magenta module, the key gene found was 
Hydroxysteroid 17-Beta Dehydrogenase 10 (hsd17b10), 
and some of the genes with the highest degree were 
Vimentin (vim), Protein Kinase C and Casein Kinase 

Substrate in Neurons 3 (pacsin3), and Hephaestin Like 1 
(hephl1) (Supplementary Figure 10).

In the pink module, two of the key genes were found 
among the selected genes and with the highest degree 
of connectivity: Estrogen Receptor beta 2 (erb2), and 
Hydroxy-Delta-5-Steroid Dehydrogenase, 3 Beta- And 
Steroid Delta-Isomerase 1 (hsd3b). Similarly, other genes 
included were as follows: Aquaporin 10 (aqp10), Zinc 
Finger AN1-Type Containing 3 (zfand3), POP4 Homolog, 
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Ribonuclease P/MRP Subunit (pop4), Tubulin Alpha 8 
(tuba8), Cytochrome C Oxidase Subunit 5A (cox5a), and 
Acyl-CoA Oxidase 3, Pristanoyl (acox3) (Supplementary 
Figure  11). Lastly, with the chosen degree threshold for 
better network visualization, fewer genes were shown in 
the sky blue network, including Ubiquitin-Specific Pepti-
dase 5 (usp5), Keratin 8 (krt8), and Schwannomin Inter-
acting Protein 1 (schip1) (Supplementary Figure 12).

Prediction of biomarkers of early gonadal differentiation 
in the European sea bass
Since the sea bass has PSD, and thus there are no genetic 
markers for sex, we wanted to focus on genes involved 
in the process of gonadal sex differentiation to see if we 
could at least identify robust markers of the early stages 
of this process. To do so, we used the gene lists obtained 
from WGCNA built from the entire transcriptome 
and filtered the output with DEGs only at 110 dpf. We 
obtained a total of 2089 genes which were strongly cor-
related to sex. Among these genes, two of the key genes 
found were hsd17b10, in the magenta module, and the 
ortholog of SRY-Box Transcription Factor 9 a (sox9a), 

which was detected in the sky blue module. Furthermore, 
hierarchical cluster analysis of the 28 key genes during 
the sea bass gonadal sex differentiation showed three 
main gene expression patterns: (1) genes upregulated 
in males at 250 dpf, (2) genes upregulated in females at 
250 dpf, and (3) genes upregulated in males or females 
already at 110 that increase their expression by 250 dpf 
(Fig.  8). sox9a was clustered together with cyp19a1, the 
already described biomarker in previous studies for ovar-
ian differentiation. They were clustered together accord-
ing to the third gene expression pattern mentioned 
above. Altogether, this suggested that sox9a expression 
could be used as early marker of male sex differentiation 
in the sea bass.

Prediction of biomarkers of early gonadal differentiation 
in the mouse
In the case of the mouse, there is no need for biomark-
ers for sex because they have genetic sex determination 
(GSD) with sexual chromosomes, which allow identi-
fying the sex as early as the zygote stage. However, we 
used methods #2 and #4 to test their performance in 

Fig. 8  Hierarchical clustering analysis and heat map of the key genes in the sea bass. Upregulation is indicated in red and downregulation is 
shown in green. The left bars indicate the three main gene expression patterns found. The blue bar includes the genes upregulated in males at 250 
dpf, the red bar includes the genes upregulated in females at 250 dpf while the two genes included in the green bar are those identified as early 
biomarkers, which show a different gene expression pattern already at 110 dpf between males and females
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biomarker identification using a well-known model. For 
this objective, method #1 was not used because it gener-
ated lists of several thousand candidate genes from which 
it was impossible to choose a few candidates. Similarly, 
method #3 was discarded because of the observed bias in 
the results. However, when using method #2 in the brown 
module, for example, we found a total of eight key genes. 
When using method #4, the number of potential bio-
markers of sex at the first stage was five genes: Wnt Fam-
ily Member 4 (wnt4), Fibroblast Growth Factor Receptor 
2 (fgfr2), Bone Morphogenetic Protein 2 (bmp2), Follista-
tin (fst), and GATA Binding Protein 6 (gata6). The three 
genes filtered out by method #4 were not DEG at the 
E11.0–12.0 stage between males and females but were 
associated with sex by WGCNA. Such genes are relevant 
for sex development in the mouse but not among the 
first to show differential expression between males and 
females.

Therefore, the filter by DEGs in method #4 is essential 
to increase the probability of finding genes that could 
show differential gene expression when compared to 
method #2. This allows the prediction of the sex on other 
individuals based on the gene expression measurement 
of a biomarker. Hence, method #4 was the approach that 
allowed obtaining the shorter lists of candidates meet-
ing all the criteria from WGCNA and, on top, they were 
among the first to show differential expression at the 
stage of interest.

Comparison of the functional enrichment analysis 
from two different methods in the mouse dataset
Next, we performed gene ontology (GO) enrichment 
analysis of the filtered gene lists produced with meth-
ods #3 and #4 in mouse (the system we used that had 
the most curated annotation). The results showed that 
GO terms directly related to biological processes asso-
ciated with gonadal development were more enriched 
and fell under a more robust significance threshold 
when using method #4 than when using method #3 
(Additional file  5). Secondary alcohol biosynthetic 
process (GO:1,902,653), cholesterol biosynthetic pro-
cess (GO:0,006,695), sterol biosynthetic process 
(GO:0,016,126), and steroid biosynthetic process are a 
few examples (GO:0,006,694). Furthermore, only method 
#4 captured the term GO cell morphogenesis involved in 
differentiation (GO:0,000,904).

Discussion
Studies based on transcriptomics data can be broadly 
classified into three different major methods: #1 DEGs, 
#2 WGCNA, and #3 filtering by DEGs (or other filters 
such as keeping the 20% with more gene expression vari-
ance, or the top 5000 DEGs) before WGCNA [20, 48, 

54, 60]. To combine the power from WGCNA with the 
filter from the traditional and robust statistical analysis 
without introducing bias, we propose a new pipeline: (4) 
WGCNA of the entire transcriptome filtered by DEGs 
only after network construction.

In the present study, we compared the performance 
of filtering by DEGs before (method #3) or after 
(method #4) WGCNA in the analysis of one of the most 
transcriptomically complex organs, the gonads, during 
the critical period of sex differentiation. And to do so, 
we used three different vertebrates, a modern fish, the 
mouse model, and human. The fish has a very different 
sex-determining system than the mouse and the human 
that, in contrast, have a very similar sex-determining 
system. In all species, method #4 (WGCNA + DEGs) 
clearly and consistently outperformed method #3 
(DEGs + WGCNA) (Fig.  9). WGCNA establishes an 
adjacency matrix of correlation values which is trans-
formed using a power function. The value used to 
power the matrix is chosen based on parameters that 
ensure a scale-free topology (in order of importance): 
signed R2 ≥ 0.8, or the β value which maximizes a scale-
free independence, high mean connectivity, and the 
slope (− γ) of the regression line between log10(p(k)) 
and log10(k) was around − 1. In sea bass, the best scale-
free topology model fit using method #3 resulted in 
index β = 9 leading to R2 = 0.7, low mean connectivity, 
and the − γ slope of − 0.47. However, using method #4, 
for the same dataset, a much better scale-free topology 
model fit (R2 = 0.87) was obtained with a lower power 
index, β = 5. Also, higher mean connectivity and − γ 
was slightly closer to − 1. In mouse, using method #3, 
even a high soft threshold index of β = 14 lead to a 
weak model fit R2 = 0.55, low mean connectivity, and 
the slope of the regression line between log10(p(k)) 
and log10(k) of − 0.79. Using method #4 with the same 
dataset improved all the parameters during co-expres-
sion network construction. The R2 increased from 
0.55 to 0.7, and the mean connectivity increased from 
hundreds to a few thousands. Furthermore, the − γ 
slope decreased from − 0.79 to − 0.88. The improve-
ment of model fit was also observed in human using 
method #4 (β = 8, R2 = 0.89, mean connectivity > 200, 
and − γ =  − 1.38 (R2 = 0.87) when compared to method 
#3 (method #3: β = 8, R2 = 0.67, mean connectivity 
value < 50, and − γ =  − 1.02 (R2 = 0.63). The results 
from six analyses (using two methods in three species) 
under different soft threshold values showed that the 
network model fit is much better when using method 
#4, objectively.

Another important outcome of our comparison related 
to the network construction is the number of modules 
created by each method. Thus, method #3 created 8 
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modules while method #4 created 29 in sea bass. In the 
mouse, these figures were 6 and 21, and in human 8 and 
36, respectively. These results consistently show that the 
number of modules associated with the trait of interest 
is considerably smaller when using method #3, clearly 
showing that potentially interesting genes and connec-
tions are lost already before WGCNA is performed, 
diminishing its power. These results were consistent with 
values found in the literature regardless of vertebrate spe-
cies or question being answered, where method #3 pro-
duces fewer modules (5 modules [46]; 12 in [47]; and 6 in 

[48], than studies using WGCNA without previous filter-
ing (17 modules in [40]; 23 in [36]; and 14 in [44]).

Several strategies exist to compare gene co-expression 
networks [53, 71]. We calculated topological parameters 
for comparison of the network module most associated 
with the trait of interest using methods #2, #3, and #4. 
All the network parameters from method #4 outper-
form method #3 in two or all the three species studied. 
One of the instances was the characteristic path length 
in human, which showed a shorter path length in the 
network built using method #3. This could be because 

Fig. 9  Comparison of module networks built using method #3 (DEGs + WGCNA) and method #4 (WGCNA + DEGs). The selected modules for 
network statistics comparison and visualization were those that showed the strongest association with sex on each method and species. Hence, 
we compared the modules: red vs pink in the sea bass, turquoise vs the brown in the mouse, and yellow vs the green-yellow in human. For 
visualization, we filtered the networks by edge weight > 0.2 threshold
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of the much smaller number of nodes obtained with 
such a method, which could provide a shorter length 
despite being a less compacted network, as noticed else-
where [69]. Some of the other parameters that did not 
clearly improve using method #4 compared to method 
#3 resulted from the mouse. Such networks were built 
with 11 samples (less than the minimum sample size rec-
ommended by the developers of WGCNA) [61]. There-
fore, results should be considered with precaution. We 
observed in the literature that out of 20 studies in Table 1 
using WGCNA or DEGs + WGCNA, some used n < 15 
(n = 13 [44]; n = 10 [43]; n = 8 [48]; n = 14 [60], and n = 8 
[52]), although the majority used > 15 samples to con-
struct robust WGCNA (n = 160 [36]; n = 183 [40]; n = 25 
[42], n = 430 [20], n = 45 [58], n = 36 [32], n = 228 [31], 
n = 48 [27]). Considering the developers’ recommenda-
tion and our results, we take the opportunity to further 
emphasize that at least 15 samples in total  are required 
to perform method #2 and extend this recommendation 
to method #4.

Regarding the results of biological relevance, which 
was to identify genes related with sex and therefore with 
reproduction, higher proportions of genes previously 
known to be involved in sex differentiation were retained 
for further analysis when screening with method #4. Of 
note, not only the number of genes captured was larger 
in both species, but also essential key genes in a given 
process (here used as key controls), described in previ-
ous works, were also better represented with method #4. 
For example, key genes found in sea bass were as follows: 
amh [72], gsdf [73], ar [74], and erb [75]. Similarly, some 
of the key genes found in mouse were as follows: dmrt1 
[76], amh [77], ar [78], foxl2 [79], bmp6 [80], and wnt4 
[81]. These genes were retained with method #4 but not 
with method #3. Thus, our approach results in a more 
meaningful representation of the biological question 
under consideration.

Another important insight of this study is that we 
clearly show that methods #3 and #4 generate different 
gene lists. As a result, this has an impact on the down-
stream functional analysis and can affect the resulting 
GO biological processes, as well as the interpretation of 
the results (Additional file 5). First, the overrepresented 
GO biological processes from the gonadal transcrip-
tome of the mouse at 16.5 dpc slightly varied depending 
on the filtering strategy and the order in using such fil-
ters leading to different results. First, we found that GO 
terms from the category of biological processes related to 
gonad development functions were more enriched and 
had a higher significance threshold when using method 
#4. Second, only method 4 yielded some terms related 
to the gonadal sex differentiation process. Altogether, 
these results provide evidence that more accurate gene 

lists related to the target phenotypic trait were achieved 
using method #4 (WGCNA + DEGs) than when using 
the DEG filter or gene lists from pre-filtered WGCNA as 
in method #3.

We are aware that the results from gene ontology 
enrichment analysis should not be considered proof of 
biological validity in the analysis of high-throughput data 
considering the multiple sources of bias existing in func-
tional enrichment analysis tools [82]. However, to date, 
this is one of the main methods used to summarize infor-
mation from high-throughput experiments and here we 
showed how the previous filtering of DEGs can affect the 
results of WGCNA.

In search of early sex differentiation markers in the sea 
bass, several genes have been identified so far in the lit-
erature. Blázquez et  al. [83] defined cyp19a1a as a suit-
able molecular marker of ovarian differentiation, which 
showed the first significant gene expression difference 
between sexes at 120 dph. Ribas et al. [35] identified the 
hsd17b10 gene as an early marker for ovarian differentia-
tion at 110 dpf. At this stage, cyp19a1a expression lev-
els were higher in females but not significantly different 
from males. In the present study, among the key genes 
involved in early gonadal development, three genes stood 
out from the combined filter of WGCNA and the subse-
quent DEG filter at 110 dpf. Among these three genes, 
hsd17b10 was found, hence, supporting the results from 
Ribas et  al. [35]. The other gene identified as marker of 
testis early differentiation was sox9a. Noteworthy, this 
gene could not be identified in previous studies using 
method #1 [35].

sox9 is a multifunctional transcription factor found 
in different tissues and plays crucial roles in vertebrate 
development, including cell proliferation and differentia-
tion [84]. This gene was defined as a “hub” gene of testis 
differentiation after sex determination in vertebrates. 
As reviewed elsewhere [84], sox9 has a conserved role 
in male gonadal development and a highly conserved 
protein sequence. In fishes, two orthologs exist due to 
gene duplication: sox9a and sox9b [85]. Although the 
two orthologs are retained, they are related to different 
functions and tissues depending on the fish species. For 
example, sox9a, is expressed in the ovary of the medaka 
(Oryzias latipes) and the platy fish (Xiphpphorus macu-
latus), while in the zebrafish  (Danio rerio), sox9a is 
expressed only in the testis [85], like the current results 
found in the sea bass. In this species, sox9a was recently 
found to be involved in the epigenetic regulation of the 
temperature induced sex ratio during sex differentiation 
[86].

Based on the parameters obtained in the model fit dur-
ing network construction, network statistics, and the 
biological relevance of the results obtained, we highlight 
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the importance of using method #4 followed by func-
tional enrichment analysis rather than method #3. Even 
though the computation of method #3 (DEG + WGCNA) 
is faster (a matter of seconds to a few minutes for the 
datasets used in this study) and requires less computa-
tional power, it does not compensate for the bias intro-
duced to the results. Additionally, we recommend using 
method #4 instead of method #2 because, although the 
same network is built and the same groups of genes are 
formed, method #4 allows to further filter the large gene 
lists produced by WGCNA without removing the most 
important (based on gene expression) genes. WGCNA 
is a powerful method still being used [20, 42–44], with 
a large proportion of the studies using specifically the 
inappropiate  method #3 [54–60]. More recent alterna-
tive methods to WGCNA to identify modules of dif-
ferentially co-expressed genes have been developed: 
THD-Module Extractor [22], DiffCoEx [23], and MODA 
[24]. And, although in the comparison of these methods 
with WGCNA, the THD-Module Extractor method was 
claimed more effective in finding modules with higher 
functional relevance and biological significance than 
WGCNA, this result could be due to the previous filter 
of the dataset. Precisely, as stated by the authors, the use 
of DEGs before WGCNA lead them to the soft thresh-
old of power fit to fail [53]. Therefore, a comparison of 
THD-Module Extractor method with the method #4 
(WGCNA + DEGs) described in this study remains to be 
done.

Conclusions
In conclusion, WGCNA is a robust and systematic 
approach commonly used in transcriptomics. With time, 
several strategies have appeared and became quite com-
mon, i.e., method #3, to use the parameters and filters 
provided by this tool but somehow running against its 
original philosophy. We evaluated the model fit and the 
biological relevance of the results obtained using method 
#3 (DEGs + WGCNA) and our proposed method #4 
(WGCNA + DEGs) with the gonadal transcriptome of 
three different vertebrates, sea bass, mouse, and human, 
obtained from two high-throughput technologies: micro-
array and RNA-seq. The results showed that method #4 
is more efficient in filtering for smaller gene lists that 
contain the genes most related to the trait of interest. 
Thus, we propose to analyze transcriptomic data using 
WGCNA to build a co-expression network from the 
entire dataset and, only subsequently, filter by DEGs. 
Such a strategy combines the powerful method of pro-
ducing a network with the filter from the traditional and 
robust statistical analysis without introducing bias. Addi-
tionally, we produced new lists and network visualization 
of genes related to early sex differentiation in the sea bass 

with the corresponding functional enrichment analysis 
and identifying a novel biomarker for testis early differ-
entiation (sox9a). Last but not least, the filter by DEGs in 
method #4 increases the probability of robust biomarker 
discovery when compared to method #2. We propose 
that method #4 should be the method to use in future 
transcriptomic studies regardless of biological system, 
species, or question being considered.

Methods
After WGCNA development, numerous studies started 
to use this method in combination with the previous fil-
tering of the dataset (method #3). Combining WGCNA 
with other filtering methods like DEGs can be a strategy 
to further filter for the target genes associated with a trait 
of interest. However, whether this filtering step before 
WGCNA affects the results and to what extent has never 
been shown yet. In this study, we aim to compare method 
#3 with the here proposed new method #4: applying the 
filtering step after construction of the co-expression net-
work. To determine which one is more efficient, we used 
both methods to study the gonadal transcriptome of 
three vertebrates: sea bass, mouse, and human. Hence, a 
total of six analyses were performed. Then, we compared 
the model fit, connectivity, and other network statistics 
to compare both methods for each of the three species. 
Additionally, we used existing information on key genes 
for the sexual development and reproduction of sea bass 
and mouse to measure how many key genes were found 
with each method. Finally, the enriched genes by GO 
term enrichment analysis obtained from the gene lists 
produced by methods #3 and #4 were compared in the 
mouse. The methods are implemented in R software 
and all source code has been made publicly available on 
GitHub as part of the WGCNA_DEGs project at: https://​
github.​com/​Nsbai​zan/​WGCNA_​DEGs.

Literature review
Before any comparison of methods #3 and #4 was per-
formed, we wanted to know if the use of method #3 was 
exceptional or if we could find several studies where this 
method was used. We used Scopus and Web of Science 
databases to find published studies using each method. 
To search a few examples of method #1, we used the 
following keywords in the topic field: “((DEG) OR (“dif-
ferentially expressed genes”)) AND ((Microarray) OR 
(RNA sequencing))”. To find studies using methods #2 
or #3, we used the following keywords in the topic field: 
“((WGCNA) OR (“weighted gene co-expression network 
analysis”)) AND ((Microarray) OR (RNA sequencing))”. 
After reading detailed information on the methods sec-
tion of each paper, we could classify between meth-
ods depending on whether WGCNA was used without 

https://github.com/Nsbaizan/WGCNA_DEGs
https://github.com/Nsbaizan/WGCNA_DEGs
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(method #2) or after filtering by DEG (method #3). We 
found that the use of the WGCNA is widespread in tran-
scriptomic data studies and that method #3 is not excep-
tional but, rather, it is of common use even in recent 
publications.

Species and processes studied: the sea bass
In sea bass, sex depends on the combination of several 
pro-male and pro-female autosomal genes plus environ-
mental (temperature) influences [64]. Sex determination 
is thought to occur between 60 and 100 dpf [87], around 
120 dpf the first molecular signs of gonadal sex differen-
tiation appear in the form of differences in the expression 
of gonadal aromatase, cyp19a1a [88], and the first histo-
logical differences appear around 150 dpf when fish are 
around 8 cm long. Sex differentiation proceeds earlier in 
females than males, and the process is completed by 250 
dpf in females and around 350 dpf in males when females 
are 12.7 ± 5.7 cm (mean ± SD), and 11.2 ± 0.6 cm of SD in 
males, and 16 ± 1.3 in females and 14.8 ± 1.1 cm of SD in 
males, respectively [35]. Gene expression during gonadal 
sex differentiation in the sea bass has been extensively 
studied, first by targeted approaches [89–92] and more 
recently by using a homologous and validated microarray 
containing 43,803 probes. In the latter case, fish before 
(110 dpf), during (250 dpf), and after (350 dpf) gonadal 
sex differentiation were analyzed [35], and DEGs and 
enriched signaling pathways were identified. Addition-
ally, hsd17β10 was identified as a marker of early ovarian 
differentiation.

Species and processes studied: the mouse
Sex differentiation in the mouse is well characterized [93] 
and thus less information will be provided. Briefly, key 
genes during mouse gonadal sex differentiation include 
sex-determining region Y (sry), amh, and sox9, while pro-
female genes include wnt4, R-spondin 1 (rspo1), a mem-
ber of the R-spondin family, and β catenin (ctnnb1) [93]. 
In mouse, sex differentiation starts between embryonic 
day (E) 11.0–E12.0 and ends at E16.5 [94, 95].

Species and processes studied: the human
Sex differentiation in the human has been studied exten-
sively despite the limited availability of normal fetal 
human gonads [66]. In brief, the gonadal primordium 
arises from the coelomic epithelium around the 4th PCW 
and differentiation reaches the end towards the 17th 
PCW. Testis differentiation is activated by the expres-
sion of the Y-linked transcription factor sry during the 
6th PCW in supporting cells leading to the expression of 
sox9 and amh genes. In the absence of sry, rspo1/Wnt4/β 

catenin pathway, foxl2 activates the transcriptional cas-
cade required for ovarian differentiation.

Datasets
Transcriptomic data during sea bass sex differentiation 
was previously obtained using a homologous microarray 
[35] and can be downloaded from the Gene Expression 
Omnibus (GEO) database with the accession number 
GSE115841 [96]. For the aim of the present study, we 
selected data available from fish at two key developmen-
tal stages: four females and seven males at the begin-
ning of sex differentiation at 110 dpf with a length of 
5.2 ± 0.5  cm (mean ± SD). At this time, gonads are still 
morphologically undifferentiated but fish can be sexed 
measuring cyp19a1a expression levels [88]. We also used 
six females (12.7 ± 5.7 cm) and six males (11.2 ± 0.6 cm) 
in the middle of sex differentiation period at 250 dpf. 
Thus, we used 23 fish in total for analysis. The original 
downloaded file consists of 43,801 probe copies repre-
senting 20,978 transcripts with normalized expression 
values, corrected for batch effect. Microarray intensity 
values were directly used for the determination of differ-
entially expressed genes and/or network construction.

Transcriptomic data during mouse sex differentiation 
was obtained using RNA-seq [96] and can be down-
loaded from the GEO database under the accession num-
ber GSE117590 [97]. For the present study, we selected 
transcriptomic data from twelve samples, three males 
and three females at two embryonic stages: 12.5  dpc, 
corresponding to the beginning of gonadal sex differen-
tiation, and 16.5 dpc, at the end of sex differentiation. 
After trimming the raw reads, the alignment to reference 
genome (v. GRCm39 GCA_000001635.9) (2.1.0) [98] 
was performed to obtain a dataset with 55,416 genomic 
features using featureCounts (v2.0.0) [99]. Counts were 
processed using edgeR package (v3.34.0) [100]—limma 
workflow which includes counts pre-processing and 
exploratory data analysis before obtaining lists of DEGs 
as described in [101].

Transcriptomic data during human sex differentiation 
was obtained using RNA-seq [66] and can be found at 
NCBI GEO under accession number GSE116278 [102]. 
We selected transcriptomic data from a total of 32 samples 
which were grouped into three stages as follows: four males 
and four females at 6 PCW, corresponding to the beginning 
of gonadal sex differentiation (first stage); 8 males and 8 
females at 7 PCW (second stage); as well as two males and 
two females at 13–14 PCW, and two males and two females 
at 17 PCW, corresponding to the end of sex differentia-
tion (third stage). The total of 35,194 finely annotated tran-
scripts in [66] were used to test methods #3 and #4.
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Transcriptomic data analysis overview
The gonadal transcriptome of the sea bass, mouse, and 
human during sex differentiation were analyzed with 
two different methods: #3 (DEGs + WGCNA) and #4 
(WGCNA + DEGs). In method #3, we first created a list 
of the DEGs between males and females at 250 dpf in 
sea bass and at 16.5 dpc in mouse and then we used this 
list for network construction. For the human, we used 
exactly the same list of differentially expressed transcripts 
between males and females at 6 PCW previously pub-
lished [66]. In method #4, we first carried out WGCNA 
and then used the same list of DEGs as before to filter the 
dataset just after network generation but prior to net-
work visualization. Therefore, we carried out a total of six 
analyses (two methods × three species). In the following 
sections, we describe in detail how we determined the 
DEGs and how we carried out WGCNA in each case.

Weighted gene co‑expression network analysis
We implemented the WGCNA using the R package 
(v.1.51) according to the authors’ recommendations [17, 
103] in R statistical software [104, 105]. We first checked 
for the presence of outliers using the hierarchical cluster-
ing of samples with Euclidean distance [68]. In the sea bass 
dataset, one male at 110 dpf grouped with the male sam-
ples at 250 dpf at a height > 15, distant from the rest of sam-
ples and thus removed from further analysis. The rest of 
the samples were used to generate the Pearson correlation 
matrices. Among the mouse samples, one was identified as 
an outlier using the hierarchical clustering of samples. One 
of the females at 16.5 dpc was at a height > 30 far from the 
rest of samples and hence, removed from further analysis. 
Thus, in total we analyzed 22, 11, and 32 samples from sea 
bass mouse, and human, respectively.

To build unsigned weighted networks, the adjacency 
matrix was calculated as amn =|cormn|β, where amn is 
the adjacency between gene m and gene n, cormn is the 
Pearson correlation, and β is the soft-power threshold. 
Unsigned networks allow the connection of genes that 
are both positively and negatively correlated; the absolute 
value of the Pearson correlation is used as a co-expres-
sion similarity measure [106, 107]. In contrast, a signed 
network would not include the connections between 
strong negatively correlated genes [106, 107]. Sexual 
development in vertebrates is known to be orchestrated 
by mutually antagonizing male and female pathways [63] 
in which not only upregulation of a set of genes tilts the 
balance towards the development of one sex or the other 
but, importantly, the concomitant mechanism of active 
downregulation of numerous genes in the opposite sex 
is also required [95, 108]. Therefore, using the unsigned 
network allowed drawing the connections between 
genes or nodes that were either positively or negatively 

correlated, since no difference was made between gene 
inhibition and activation patterns.

To fit the scale-free topology model, we tested several 
soft threshold powers (ranging from 1 to 20) to which co-
expression similarity is raised. To quantify how well a net-
work met the scale-free topology criterion, the model fit 
was measured as the signed linear regression model fitting 
index R2. After selection of the value leading to the best 
fit to the scale-free topology model (signed R2 closest to 
1), additional considerations described by the developers 
were taken into account: high mean connectivity (k), and 
the slope of the regression line between log10 (p(k)) and 
log10 (k), closest to − 1 [17, 103]. Subsequently, the adja-
cency matrix was transformed into a topological overlap 
matrix, and gene modules were detected by hierarchical 
average linkage clustering analysis for the gene dendro-
gram, setting the parameters as default (minimal gene 
module size = 30, and the threshold to group similar mod-
ules was set to 0.25).

Selection of modules associated with sex
After the modules were defined, the module eigengene 
(ME) distances were calculated to elucidate potential 
relationships of modules with two phenotypic traits: sex 
and age of the samples. For simplicity, we focused on the 
results related to sex development in the present study, 
although the study of other traits could be considered fol-
lowing the same workflow. Hence, we chose the signifi-
cant modules that met the following thresholds regarding 
sex trait: absolute R2 > 0.5 and P < 0.001 in the sea bass 
and human datasets or P < 0.01 for the mouse transcrip-
tome. To assess the correlation strength, we calculated 
the module significance (MS), the average absolute GS 
of all the genes involved in the module. The key modules 
kept for further analysis were those with the highest MS 
score among all modules produced.

For the genes within the selected modules, we calcu-
lated intra-modular membership (kIM) for each gene to 
determine how well-assigned is a gene within a module 
and its relationship with the trait of interest as described 
by Langfelder and Horvath [17]. Additionally, we calcu-
lated GS for the sex trait of each gene within the modules. 
The gene significance is defined as − log of the p-value of 
association of the gene with the trait, in our case, sex.

To identify the modules with most interesting genes 
associated to the trait of interest, we selected the mod-
ules with a significant correlation (|cor|≥ 0.5, P < 0.001 
in sea bass and human; |cor|≥ 0.5, P < 0.01 in mouse). To 
identify the genes most interesting within those modules, 
we filtered by kIM and GS, where the higher the absolute 
value of GS of a gene the more biologically significant it 
is for the trait of interest. Thus, we kept for further anal-
ysis all the genes within the selected modules with an 
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absolute gene significance higher than 0.2 and an abso-
lute intra-modular membership higher than 0.8 [17].

Analysis of differentially expressed genes
The DEGs were determined by fitting a linear model, 
using the same empirical Bayesian statistics in both data-
sets. For the sea bass data, we used the Quantile method 
in the Linear Models for Microarray Analysis (Limma) (v. 
3.44.3) R package [109]. We compared sea bass female vs 
male gonads at 110 and 250 dpf. The same statistical test 
was applied to the mouse transcriptome dataset using 
edgeR (v.3.30.3) [100] and GLimma package (v.2.2.0) 
[110] in R software (v. 3.4.1) [104, 105]. In this case, the 
comparison of female vs male at 16.5 dpc was used. For all 
the comparisons, genes with a false discovery rate (FDR) 
based on the Benjamini–Hochberg method were defined 
as differentially expressed (adjusted P < 0.05). We pre-
processed the two transcriptomes using different pack-
ages because the dataset from the sea bass was obtained 
from a microarray experiment (normalized intensity 
values matrix), and the mouse data were obtained from 
an RNA sequencing experiment (normalized expression 
counts matrix). While data pre-processing steps were 
necessarily different because of the technologies used to 
obtain the data, the mathematics behind DEG determi-
nation were essentially the same.

Key genes with reproduction‑related functions
To determine which methodology would unveil more 
genes relevant for the target process, we generated lists of 
genes previously known to be involved with gonadal sex 
differentiation for each of the two species studied. For the 
sea bass, we selected a total of 28 genes from the literature 
related to the sea bass or other well-studied fish species 
like zebrafish [35, 93, 111] (Additional file 6). In addition, 
we produced a heat map with gene hierarchical analysis of 
the selected genes in sea bass using gplots (v3.1.1) [112] 
and ggplot2 (v3.3.5) [113] packages. For the mouse, where 
gonadal sex differentiation has been thoroughly studied, 
we selected 50 genes compiled from recent and compre-
hensive reviews [93, 96, 114] (Additional file 7).

Up to this step, all analyses were performed in sea 
bass and mouse species to test whether the comparison 
between methods #3 and #4 was reproducible with tran-
scriptomes of different species and obtained with different 
technologies (microarray and RNA-seq). From this point 
onwards, only the results from the sea bass were further 
explored by network visualization and identification of 
early gene expression markers of sex differentiation.

Network visualization and statistics
In order to compare the three methods involving net-
work construction, we selected the most associated 

module with sex (positively or negatively) to calcu-
late network parameters. The modules were as follows: 
red (DEGs + WGCNA) vs pink (WGCNA + DEGs) 
in the sea bass, turquoise (DEGs + WGCNA) vs 
brown (WGCNA + DEGs) in the mouse, and yellow 
(DEGS + WGCNA) vs yellow-green (WGCNA + DEGs) 
in the human. We exported network results to Cytoscape 
software (version 3.5.1) [115] using the function export-
NetworkToCytoscape from WGCNA package by includ-
ing the adjacency matrix of each module as input and 
defining the adjacency threshold to 0.2. Cytoscape was 
then used to visualize and to analyze the networks using 
NetworkAnalyzer [69].

Identification of biomarkers of early gonadal sex 
differentiation
To find genes involved in the early stages of gonadal sex 
differentiation in the sea bass, we used the gene lists of 
the four modules associated with sex, filtered by gene 
significance and intra-modular membership as described 
above, i.e., absolute gene significance higher than 0.2 
and an absolute intra-modular membership higher than 
0.8. Additionally, for those genes that met the criteria, 
we checked which ones were also DEGs between males 
and females at 110 dpf. Among the selected genes, we 
checked for the presence of genes previously known to be 
involved in gonadal sex differentiation in this species.

Functional enrichment analysis of the mouse dataset
We chose to investigate potential differences in GO term 
analysis caused by different methods using the mouse, a 
model species with a much more curated and up to date 
annotation. The co-regulated DEGs associated with sex at 
16.5 dpc were enriched for Gene Ontology analysis using 
the GO Enrichment Analysis bioinformatic PANTHER 
tool [116], with the list of genes captured by the RNA-seq 
experiment (n = 14,088) serving as the background refer-
ence list.
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